- 1. Let $\{W_t, t \ge 0\}$ be a Wiener process (recall that it has independent increments). The process $\{Y_t, t \ge 0\}$ is defined as $Y_t = W_{t+2} W_t, t \ge 0$.
 - (a) Determine the mean value function and the autocovariance function of $\{Y_t, t \ge 0\}$. [2 pts]
 - (b) Decide whether the process $\{Y_t, t \ge 0\}$ is weakly stationary. [1 pt]
- 2. A real-valued weakly stationary random sequence $\{U_t, t \in \mathbb{Z}\}$ has the following autocovariance function: $R_U(k) = (1/6)^k, k = 0, 1, 2, ...$ Determine the values $R_U(-1), R_U(-2), ...$ and decide whether the spectral density of the sequence exists. If it does, calculate it. [4 pts]
- 3. A real-valued random process $\{D_t, t \ge 0\}$ is centered and has the following autocovariance function, $s, t \ge 0$: $R_D(s,t) = 2s - t$ for $s \le t < 2s$, $R_D(s,t) = 2t - s$ for t < s < 2t, $R_D(s,t) = 0$ otherwise. Is the process $\{D_t, t \ge 0\}$ L_2 -continuous and L_2 -differentiable? Is it L_2 -integrable on a bounded interval $[a, b] \subset [0, \infty)$? [4 pts]
- 4. Consider a weakly stationary random sequence $\{X_t, t \in \mathbb{Z}\}$ with the spectral density $f_X(\lambda) = 3 \cdot \mathbb{I}_{(-\pi/3,\pi/3)}(\lambda), \lambda \in [-\pi,\pi]$. Determine the spectral distribution function and the autocovariance function of the sequence $\{X_t, t \in \mathbb{Z}\}$. [3 pts]

For successfully passing this test obtaining at least 10 points out of 14 is required.

Stochastic processes 2 – second test

1. Consider an AR(2) process $\{X_t, t \in \mathbb{Z}\}$ given by the formula

$$X_t - \frac{11}{12}X_{t-1} + \frac{1}{6}X_{t-2} = Y_t, \quad t \in \mathbb{Z},$$

where $\{Y_t, t \in \mathbb{Z}\}$ is a centered real-valued white noise with positive finite variance σ^2 .

- (a) Determine the autocovariance function of the process $\{X_t, t \in \mathbb{Z}\}$ using the Yule-Walker equations. You do not have to calculate the precise value of R(0), just express it using fractions. [6 pts]
- (b) Suppose that we know the whole history of the process up to time t. Find the prediction of X_{t+1} and X_{t+2} and determine the prediction error. [3 pts]
- 2. Consider an ARMA(1,1) process $\{X_t, t \in \mathbb{Z}\}$ given by the formula

$$X_t - \frac{1}{5}X_{t-1} = Y_t + \frac{3}{4}Y_{t-1}, \quad t \in \mathbb{Z},$$

where $\{Y_t, t \in \mathbb{Z}\}$ is a centered real-valued white noise with positive finite variance σ^2 . Discuss the causality of the process $\{X_t, t \in \mathbb{Z}\}$ and find the corresponding MA(∞) representation. Determine the coefficients of the corresponding linear filter and calculate its transfer function. [3 pts]

3. Show that a sequence $\{Z_t, t \in \mathbb{Z}\}$ following a MA(3) model is mean square ergodic and write down what does that mean for the sequence $\frac{1}{n} \sum_{i=1}^{n} Z_n, n \in \mathbb{N}$. [2 pts]

For successfully passing this test obtaining at least 10 points out of 14 is required.