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Department of Probability and Mathematical Statistics, MFF UK, Prague

Course on Spatial statistics



Situation

Observed data described by Fdata(r), r ∈ [rmin, rmax ],
example: random set, F (r) = area of the set dilated by r ,

we have a hypothesis that the data comes from a given
model (null hypothesis, H0),
FH0 difficult or impossible to work with,
we can simulate from the model.
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Ex.: CELLS dataset
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F (r) = K (r)− πr2, r ∈ [0;0.25]
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Ex.: data curve

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

04
0.

00
0.

04

r
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Ex.: simulated curve (Poisson process)

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

04
0.

00
0.

04

r
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Ex.: 39 simulated curves
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Ex.: envelope and FH0
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Ex.: envelope test
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Envelope test (Ripley, 1977)

Reject H0 if the data curve leaves the envelope,

39 simulated curves + 1 data curve⇒ probability of type I
error is 5 % if we look at a single value r0,
if we look at more values, prob. of type I error gets higher,
problem of multiple comparison (multiple testing),
suggestion: use envelopes as visual tool, avoid “testing”,
result: ecologists, biologists, etc., use envelopes to
formally test their hypotheses.
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Deviation tests (Diggle, 1979; Ripley, 1979)

Summarize F (r) into a single number u:

udata =

∫ rmax

rmin

(
Fdata(r)− FH0(r)

)2
dr ,

udata = max
r∈[rmin,rmax ]

|Fdata(r)− FH0(r)|.

FH0 known analytically or estimated as the mean of the
simulated curves,

compare udata to the values ui from n simulations,
does udata behave extremally w.r.t. ui?
p-value estimated as 1

n{#i : ui > udata},
other deviation measures also possible.
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Properties of deviation tests

Advantages:
formal test with given prob. of type I error,
gives p-value.

Disadvantages:
If H0 rejected, no clear indication of the reason,
no information which values of r caused rejection
(important for ecologists in order to form new hypotheses),
problems with non-constant variance (width of the
envelope) and/or assymetry.
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Problem: non-constant variance
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Variance might be stabilized
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State-of-the-art (up to 2006)

Envelopes from 39 or 99 simulations,
deviation tests for formal testing.

Loosmore & Ford (2006):
illustrate by example that prob. of type I error in the global
envelope test may be unacceptably high (0.74 or even
more),
to do so they explain how prob. of type I error can be
estimated a posteriori, i.e. after the simulations,
idea: how many curves contribute to the shape of the
envelope?
recommendation: use deviation tests, not envelopes.

(see Section 2.3 of paper Grabarnik et al., 2011)
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Jiřı́ Dvořák (MFF UK) Envelope testing Spatial statistics 14 / 32



State-of-the-art (up to 2006)

Envelopes from 39 or 99 simulations,
deviation tests for formal testing.

Loosmore & Ford (2006):
illustrate by example that prob. of type I error in the global
envelope test may be unacceptably high (0.74 or even
more),
to do so they explain how prob. of type I error can be
estimated a posteriori, i.e. after the simulations,
idea: how many curves contribute to the shape of the
envelope?
recommendation: use deviation tests, not envelopes.

(see Section 2.3 of paper Grabarnik et al., 2011)
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State-of-the-art (2011)

Grabarnik et al. (2011):
Take up the approach of Loosmore & Ford (2006),
idea: try increasing the number of simulations, hoping that
the prob. of type I error will decrease,
it might be necessary to use, say, 1999 simulations to
reduce the probability under 0.1.

Disadvantages:
Iterative procedure,
no p-value provided (we do not know how strong is the
reason for rejection).
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Refined envelope test, n = 999
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Probability of type I error: 0.1231
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Refined envelope test, n = 1999
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Probability of type I error: 0.0670
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Refined envelope test, n = 2999
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Probability of type I error: 0.0460
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State-of-the-art (2017)

Myllymäki et al. (2017), exact envelope test:
increase the number of simulations even more (say 3999),

idea: define k th upper and lower envelope:

F k
upp(r) = maxk

i∈{data,1,...,n} Fi(r),

F k
low (r) = mink

i∈{data,1,...,n} Fi(r),

maxk – k th largest value, mink – k th lowest value,
first envelope is the broadest (most extreme), second, third
etc. envelopes are more and more narrow.
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Myllymäki et al. (2017), exact envelope test:
increase the number of simulations even more (say 3999),
idea: define k th upper and lower envelope:

F k
upp(r) = maxk

i∈{data,1,...,n} Fi(r),

F k
low (r) = mink

i∈{data,1,...,n} Fi(r),

maxk – k th largest value, mink – k th lowest value,
first envelope is the broadest (most extreme), second, third
etc. envelopes are more and more narrow.
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Exact envelope test, n = 4999, 1st envelope

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

04
0.

00
0.

04

r
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Exact envelope test, n = 4999, 2nd envelope
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Exact envelope test, n = 4999, 3rd envelope
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Exact envelope test, n = 4999, 5th envelope
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Exact envelope test, n = 4999, 10th envelope
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Exact envelope test, n = 4999, 50th envelope
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Jiřı́ Dvořák (MFF UK) Envelope testing Spatial statistics 25 / 32



Exact envelope test

Global α-envelope (say 95%): we need to find kα such that

α = PH0

(
F kα

low (r) ≤ F (r) ≤ F kα
upp(r)

)
≈ 1

n

{
#i : F kα

low (r) ≤ Fi(r) ≤ F kα
upp(r)

}
.
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Exact envelope test, n = 4999, α=0.99
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Exact envelope test, n = 4999, α=0.95
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Exact envelope test, n = 4999, α=0.90
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Exact envelope test, n = 4999, α=0.75
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Exact envelope test

Provides p-value: let k1 be the maximal k for which the k th
envelope fully covers Fdata. Then

p ≈ 1
n

{
#i : Fi(r) somewhere leaves [F k1

low (r),F
k1
upp(r)]

}
.

Advantages:
gives p-value,
no iterations needed,
intuitive interpretation of the global envelopes,
shows reason of rejection,
no problems with non-constant variance or asymetry.

Disadvantages:
high number of ties implies a LOT of simulations is needed.
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Extreme rank length ranking

Olympic games – ranking countries based on the number of
gold/silver/bronze medals.
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