Simulation of a Rebound

Jakub Fara supervisor: RNDr. Karel Tůma, Ph.D. May 15, 2022

Charles University

Outline

Problem Description

ALE method

Re-meshing

Equations

Numerical Implementation

Results

Problem Description

play video

Problem Description

- 1. 2D
- 2. elastic material in a viscous Newtonian fluid
- 3. no additional boundary conditions
- 4. no gravity field, just initial velocity

ALE method: Description

ALE method: Advantages

- Sharp boundary
 - We are able to change the interface conditions
 - The mesh does not have to be fine along the interface
- Computation domain is fixed
- The solid is computed in Lagrangian description and fluid in "deformed Eulerian" description

ALE method: Limitation

- Equations are highly nonlinear
- No topological changes
- The mesh projection can be "damaged"
 - \Rightarrow numerical instability

7/25 play video

- no-slip on the wall
- no-slip on the interface
- "flat" shape of the structure
- \Rightarrow NO CONTACT !!! ¹

¹**HESLA T.I. 2004** Collisions of smooth bodies in viscous fluids: a mathematical investigation. PhD thesis, University of Minnesota.

- Ω_R ...initial configuration
- Ω_r ...re-meshed configuration
- Ω_c ...current configuration

Re-meshing

• Every time we change the computation domain, we repair the mesh and project the solution on it

Re-meshing: Local mesh operations

- We will change the mesh locally, where it is needed
- We need to keep the interface
- The mesh can be build just ones
- The number of operations is $\mathcal{O}(n)$, where *n* is number of elements

Re-meshing: Local mesh operations

• Flipping of an Edge

Re-meshing: Local mesh operations

- Flipping of an Edge
- Edge reduction

Re-meshing: Local mesh operations

- Flipping of an Edge
- Edge reduction
- Vertex Addition

Equations

Fluid: Incompressible Navier-Stokes

$$J_{f}\rho_{f}\left(\partial_{t}\vec{v}_{f} + (\nabla\vec{v}_{f})\mathbb{F}_{f}^{-1}(\vec{v}_{f} - \partial_{t}\vec{u}_{f})\right) = \operatorname{div}\left(J_{f}\mathbb{T}_{f}\mathbb{F}_{f}^{-T}\right)$$
$$\operatorname{div}\left(\vec{v}_{f}\right) = 0; \quad \bigtriangleup\vec{u}_{f} = 0 \tag{1}$$
$$\mathbb{T}_{f} = 2\mu\mathbb{D} - p\mathbb{I}$$

Solid: Compressible neo-Hookean

$$\rho_R \partial_t \vec{v}_s = \operatorname{div} \left(J_s \mathbb{T}_s \mathbb{F}_s^{-T} \right)$$

$$\rho_R J_s = \rho_s \quad \partial_t \vec{u}_s = \vec{v}_s \qquad (2)$$

$$J_s \mathbb{T}_s \mathbb{F}_s^{-T} = 2G(\mathbb{F}_s - \mathbb{F}_s^{-T}) + 2\lambda(J_s - 1)J_s \mathbb{F}_s^{-T}$$

14/25

Equations

Interface conditions

$$\vec{u}_f = \vec{u}_s$$
 on Γ
 $\vec{v}_f = \vec{v}_s$ on Γ (3)
 $\mathbb{T}_f \vec{n} = \mathbb{T}_s \vec{n}$ on Γ

Boundary conditions

$$\vec{u} = 0 \text{ at } \partial \Omega$$

 $\vec{v} = 0 \text{ at } \partial \Omega$ (4)

• FEM

- CG2 for \vec{v} and \vec{u}
- CG1 for p
- nonlinear Newton solver
- linear solver MUMPS
- rtol = atol = 10^{-10}
- dt = 0.001, backward Euler

- mesh in ADmesh
- assembled in FEniCS
- solved with petsc4py

- $\lambda = 10^6 Pa$
- $G = 5 * 10^4 Pa$
- $\mu = 0.2 Pa \cdot s$
- $\rho_f = 1000 \frac{kg}{m^3}$
- $\rho_s = 1000 \frac{kg}{m^3}$

play video

۲

Results: Not Refined Mesh

Results: Not Refined Mesh

Results: Not Refined Mesh

Results: Refined Mesh

Results: Refined Mesh

Results: Refined Mesh

Results: Comparison

22/25

Results: Comparison

Results: Comparison

But what stops the ball???

- ALE method can be use for "almost" contact.
- Result does not depend on refinement near the "almost" contact.
- The increment of the pressure causes the rebound.
- We would like to compare results with Eulerian method.