
Subsemigroups of a free semigroup and the graph lemma

While the subgroups of a free group are themselves free, the subsemigroups of a
free semigroups need not be free. For example, the semigroup S = 〈X〉 generated
by the set X = {a, ab, ba}is not free since ab · a = a · ba, and X is the smallest set
generating S. In general, we have the following fact:

Lemma. Let S be a subsemigroup of a free semigroup. Then S has a smallest (w.r.t.
inclusion) set of generators B = S \ S2.

Proof. We first show that B generates S. Assume to the contrary that w ∈ S but
w /∈ 〈B〉, and let w be such a word of minimal possible length. Since w /∈ S \ S2,
we have w ∈ S2, that is, w = uv for some u, v ∈ S. The minimality of |w| implies
that u, v ∈ 〈B〉, therefore also w ∈ 〈B〉, a contradiction.

Let now S = 〈B′〉. In particular B ⊆ 〈B′〉. The definition of B implies, that no
element of B is a product of two or more elements of B′. Hence B ⊆ B′. �

The set B of the previous lemma is called the basis of the semigroup S, and its
size is the rank of S. The subset T of the semigroup {a, b}∗ consisting of words
starting with a shows that a semigroup of finite rank can be of an infinite rank.
Namely, the basis of T is the set {abi | i ≥ 0}.

Let us stress again that while the basis is the smallest generating set of a given
semigroup, the semigroup need not be free. If B generates a free semigroup, then
it is called a code.

Next lemma characterizes semigroups generated by a code.

Lemma. A semigroup S ⊆ Σ+ is free iff for any p, q, w ∈ Σ+ we have

p, q, pw,wq ∈ S =⇒ w ∈ S .(f)

Proof. Let S be free and let p, q, pw,wq ∈ S. Then also pwq ∈ S and the words
pw, wq a pwq have a unique factorization into elements of the basis BS of S. Let
p = p1p2 · · · pip , q = q1q2 · · · qiq , pw = b1b2 · · · bj1 and wq = c1c2 · · · cj2 be such
factorizations (that is, all pi, qi, bi and ci are from BS). Then the equality

p1p2 · · · pipc1c2 · · · cj2 = pwq = b1b2 · · · bj1q1q2 · · · qiq
implies pk = bk, k = 1, 2, . . . , ip, hence w = bip+1bip+2 · · · bj1 ∈ S.

Let now S be not free and let b1b2 · · · bj = c1c2 · · · ck is a shortest possible
nontrivial relation between elements of BS . WLOG, let b1 < c1. Then p = b1,
q = c2c3 · · · ck and w = b−11 c1 do not satisfy (f). �

The implication (f) is called the stability condition.
Since sets satisfying th stability condition are clearly closed under the intersec-

tion, there is a smallest (w.r.t. inclusion) free semigroup F containing a given set X.
Such a semigroup is called the free hull of the set X, and we write F = 〈X〉f. The
basis F is called the free basis of the set X and its cardinality, denoted rankf(X),
is called the free rank of the set X.

Note that the stability condition can be written as

wS ∩ S 6= ∅ & Sw ∩ S 6= ∅ =⇒ w ∈ S .
This is equivalent ot a seemingly stronger

wS ∩ S ∩ Sw 6= ∅ =⇒ w ∈ S ,
since wpqw ∈ wS ∩ S ∩ Sw if p, q, pw,wq ∈ S.
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Note also the graphical meaning of the stability condition. It says that there can
be no nontrivial relation by requiring that any “overflow” in a relation be included
into the free hull:

p q
w
w

We now have an algorithm for obtaining the free basis of a finite set X: Let
b1b2 · · · bj = c1c2 · · · ck be a nontrivial relation of elements from X. If the relation
is minimal (not composed of shorter relations), then we can assume, by symmetry,
that |b1| < |c1|. In X, replace c1 with c′1 = b−11 c1. By the stability condition, the
new set X ′ has the same free hull as X. The process terminates by induction on
the total length of X with the free basis BX .

It is clear from this algorithm that the free rank of X is at most |X|. Moreover,
the free rank is strictly less if X is not itself a code. This follows from the fact
that replacing each c1 with b1c

′
1, in the nontrivial relation above, yields a nontrivial

relation again unless the original relation was b1c
′
1 = c1. In such case, however, we

just remove c1, hence |X ′| < |X|.
The following lemma turns out to be very useful.

Lemma. Let X be a set of words, and let B be the free basis of X. Then for
each b ∈ B there is x ∈ X such that b is the first (the last resp.) factor of the
B-factorization of x.

Proof. If X is finite, the claim follows easily by induction from the above algorithm:
1. It is trivial for X being a code. 2. If X ′ has the property, then also X has it
since the first B-factor of c′1 is also the first B-factor of b2.

For a possibly infinite X, the proof goes by contradiction. Assume that b ∈ B is
not the first factor of the B-factorization of any x ∈ X. Let

Z = (B \ {b})b∗ = {cbi | b 6= c ∈ B}.
Then Z is a code, since the unique B-factorization of each w ∈ 〈Z〉 yields a unique
Z-factorization of w. Since X ⊆ 〈Z〉 ( 〈B〉, we have a contradiction with the
minimality of 〈B〉. �

We now easily obtain an important theorem called the “Defect theorem” or the
“Graph lemma”.

Theorem. Let the words from X = {w1, w2, . . . , wn} satisfy relations (ui, vi) ∈
Ξ+ × Ξ+, i ∈ I, where Ξ = {x1, . . . , xn}. Let G = (X,H) be an undirected graph
with edges

H = {{pref1(ui),pref1(vi)} | i ∈ I}.
Then rankf(X) is at most the number of connected components of G.

In particular, if X is not a code, then rankf(X) < |X|.

Proof. Let B be the free basis of X and let bi be the first B-factor of ui. By the
previous lemma, we have B = {b1, b2, . . . , bn}.

Let ψ : Ξ+ → X+ be the morphism defined by ψ(xi) = wi. Let {xj , xk} ∈ H,
and let xj = pref1(ui) and xk = pref1(vi). Since the word ψ(ui) = ψ(vi) has a
unique B-factorization, we have bj = bk. The claim follows. �
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