THE THEOREM OF LYNDON AND SCHÜTZENBERGER

Theorem. If $x^n y^m = z^p$, with $x, y, z \in \Sigma^+$ and $n, m, p \ge 2$, then the word x, y a z commute.

Proof. By symmetry, assume $|x^n| \ge |y^m|$.

The word x^n has periods |x| |a| |z|. If $|x^n| \ge |z| + |x|$, then the Periodicity lemma implies that x and z have a period dividing |x| |a| |z|, which easily yields that they commute. Similarly if $|y^m| \ge |z| + |y|$.

Suppose therefore that x^{n-1} is a proper prefix of z and y^{m-1} a proper suffix of z. Then $|x^n| < 2|z|$ and $|y^m| < 2|z|$, hence p < 4.

Let p = 3. If $n \ge 3$, then $|x^2| < |z|$ implies $|x^3| < \frac{3}{2}|z|$, contradicting the assumption $|x^n| \ge |y^m|$. Therefore n = 2 and |x| > |y|. There are words u, v, w such that x = uw = wv, z = xu = wvu and $y^m = vuwvu$. The word uwv = xv = ux has periods |u| and |y|. Note that |uwv| = |u| + |x| > |u| + |y| holds. By the Periodicity lemma, the word uwv has a period d dividing both |u| and |y|. Therefore u and wv commute, and also z has a period d. Hence, both y and z are powers of their common suffix of length d, which yields the claim.

The case p = 2 remains. We have $z = x^{n-1}u = wy^m$, where uw = x. Then $wz = (wu)^n = w^2y^m$, where wu is shorter than z. The claim clearly holds if |z| = 1 and the proof is completed by induction.