Theorem. If $x^{n} y^{m}=z^{p}$, with $x, y, z \in \Sigma^{+}$and $n, m, p \geq 2$, then the word x, y a z commute.

Proof. By symmetry, assume $\left|x^{n}\right| \geq\left|y^{m}\right|$.
The word x^{n} has periods $|x|$ a $|z|$. If $\left|x^{n}\right| \geq|z|+|x|$, then the Periodicity lemma implies that x and z have a period dividing $|x|$ a $|z|$, which easily yields that they commute. Similarly if $\left|y^{m}\right| \geq|z|+|y|$.

Suppose therefore that x^{n-1} is a proper prefix of z and y^{m-1} a proper suffix of z. Then $\left|x^{n}\right|<2|z|$ and $\left|y^{m}\right|<2|z|$, hence $p<4$.

Let $p=3$. If $n \geq 3$, then $\left|x^{2}\right|<|z|$ implies $\left|x^{3}\right|<\frac{3}{2}|z|$, contradicting the assumption $\left|x^{n}\right| \geq\left|y^{m}\right|$. Therefore $n=2$ and $|x|>|y|$. There are words u, v, w such that $x=u w=w v, z=x u=w v u$ and $y^{m}=v u w v u$. The word $u w v=x v=u x$ has periods $|u|$ and $|y|$. Note that $|u w v|=|u|+|x|>|u|+|y|$ holds. By the Periodicity lemma, the word $u w v$ has a period d dividing both $|u|$ and $|y|$. Therefore u and $w v$ commute, and also z has a period d. Hence, both y and z are powers of their common suffix of length d, which yields the claim.

The case $p=2$ remains. We have $z=x^{n-1} u=w y^{m}$, where $u w=x$. Then $w z=(w u)^{n}=w^{2} y^{m}$, where $w u$ is shorter than z. The claim clearly holds if $|z|=1$ and the proof is completed by induction.

