Commuting and conjugate words

Definition. We say that nonempty words x and y are conjugate, if there are words u and v such that $x=u v$ and $y=v u$.
Theorem. Let $u, v \in \Sigma^{+}$. The following conditions are equivalent:
(a) $u v=v u$,
(b) $u^{i}=v^{j}$ for some $i, j \in \mathbb{N}$,
(c) $u=t^{k}$ and $v=t^{\ell}$ for some $t \in \Sigma^{+}$and some $k, \ell \in \mathbb{N}$.

Proof. (a) \Longrightarrow (c) If $|u|=|v|$, then $t=u=v$ and $k=\ell=1$. Proceed by induction on $|u v|$. If $|u v|=2$, then $|u|=|v|=1$ and we are done. Assume WLOG, that $|u|<|v|$, and let $w=u^{-1} v$. Then $u u w=u w u$, thus $u w=w u$. By the induction assumption, we have $u=t^{k}$ and $w=t^{\ell^{\prime}}$ for some t and some $k, \ell^{\prime} \in \mathbb{N}$. Then $v=u w=t^{k+\ell}$.
(c) \Longrightarrow (b) It is enough to take $i=\ell$ and $j=k$.
(b) \Longrightarrow (a) If $|u|=|v|$, then also $u=v$ and $u v=v u$. Assume, again WLOG, that $|u|<|v|$ and $v=u w$. Then $v^{j}=(u w)^{j}=u^{i}=u^{-1} u^{i} u=(w u)^{j}$, and thus $u w=w u$. Then also $v u=u w u=u u w=u v$.

Corollary. Every nonempty word is a power of a unique primitive word t.
The word t from the previous claim is called the primitive root of w. The theorem can be significantly generalized by the following lemma.
Lemma. Let $u v \neq v u$. Denote $z=u v \wedge v u$. Then $z=u w_{1} \wedge v w_{2}$ for any words $w_{1}, w_{2} \in\langle u, v\rangle$ such that $\left|u w_{1}\right| \geq|z|$ and $\left|v w_{2}\right| \geq|z|$.

Proof. Let $z a \leq u v$ and $z b \leq v u$, where a, b are letters. It is enough to show, that $z a \leq u^{i} v$ and $z b \leq v^{i} u$ for each $i \in \mathbb{N}$. This is obvious for $i=1$. Proceed by induction. By induction assumption, the word $u^{i+1} v$ has a prefix $u z$, which is also a prefix of $u v u$. Thus all three words have a common prefix of length $|z|+1$, namely $z a$ as one can see using $u v u$. Similarly we can show $z b \leq v^{i} u$.
Example. Let $u=a a b a$ and $v=a a b$. Then $z=u v \wedge v u=a a b a a$. Note that z can be longer than both u and v.

Corollary. If words u and v satisfy a nontrivial relation, then they commute.
For three words, there is no upper bound on the length of the common prefix of differently formed words. Consider, for instance, the words $x=a b, y=a b a$ a $z=b a a$. Then $x y^{\omega}=y z^{\omega}$. Observe, moreover, that x, y, z form a code. Therefore, words with no finite relation can satisfy an infinite relation. For three words, however, such a relation is known to be at most one.

We can also observe that conjugate words x, y satisfy a "both sides infinite" relation: $x^{\mathbb{Z}}$ a $y^{\mathbb{Z}}$ are the same sequences up to a shift.

For words $x=a b a, y=b$ we have still another situation. The sequence $(x y)^{\mathbb{Z}}$ is equal to itself by a nontrivial shift by two letters.
Theorem. Let the words x and y be conjugate.
(a) The word x is primitive iff y is primitive.
(b) The primitive roots of x and y are conjugate.
(c) There is a unique pair of words $\left(t_{1}, t_{2}\right) \in \Sigma^{+} \times \Sigma^{*}$ such that $t_{1} t_{2}$ is the primitive root of x and $t_{2} t_{1}$ is the primitive word of y.

Proof. Let $x=u v=t^{i}$, where t is the primitive root of $u v$ and $y=v u$. Then there is a nonempty prefix t_{1} of t and an exponent $0 \leq j<i$ such that $u=t^{j} t_{1}$ and $v=t_{2} t^{i-j-1}$, where $t_{2}=t_{1}^{-1} u$. Then $y=\left(t_{2} t_{1}\right)^{i}$. Similarly, we obtain $x=\left(s_{2} s_{1}\right)^{i^{\prime}}$, where $s=s_{1} s_{2}$ is a primitive root of y and $y=s^{i^{\prime}}$. The theorem about commutation implies $i=i^{\prime}$ and $s=t_{2} t_{1}$, which proves (a) and (b).

Let now $t=t_{1}^{\prime} t_{2}^{\prime}$ and $s=t_{2}^{\prime} t_{1}^{\prime}$. Assume WLOG that $\left|t_{1}\right| \leq\left|t_{1}^{\prime}\right|$. Then $t_{1}^{\prime}=t_{1} r$ and $t_{2}=r t_{2}^{\prime}$ for some r. We get $r s=r t_{2}^{\prime} t_{1}^{\prime}=t_{2} t_{1}^{\prime}=t_{2} t_{1} r=s r$. Since r is shorter than the primitive root of s and $s r=r s$, we conclude that r is empty, proving (c).

The following theorem is an equivalent characterization of conjugacy.
Theorem. The words x, y, z satisfy $z x=y z$ iff x and y are conjugate and $z \in$ $t_{2}\left(t_{1} t_{2}\right)^{*}$, where $\left(t_{1}, t_{2}\right) \in \Sigma^{+} \times \Sigma^{*}$ is a pair such that $t_{1} t_{2}$ is the primitive root of x and $t_{2} t_{1}$ is the primitive root of y.

Proof. We prove the "only if" by induction on the length of z. Suppose, first, that $0 \leq|z|<|y|$. Then $y=z z^{\prime}$, with $z=t_{2}\left(t_{1} t_{2}\right)^{j}$ and $z^{\prime}=\left(t_{1} t_{2}\right)^{j^{\prime}} t_{1}$ for some $0 \leq j$ and some nonempty suffix t_{1} of the primitive root $t=t_{2} t_{1}$ of y. Then $z x=z z^{\prime} z=y z$ and $x=z^{\prime} z=\left(t_{1} t_{2}\right)^{j+j^{\prime}+1}$. The previous theorem implies that $t_{1} t_{2}$ is the primitive root of x.

If $|z|>|y|$, then $z=y z^{\prime}=z^{\prime} x$ for $z^{\prime}=y^{-1} z$. The induction assumption implies $z^{\prime} \in t_{2}\left(t_{1} t_{2}\right)^{*}$ with $x \in\left(t_{1} t_{2}\right)^{*}$, and hence also $z=z^{\prime} x \in t_{2}\left(t_{1} t_{2}\right)^{*}$.

The "if" part can be easily verified.

