Minimal Defect

Consider the system of n^{2} equations

$$
S=\left\{\left(x u_{i} w_{j} v_{i} y, y u_{i} w_{j} v_{i} x\right) \mid i, j=1,2, \ldots, n\right\}
$$

Obviously, it has a solution of rank $3 n+1$ given by $x=y$. The rank is maximal allowed by the Graph lemma, namely $|\Theta|-1$. We claim that the system is independent. In order to show this, we have to find words $x, y, u_{k}, v_{k}, w_{k}, k=1,2$, such that

$$
\begin{aligned}
& x u_{1} w_{1} v_{1} y \neq y u_{1} w_{1} v_{1} x, \\
& x u_{1} w_{2} v_{1} y=y u_{1} w_{2} v_{1} x, \\
& x u_{2} w_{1} v_{2} y=y u_{2} w_{1} v_{2} x, \\
& x u_{2} w_{2} v_{2} y=y u_{2} w_{2} v_{2} x .
\end{aligned}
$$

Without loss of generality, we can assume that x is longer than y. We obtain conjugate words $\alpha \beta=y^{-1} x$ and $\beta \alpha=x y^{-1}$ such that

$$
\begin{aligned}
& \alpha \beta u_{1} w_{1} v_{1} \neq u_{1} w_{1} v_{1} \beta \alpha \\
& \alpha \beta u_{1} w_{2} v_{1}=u_{1} w_{2} v_{1} \beta \alpha \\
& \alpha \beta u_{2} w_{1} v_{2}=u_{2} w_{1} v_{2} \beta \alpha \\
& \alpha \beta u_{2} w_{2} v_{2}=u_{2} w_{2} v_{2} \beta \alpha
\end{aligned}
$$

The solution of the conjugation equation implies that $u_{1} w_{2} v_{1}, u_{2} w_{1} v_{2}, u_{2} w_{2} v_{2} \in$ $\alpha(\beta \alpha)^{*}$, while $u_{1} w_{1} v_{1} \notin \alpha(\beta \alpha)^{*}$. Let $\alpha=a$ and $\beta=b b$, and let

$$
u_{1} w_{2} v_{1}=u_{2} w_{2} v_{2}=a b b a .
$$

Setting $w_{2}=b$, we have two possible positions for w_{2} in $a b b a$, yielding its contexts $\left(u_{1}, v_{1}\right)=(a, b a)$ and $\left(u_{2}, v_{2}\right)=(a b, a)$. It remains to choose a suitable w_{1} which will fit between $\left(u_{2}, v_{2}\right)$ while not between $\left(u_{1}, v_{1}\right)$. Putting $u_{2} w_{1} u_{2}=a b b a b b a$ yields $w_{1}=b a b b$, and indeed, we have $a b a b b b a \notin \alpha(\beta \alpha)^{*}$. Finally, we have, for example, $y=b b$ and $x=b b a b b$.

