WORDS WITH MORE PERIODS

Let w[i], $0 \le i < |w|$, be the (i-1)th letter of the word w, so that $w = w[0]w[1]\cdots w[n-1]$ with n = |w|. We say that $p \ge 1$ is a period of w if w[i] = w[i+p] holds for all $0 \le i < n-p$. The least period of w is called the period of w.

By the definition, any word has infinitely many periods. Namely, each $p \ge |w|$ is a period of w. Also, each multiple of a period is again a period. This are trivial examples of multiple periods. However, there are also nontrivial cases. For example, the word *abaababaaba* of length 11 has periods 5 and 8. When this can happen explains the Theorem of Fine and Wilf, also called the *Periodicity lemma*.

Theorem. If a word of length at least p + q - gcd(p,q) has periods p and q, then they have also a period gcd(p,q).

On the other hand, for each p < q such that $p \nmid q$, there is a word of length $p + q - \gcd(p,q) - 1$ having periods p and q, and not a period $\gcd(p,q)$.

We give several proofs of this fundamental result. The first one is by induction.

Proof. Let WLOG $p \leq q$. To proof the first claim, proceed by induction on p + q. The first part of the claim holds if p = q. Let p < q, and set $d := \gcd(p,q)$. Let w have periods p and q with $|w| \geq p + q - d$. Consider the prefix v of w of length |w| - p. The word v has a period p. We show that it also has a period q - p. If i < |v| - (q - p), then i + q < |w|, and we have

$$v[i+q-p] = w[i+q-p] = w[i+q] = w[i] = v[i].$$

Since $d = \gcd(p, q) = \gcd(p, q - p)$, we have $|v| \ge p + (q - p) - \gcd(p, q - p)$, and v has a period d by the induction assumption. Note that $|v| \ge q - d \ge p$. Thus

 $w[i] = w[i \mod p] = v[i \mod p] = v[(i+d) \mod p] = w[(i+d) \mod p)] = w[i+d]$

holds for each i < |w| - d since p is a period of w. The equality

$$v[i \bmod p] = v[(i+d) \bmod p]$$

above holds for any i, since $d \mid p$ which implies that the difference between $i \mod p$ and $i + d \mod p$ is divisible by d.

In order to show optimality, assume p < q and $p \nmid q$ with $d = \gcd(p, q)$. Consider first the word

$$(a^{d-1}b)^{k-1}a^{d-1}c(a^{d-1}b)^{k-1}a^{d-1}$$

which has periods kd and (k+1)d, but not the period d. This shows the optimality if d = q - p. Assume that d < q - p. Then, by induction, there is a word v of length q - d - 1 having periods p and q - p but not having the period d. Extend v to the word w of length p + q - d - 1 so that it has a period p. Certainly, the number d is not a period of w, and it remains to show that w has a period q. Let i < (p + q - d - 1) - q = p - d - 1. Then

$$w[i] = v[i] = v[i+q-p] = w[i+q-p] = w[i+q].$$

Crucial fact here is that i + q - p < q - d - 1 = |v|.

The following proof makes the modular computation more explicit.

Proof. First, suppose that p and q are coprime. We \approx be the smallest equivalence on the set $I = \{0, 1, \ldots, p + q - 2\}$ (that is, on letter indeces of w) satisfying $i \approx (i \mod p)$ and $i \approx (i \mod q)$. The definition implies that w[i] = w[j] if $i \approx j$. We want to show that all elements of I are equivalent. Obviously, it is enough to show that for $\{0, 1, \ldots, p-1\}$.

Set $i_k := (kq \mod p)$. Because p and q are coprime, the number q is a generator of the cyclic group \mathbb{Z}_p , that is, $\{i_0, i_1, \ldots, i_{p-1}\} = \{0, 1, \ldots, p-1\}$. If $i_k < p-1$, then $i_k + q < p-1 + q$, which implies $i_k \approx i_k + q \approx i_{k+1 \mod p}$. We deduce that all elements of $\{0, 1, \ldots, p-1\}$ are equivalent.

Let now gcd(p,q) = d. For $r \in \{0, 1, ..., d-1\}$ dlet

 $w_r := w[r]w[r+d]w[r+2d]\cdots w[r+(p'+q'-2)d],$

with p' = p/d a q' = q/d. It is easy to see that w has periods p a q if and only if w_r has periods p' a q' for each $r = 0, 1, \ldots, d-1$. Since the words w_r are of length p' + q' - 1, they are by the first part of the proof powers of the same letter. Thus w has a period d.

Let us show optimality. Let w be of length $p + q - \gcd(p, q) - 1$ with p < qand $p \nmid q$. Again, we first suppose that p a q are coprime. If the equivalence \approx has at least two classes, then we can identify each w[i] with the equivalence class $[i]_{\approx}$, in order to obtain a word with required properties. Consider again only words $\{0, 1, \ldots, p - 1\}$ and view that as vertices of a directed graph G, in which $i \longrightarrow j$ holds if and only if $i + q a <math>i + q \equiv j \mod p$. It is easy to see that classes of \approx restricted to $\{0, 1, \ldots, p - 1\}$ are (weakly connected) components of G. Each vertex has obviously outgoing and incoming degree at most one. Also, p - 1 a p - 2 have the outcoming degree zero. Similarly $q - 1 \mod p$ a $q - 2 \mod p$ have indegree zero. This implies that G has more than one component and the word wis nontrivial. Let now $\gcd(p, q) = d$. The word w_{d-1} defined as above has length p' + q' - 2, since (d - 1) + (p' - q' - 2)d = p + q - d - 1. Therefore, it can contain two different letters and w does not have a period d.

The following proof uses the Fourier transform. For this proof, it is convenient to reformulate the claim in terms of sequences.

Theorem. Let $f = (f_n)_{n \in \mathbb{N}}$ and $g = (g_n)_{n \in \mathbb{N}}$ be sequences with periods p and q respectively. If $f_n = g_n$ for $0 \le n , then <math>f = g$, and it has a period $\gcd(p, q)$.

On the other hand, for each p and q, there are two distinct f and g, with periods p and q respectively, such that $f_n = g_n$ for $0 \le n .$

Proof. Let the alphabet be from \mathbb{C} . Let $d = \operatorname{gcd}(p,q)$. Let $\varphi_{m,n}$ denote the sequence with *j*th coefficient

$$\varphi_{m,n}(j) = e^{2\pi i \frac{nj}{m}}$$

Since f has a period p, it is generated by the set

$$\Phi_p = \{\varphi_{p,k} \mid k = 0, 1, \dots, p-1\}$$

of p sequences with the period p. In the same way, since g has a period q, it is generated by the set

$$\Phi_q = \{\varphi_{q,k} \mid k = 0, 1, \dots, q-1\}.$$

The set $\Phi = \Phi_p \cup \Phi_q$ contains exactly $p + q - \gcd(p, q)$ (distinct) elements.

Consider now the common p + q - d first values of f and g as the element $h \in \mathbb{C}^{p+q-d}$, and let $\Phi' \subset \mathbb{C}^{p+q-d}$ be the initial parts of elements of Φ . The key observation is that Φ' is linearly independent. That follows from the fact that Φ' forms a Vandermonde matrix, or in other terms, the vectors are values

of $p + q - \gcd(p, q)$ distinct polynomials of degree less than $p + q - \gcd(p, q)$ in $p + q - \gcd(p, q)$ distinct points. This implies that h is given uniquely as linear combination of elements of Φ' , hence also the two expressions in terms of Φ_p and of Φ_q must be the same. Therefore, f = g and it is generated by elements of the set $\Phi_p \cap \Phi_q = \Phi_d = \{\varphi_{d,k} \mid k = 0, \ldots, d-1\}$ of sequences with period d.

On the other hand, Φ' generates the vector $e_{p+q-d-1} = (0, 0, \ldots, 0, 1)$ which can be therefore written as the difference of two sequences generated by Φ_p and $\Phi \setminus \Phi_p \subset \Phi_q$ respectively. Such sequences have periods p and q respectively, they agree on first p + q - d - 1 positions but differ on the next position.

The last proof uses formal series.

Proof. Let the sequences be represented by formal series $f = \sum_{n \in \mathbb{N}} f_n x^n$ and $g = \sum_{n \in \mathbb{N}} g_n x^n$. Due to their periods, the sequences can be written as

$$f = \frac{P}{(1-x^p)}, \qquad \qquad g = \frac{Q}{(1-x^q)}$$

where P and Q are polynomials with degree less that p and q respectively. Note that $gcd(1-x^p, 1-x^q) = 1 - x^d$ with d = gcd(p,q). We have

$$\begin{split} f - g &= \frac{P}{1 - x^p} - \frac{Q}{1 - x^q} = \frac{(1 - x^d)}{(1 - x^p)(1 - x^q)} \left(P \frac{(1 - x^q)}{(1 - x^d)} - Q \frac{(1 - x^p)}{(1 - x^d)} \right) \\ &= \frac{(1 - x^d)}{(1 - x^p)(1 - x^q)} R, \end{split}$$

which is a product of a formal series with the absolute coefficient 1, and a polynomial R of degree less than p + q - d. This implies that if R is not zero, then the least non-zero coefficient of f - g has index less than p + q - d. In other words, if f and g agree on first p + q - d positions, then R = 0, and f = g. Then also

$$P \frac{(1-x^q)}{(1-x^d)} = Q \frac{(1-x^p)}{(1-x^d)}.$$

Since $(1 - x^q)/(1 - x^d)$ and $(1 - x^p)/(1 - x^d)$ are coprime, polynomials P and Q are divisible by $(1 - x^p)/(1 - x^d)$ and $(1 - x^q)/(1 - x^d)$ respectively. Therefore

$$f = g = \frac{D}{(1 - x^d)}$$

where

$$D = \frac{P(1 - x^d)}{1 - x^p} = \frac{Q(1 - x^d)}{1 - x^q}$$

is a polynomial of degree less than d, and f = g has a period d.

On the other hand, if we put $R = x^{p+q-d-1}$, then there are polynomials P and Q of degree less than p and q respectively satisfying

$$P(1 - x^{q}) - Q(1 - x^{p}) = (1 - x^{d}) x^{p+q-d-1}.$$

The corresponding f and g then agree on first p + q - d - 1 positions but disagree on the next position.

Remark: The polynomials P and Q from the last proof are obtained as follows. The extended Euclidean algorithm yields P' and Q' such that

$$P'(1-x^q) - Q'(1-x^p) = \gcd(1-x^p, 1-x^q) = 1 - x^d.$$

We now set

$$P = P' x^{p+q-d-1} \mod (1-x^p), \qquad Q = Q' x^{p+q-d-1} \mod (1-x^q).$$

4