WORDS WITH MORE PERIODS

Let $w[i], 0 \leq i<|w|$, be the $(i-1)$ th letter of the word w, so that $w=$ $w[0] w[1] \cdots w[n-1]$ with $n=|w|$. We say that $p \geq 1$ is a period of w if $w[i]=w[i+p]$ holds for all $0 \leq i<n-p$. The least period of w is called the period of w.

By the definition, any word has infinitely many periods. Namely, each $p \geq|w|$ is a period of w. Also, each multiple of a period is again a period. This are trivial examples of multiple periods. However, there are also nontrivial cases. For example, the word abaababaaba of length 11 has periods 5 and 8 . When this can happen explains the Theorem of Fine and Wilf, also called the Periodicity lemma.

Theorem. If a word of length at least $p+q-\operatorname{gcd}(p, q)$ has periods p and q, then they have also a period $\operatorname{gcd}(p, q)$.

On the other hand, for each $p<q$ such that $p \nmid q$, there is a word of length $p+q-\operatorname{gcd}(p, q)-1$ having periods p and q, and not a $\operatorname{period} \operatorname{gcd}(p, q)$.

We give several proofs of this fundamental result. The first one is by induction.
Proof. Let WLOG $p \leq q$. To proof the first claim, proceed by induction on $p+q$. The first part of the claim holds if $p=q$. Let $p<q$, and set $d:=\operatorname{gcd}(p, q)$. Let w have periods p and q with $|w| \geq p+q-d$. Consider the prefix v of w of length $|w|-p$. The word v has a period p. We show that it also has a period $q-p$. If $i<|v|-(q-p)$, then $i+q<|w|$, and we have

$$
v[i+q-p]=w[i+q-p]=w[i+q]=w[i]=v[i] .
$$

Since $d=\operatorname{gcd}(p, q)=\operatorname{gcd}(p, q-p)$, we have $|v| \geq p+(q-p)-\operatorname{gcd}(p, q-p)$, and v has a period d by the induction assumption. Note that $|v| \geq q-d \geq p$. Thus
$w[i]=w[i \bmod p]=v[i \bmod p]=v[(i+d) \bmod p]=w[(i+d) \bmod p)]=w[i+d]$
holds for each $i<|w|-d$ since p is a period of w. The equality

$$
v[i \bmod p]=v[(i+d) \bmod p]
$$

above holds for any i, since $d \mid p$ which implies that the difference between $i \bmod p$ and $i+d \bmod p$ is divisible by d.

In order to show optimality, assume $p<q$ and $p \nmid q$ with $d=\operatorname{gcd}(p, q)$. Consider first the word

$$
\left(a^{d-1} b\right)^{k-1} a^{d-1} c\left(a^{d-1} b\right)^{k-1} a^{d-1}
$$

which has periods $k d$ and $(k+1) d$, but not the period d. This shows the optimality if $d=q-p$. Assume that $d<q-p$. Then, by induction, there is a word v of length $q-d-1$ having periods p and $q-p$ but not having the period d. Extend v to the word w of length $p+q-d-1$ so that it has a period p. Certainly, the number d is not a period of w, and it remains to show that w has a period q. Let $i<(p+q-d-1)-q=p-d-1$. Then

$$
w[i]=v[i]=v[i+q-p]=w[i+q-p]=w[i+q] .
$$

Crucial fact here is that $i+q-p<q-d-1=|v|$.
The following proof makes the modular computation more explicit.
Proof. First, suppose that p and q are coprime. We \approx be the smallest equivalence on the set $I=\{0,1, \ldots, p+q-2\}$ (that is, on letter indeces of $w)$ satisfying $i \approx(i$ $\bmod p)$ and $i \approx(i \bmod q)$. The definition implies that $w[i]=w[j]$ if $i \approx j$. We
want to show that all elements of I are equivalent. Obviously, it is enough to show that for $\{0,1, \ldots, p-1\}$.

Set $i_{k}:=(k q \bmod p)$. Because p and q are coprime, the number q is a generator of the cyclic group \mathbb{Z}_{p}, that is, $\left\{i_{0}, i_{1}, \ldots, i_{p-1}\right\}=\{0,1, \ldots, p-1\}$. If $i_{k}<p-1$, then $i_{k}+q<p-1+q$, which implies $i_{k} \approx i_{k}+q \approx i_{k+1 \bmod p}$. We deduce that all elements of $\{0,1, \ldots, p-1\}$ are equivalent.

Let now $\operatorname{gcd}(p, q)=d$. For $r \in\{0,1, \ldots, d-1\}$ dlet

$$
w_{r}:=w[r] w[r+d] w[r+2 d] \cdots w\left[r+\left(p^{\prime}+q^{\prime}-2\right) d\right]
$$

with $p^{\prime}=p / d$ a $q^{\prime}=q / d$. It is easy to see that w has periods p a q if and only if w_{r} has periods p^{\prime} a q^{\prime} for each $r=0,1, \ldots, d-1$. Since the words w_{r} are of length $p^{\prime}+q^{\prime}-1$, they are by the first part of the proof powers of the same letter. Thus w has a period d.

Let us show optimality. Let w be of length $p+q-\operatorname{gcd}(p, q)-1$ with $p<q$ and $p \nmid q$. Again, we first suppose that p a q are coprime. If the equivalence \approx has at least two classes, then we can identify each $w[i]$ with the equivalence class $[i]_{\approx}$, in order to obtain a word with required properties. Consider again only words $\{0,1, \ldots, p-1\}$ and view that as vertices of a directed graph G, in which $i \longrightarrow j$ holds if and only if $i+q<p+q-2$ a $i+q \equiv j \bmod p$. It is easy to see that classes of \approx restricted to $\{0,1, \ldots, p-1\}$ are (weakly connected) components of G. Each vertex has obviously outgoing and incoming degree at most one. Also, $p-1$ a $p-2$ have the outcoming degree zero. Similarly $q-1 \bmod p$ a $q-2 \bmod p$ have indegree zero. This implies that G has more than one component and the word w is nontrivial. Let now $\operatorname{gcd}(p, q)=d$. The word w_{d-1} defined as above has length $p^{\prime}+q^{\prime}-2$, since $(d-1)+\left(p^{\prime}-q^{\prime}-2\right) d=p+q-d-1$. Therefore, it can contain two different letters and w does not have a period d.

The following proof uses the Fourier transform. For this proof, it is convenient to reformulate the claim in terms of sequences.
Theorem. Let $f=\left(f_{n}\right)_{n \in \mathbb{N}}$ and $g=\left(g_{n}\right)_{n \in \mathbb{N}}$ be sequences with periods p and q respectively. If $f_{n}=g_{n}$ for $0 \leq n<p+q-\operatorname{gcd}(p, q)$, then $f=g$, and it has a period $\operatorname{gcd}(p, q)$.

On the other hand, for each p and q, there are two distinct f and g, with periods p and q respectively, such that $f_{n}=g_{n}$ for $0 \leq n<p+q-\operatorname{gcd}(p, q)-1$.

Proof. Let the alphabet be from \mathbb{C}. Let $d=\operatorname{gcd}(p, q)$. Let $\varphi_{m, n}$ denote the sequence with j th coefficient

$$
\varphi_{m, n}(j)=e^{2 \pi i \frac{n j}{m}}
$$

Since f has a period p, it is generated by the set

$$
\Phi_{p}=\left\{\varphi_{p, k} \mid k=0,1, \ldots, p-1\right\}
$$

of p sequences with the period p. In the same way, since g has a period q, it is generated by the set

$$
\Phi_{q}=\left\{\varphi_{q, k} \mid k=0,1, \ldots, q-1\right\}
$$

The set $\Phi=\Phi_{p} \cup \Phi_{q}$ contains exactly $p+q-\operatorname{gcd}(p, q)$ (distinct) elements.
Consider now the common $p+q-d$ first values of f and g as the element $h \in \mathbb{C}^{p+q-d}$, and let $\Phi^{\prime} \subset \mathbb{C}^{p+q-d}$ be the initial parts of elements of Φ. The key observation is that Φ^{\prime} is linearly independent. That follows from the fact that Φ^{\prime} forms a Vandermonde matrix, or in other terms, the vectors are values
of $p+q-\operatorname{gcd}(p, q)$ distinct polynomials of degree less than $p+q-\operatorname{gcd}(p, q)$ in $p+q-\operatorname{gcd}(p, q)$ distinct points. This implies that h is given uniquely as linear combination of elements of Φ^{\prime}, hence also the two expressions in terms of Φ_{p} and of Φ_{q} must be the same. Therefore, $f=g$ and it is generated by elements of the set $\Phi_{p} \cap \Phi_{q}=\Phi_{d}=\left\{\varphi_{d, k} \mid k=0, \ldots, d-1\right\}$ of sequences with period d.

On the other hand, Φ^{\prime} generates the vector $e_{p+q-d-1}=(0,0, \ldots, 0,1)$ which can be therefore written as the difference of two sequences generated by Φ_{p} and $\Phi \backslash \Phi_{p} \subset \Phi_{q}$ respectively. Such sequences have periods p and q respectively, they agree on first $p+q-d-1$ positions but differ on the next position.

The last proof uses formal series.
Proof. Let the sequences be represented by formal series $f=\sum_{n \in \mathbb{N}} f_{n} x^{n}$ and $g=$ $\sum_{n \in \mathbb{N}} g_{n} x^{n}$. Due to their periods, the sequences can be written as

$$
f=\frac{P}{\left(1-x^{p}\right)}, \quad g=\frac{Q}{\left(1-x^{q}\right)}
$$

where P and Q are polynomials with degree less that p and q respectively.Note that $\operatorname{gcd}\left(1-x^{p}, 1-x^{q}\right)=1-x^{d}$ with $d=\operatorname{gcd}(p, q)$. We have

$$
\begin{aligned}
f-g & =\frac{P}{1-x^{p}}-\frac{Q}{1-x^{q}}=\frac{\left(1-x^{d}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)}\left(P \frac{\left(1-x^{q}\right)}{\left(1-x^{d}\right)}-Q \frac{\left(1-x^{p}\right)}{\left(1-x^{d}\right)}\right) \\
& =\frac{\left(1-x^{d}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)} R
\end{aligned}
$$

which is a product of a formal series with the absolute coefficient 1 , and a polynomial R of degree less than $p+q-d$. This implies that if R is not zero, then the least non-zero coefficient of $f-g$ has index less than $p+q-d$. In other words, if f and g agree on first $p+q-d$ positions, then $R=0$, and $f=g$. Then also

$$
P \frac{\left(1-x^{q}\right)}{\left(1-x^{d}\right)}=Q \frac{\left(1-x^{p}\right)}{\left(1-x^{d}\right)}
$$

Since $\left(1-x^{q}\right) /\left(1-x^{d}\right)$ and $\left(1-x^{p}\right) /\left(1-x^{d}\right)$ are coprime, polynomials P and Q are divisible by $\left(1-x^{p}\right) /\left(1-x^{d}\right)$ and $\left(1-x^{q}\right) /\left(1-x^{d}\right)$ respectively. Therefore

$$
f=g=\frac{D}{\left(1-x^{d}\right)}
$$

where

$$
D=\frac{P\left(1-x^{d}\right)}{1-x^{p}}=\frac{Q\left(1-x^{d}\right)}{1-x^{q}}
$$

is a polynomial of degree less than d, and $f=g$ has a period d.
On the other hand, if we put $R=x^{p+q-d-1}$, then there are polynomials P and Q of degree less than p and q respectively satisfying

$$
P\left(1-x^{q}\right)-Q\left(1-x^{p}\right)=\left(1-x^{d}\right) x^{p+q-d-1}
$$

The corresponding f and g then agree on first $p+q-d-1$ positions but disagree on the next position.

Remark: The polynomials P and Q from the last proof are obtained as follows. The extended Euclidean algorithm yields P^{\prime} and Q^{\prime} such that

$$
P^{\prime}\left(1-x^{q}\right)-Q^{\prime}\left(1-x^{p}\right)=\operatorname{gcd}\left(1-x^{p}, 1-x^{q}\right)=1-x^{d}
$$

We now set

$$
P=P^{\prime} x^{p+q-d-1} \quad \bmod \left(1-x^{p}\right), \quad Q=Q^{\prime} x^{p+q-d-1} \quad \bmod \left(1-x^{q}\right)
$$

