Principal solution

If T is a system o equations, let $\operatorname{alph}(T)$ denote the set of unknowns occurring in T. A solution g of T is a mapping $g: \operatorname{alph}(T)^{*} \rightarrow \Sigma^{*}$. We say that g is erasing, if $g(x)=\varepsilon$ for at least one x in the domain. Otherwise g is nonerasing. We denote $\operatorname{alph}(g)$ the set of letters that occur in $g(x)$ for at least one x. Even if not stated explicitly, if we speak about a solution g of a system T, then we assume $g: \operatorname{alph}(T)^{*} \rightarrow \operatorname{alph}(g)^{*}$.

Let $g: \operatorname{alph}(T)^{*} \rightarrow \operatorname{alph}(g)^{*}$ a $h: \operatorname{alph}(T)^{*} \rightarrow \operatorname{alph}(h)^{*}$ be two solutions of a system T. We say that h divides g, if there is a morphism $\vartheta: \operatorname{alph}(h)^{+} \rightarrow \operatorname{alph}(g)^{+}$ such that $g=\vartheta \circ h$.

A solution g of T is called principal, if it is minimal in the just defined order of divisibility. In other words, if $g=\vartheta \circ h$, where $\vartheta: \operatorname{alph}(h)^{+} \rightarrow \operatorname{alph}(g)^{+}$, and h is a solution of T, then ϑ is a renaming of letters and $h=\vartheta^{-1} \circ g$. We then say that g and h are associated, and may be identified. In particular, any renaming of letters is associated with identity.

Note that we can obtain a non-principal solution $h=\vartheta \circ g$ from a principal solution g if ϑ does not preserve length, but also if it does, but it is not injective (gluing some letters).

We consider two types of elementary transformations of a system of equations. The regular elementary transformation $\varphi_{x y}$, is defined by

$$
\varphi_{x y}(z)= \begin{cases}x y, & \text { if } z=y \\ z, & \text { if } z \neq y\end{cases}
$$

and the singular elementary transformation π_{x} erases the letter x, that is

$$
\pi_{x}(z)= \begin{cases}\varepsilon, & \text { if } z=x \\ z, & \text { if } z \neq y\end{cases}
$$

We say that an elementary transformation φ is associated to a system of equations T if either

- $\varphi=\pi_{x}$, with $x \in \alpha(T)$; or
- $\varphi=\varphi_{x y}$, where $x, y \in \operatorname{alph}(T)$, and $(r x u, r y v) \in T$ or $(r y u, r x v) \in T$ for some words r, u, v.
The mapping $L(g): x \mapsto|g(x)|$ is called the length type of g. If the domain alphabet Θ of g is finite, then $L(g)$ is usually seen as a tuple in $\mathbb{N}^{|\Theta|}$ (which implies that some order on Θ is given).

The principal solution of a given length type can be obtained by successive application of elementary transformations. If $T=\left\{\left(u_{i}, v_{i}\right) \mid i \in I\right\}$, then $\varphi(T)$ denotes the system $\left\{\left(\varphi\left(u_{i}\right), \varphi\left(v_{i}\right)\right) \mid i \in I\right\}$. The basic idea is formulated in the following lemma.

Lemma. Let $h=h^{\prime} \circ \varphi: \operatorname{alph}(T)^{*} \rightarrow \operatorname{alph}(h)^{*}$ be a solution of a system T, where φ is an elementary transformation associated to T. Then h^{\prime} is a principal solution of $T^{\prime}=\varphi(T)$ if and only if h is a principal solution of T.

Proof. Assume that h is principal. If $h^{\prime}=\vartheta \circ g^{\prime}$, where ϑ is nonerasing and g^{\prime} is a solution of T^{\prime}, then $h=\vartheta \circ g^{\prime} \circ \varphi$, where $g=g^{\prime} \circ \varphi$ is a solution of T. Therefore ϑ is a renaming of letters. We have shown that h^{\prime} is principal.

To show the direct implication, assume now that h^{\prime} is principal. Let $h=\vartheta \circ g$, where ϑ is nonerasing and g is a solution of T. The key step of the proof is to show that $g=g^{\prime} \circ \varphi$ for some g^{\prime}. For $\varphi=\pi_{x}$ this obviously holds for g^{\prime} identity on $\pi_{x}(T)$. If $\varphi=\varphi_{x y}$ is associated with T, then $h(x)=h^{\prime}(x) \leq_{p} h^{\prime}(x y)=h(y)$. Since g is a solution of T, we have that $g(x)$ and $g(y)$ are prefix comparable, and $h=\vartheta \circ g$ implies $g(x) \leq_{p} g(y)$. Then g^{\prime}, defined by $g^{\prime}: y \mapsto g(x)^{-1} g(y)$, satisfies $g=g^{\prime} \circ \varphi_{x y}$.

Now $h=\vartheta \circ g^{\prime} \circ \varphi=h^{\prime} \circ \varphi$, where g^{\prime} is a solution of T^{\prime}. For both singular and regular φ this implies $h^{\prime}=\vartheta \circ g^{\prime}$. (For $\varphi=\varphi_{x y}$ this follows since φ is invertible in the free group, namely $\varphi^{-1}: y \mapsto x^{-1} y$.) Therefore ϑ is renaming, and we are done.

Theorem. Let $h: \operatorname{alph}(T)^{*} \rightarrow \Sigma^{*}$ be a solution of a system T. Then there is a unique (up to association) principal solution g of T and a unique morphism $\vartheta: \operatorname{alph}(g)^{+} \rightarrow \operatorname{alph}(h)^{+}$such that $h=\vartheta \circ g$ and $|\operatorname{alph}(g)| \leq|\operatorname{alph}(T)|$.

Moreover,

- $|\operatorname{alph}(g)|<|\operatorname{alph}(T)|$ if T is nontrivial; and
- g and $L(\vartheta)$ depend on $L(h)$ only (and on $T)$.

Proof. We proceed by induction on

$$
|\operatorname{alph}(T)|+\sum_{x \in \operatorname{alph}(T)}|h(x)| .
$$

First suppose that $h(x)=\varepsilon$ for some x. Then $h=h^{\prime} \circ \pi_{x}$, and h^{\prime} is a solution of $T^{\prime}=\pi_{x}(T)$. By induction, and by the the previous lemma, there is a unique principal solution g dividing h, given by $h=\vartheta \circ g=\vartheta \circ g^{\prime} \circ \pi_{h}$. Since g^{\prime} and $L(\vartheta)$ is given by $L\left(h^{\prime}\right)$, also g is given by $L(h)$. (Note, in particular, that $h(x)=\varepsilon$ is equivalent to $|h(x)|=0$.) Moreover, $|\operatorname{alph}(g)|=\left|\operatorname{alph}\left(g^{\prime}\right)\right| \leq\left|\operatorname{alph}\left(T^{\prime}\right)\right|<|\operatorname{alph}(T)|$.

Let now h be nonerasing. If T is trivial, then the only principal solution is identity, $|\operatorname{alph}(\mathrm{id})|=|\operatorname{alph}(T)|, \vartheta=h$, and $L(\vartheta)=L(h)$.

Let T be nontrivial, and let $(r x u, r y v) \in T$ for some $x, y \in \operatorname{alph}(T), x \neq y$. If $|h(x)| \leq|h(y)|$, then $h(x)$ is a prefix of $h(y)$, and $h=h^{\prime} \circ \varphi_{x y}$, where h^{\prime} is defined by $h^{\prime}: y \mapsto h(x)^{-1} h(y)$. Again, by induction and by the previous lemma, h has a unique principal solution dividing it, namely $h=\vartheta \circ g=\vartheta \circ g^{\prime} \circ \varphi_{x y}$, where g^{\prime} is the unique principal solution of $T^{\prime}=\varphi_{x y}(T)$ dividing h^{\prime}. Also, g and $L(\vartheta)$ is given by $L(h)$ since $L\left(h^{\prime}\right)$ is given by $L(h)$. Note that T^{\prime} is nontrivial, since $\varphi_{x y}$ is invertible. Therefore $|\operatorname{alph}(g)|=\left|\operatorname{alph}\left(g^{\prime}\right)\right|<\left|\operatorname{alph}\left(T^{\prime}\right)\right|=|\operatorname{alph}(T)|$.

The proof of the previous theorem actually yields a simple algorithm that computes the principal solution dividing any solution with the given length type. Such a solution is obtained as a composition of elementary transformations, since after a finite number of rounds, we reach a trivial system.

