UNIQUENESS THEOREMS FOR PERIODIC FUNCTIONS
N. J. FINE AND H. S. WILF!

1. Introduction. In this note we are concerned with theorems to
the effect that two periodic functions which agree with each other
on a “sufficiently large” set agree identically. Our criteria for “large-
ness” are best possible in all cases considered, namely the discrete
case, the continuous case with commensurable periods and the con-
tinuous case with incommensurable periods. The results are given by
the following three theorems.

THEOREM 1. Let {fu}s, {2 )¢ be two periodic sequences of periods h,
k,respectively. If fo= gu for h+k— (h, k) consecutive integers n, then fo = g,
for all n. The result would be false if h+k— (h, k) were replaced by any-
thing smaller.

THEOREM 2. Let f(x), g(x) be continuous periodic functions of periods
a, 3, respectively, where o/B=p/q, (p, 9) =1, is rational. If f(x)=g(x)
on an interval of length a+B—Bg™Y, then f(x)=g(x). The result would
be false if a+B—q ' were replaced by anything smaller.

THEOREM 3. Let f(x), g(x) be continuous periodic functions of periods
a, B respectively, where o/ is irrational. If f(x) =g(x) on an interval
of length o+, then f(x)=g(x). The result would be false if a+83 were
replaced by anything smaller.

2. Discrete case. The method we shall use for Theorems 2 and 3
also can be used to prove Theorem 1. In this case, however, we give
two different proofs, the first of which uses an argument which was
pointed out by E. G. Straus and is perhaps the most direct. If f,=g,
(n=0,1, -, h+k—(h, k)—1) then

F@) = 3 furr = (1 — a¥)-1P(),
0

62) = ‘ng = (1 — )10,

where P(x), Q(x) are polynomials of degrees <k—1, k—1, respec-
tively. Then
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H(z) = F(x) — G(») = (1 — «®®) (1 = 2)7}(1 — #)7'R(x),

where R(x) is a polynomial of degree <h-+k—(k, k) —1. Since the
first k+k— (k, k) coefficients of H are 0, R(x)=0 and F(x)=G(x),
which was to be shown.
For another proof note that the most general periodic sequences
of periods % and % are
fn = Z wa”,

whml

&n = Z agn,
Er=1
the ¢’s and d’s being arbitrary. Now exactly (&, &) of the w’s are also
£'s and so the equations

0=fn_gn=zcww"—2dgf" (n=1,2,...,N)

are N equations in k-+k— (&, k) unknowns, namely, ¢, d; (E#w),
co—d; (w=E§). Hence if N=h+k—(h, k), these equations have only
the trivial solution since the coefficient matrix is a Vandermonde
matrix formed from the distinct w’s and £’s and is therefore non-
singular.

This last argument also shows that the result is best possible since
we will have a nontrivial solution for N<h+k—(k, k). We can, how-
ever, be more constructive about this point by explicitly displaying
a function f(x) (x=0, 1, - - - ) with the following properties:

(@) flx+k)=f(x) (all x),

(b) Jlx+h) =£(x) (x=0,1,---,k-3),
where &, h are integers, h <k, (h, k) =1.

To do this define the function N of period % by

, O0=<z=<k-—3,
Ao = {
0, k—2<x<k—1,
and note that
AaoAx — ENx —2h) - - -NMx— NE) =0
for large enough N. Now let ¢(x) be an arbitrary function satisfying
(@) ¢(x)=¢(x+k) (all x),

B) ¢(x)=0,0=x=<k—3.
Then the function

f(#) = ¢(x) + Mx)¢(x + £) + M)A (= + B)(x + 21)
+ oM@ - Me+ (V= DB + NE)
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has the required-properties. If we define g by
gx)=fx) O=x=h+Ek-—23)

and by periodicity of period % for other x then we have functions
which show that our theorem is best possible for (%, k) =1. If (&, k)
=d>1 we first construct f*(x), g*(x) as above for periods kd~!, kd—.
Each of the first (2+k)/d—2 values of f*(x), g*(x) is then replaced
by a block of length d of the same value. The next value of f*, g* is
also replaced by a block of length d whose first d —1 entries agree for
fand g and whose last entry is different. These functions are then ex-
tended by periodicity and show that the theorem is best possible in
this case also.

3. Continuous case, commensurable periods. Let f(x), g(x) be con-
tinuous functions which are periodic, of periods 1, k=p/¢<1,
(p, @) =1, respectively. For each x & [0, ¢~!] define

n
ap = f(x + —)-,
q

n
n = g<x+—),
q

for all integers #. Then a,, b, are sequences of periods g, p, respec-
tively. By Theorem 1, if

an = bn n=0,1,.--,p+q—2),

then a,=b, for all n. Hence if f(x) =g(x) for all x&[0, (p+¢—1)/9)
=[0, 14k —q ') then f=g. This proves the first part of Theorem 2.
To see that the constant is best possible it is enough to construct
a continuous function f(x) such that
(a) flx+1)=f(x) (all x),
(b) f(x+h)=f(x) (O=x=1—g'—e).
Define
1, 0<z<1—gl—g¢
A(x) = {0, 1—gl—e<2x<1],
M+ 1), all x.

Then we need
(@) f(x+1)=f(x) (all x),
B) Nx)f(x) =Nx)f(x+h) (all x).

Let ¢(x) be a continuous function satisfying
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¢(x), allz,
0, 0sx=1—g¢gl—e

d(x+ 1) = {

We claim that, with a suitable choice of ¢,
(@) = ¢(x) + AN@)¢(x + 1) + M@\ + Bz + 28) + - - -
has the required properties. In fact if, for some 7,
H(x) = Na)Nx+ k) - - - Nx+nk) =0 (all ),

then the series is finite.

Let I=(1—q'—¢, 1). Then H(x) =0 for x in I\J(I—h)\J(I—2k)
U - - - U —nhk) (mod 1). The right-hand end points of these inter-
valsare1,1—h, - - -, 1—nh (mod 1). These form a periodic sequence
of period ¢, and run through the points —jpg~* (mod 1). Since (p, @)
=1, given 7 we can solve

—jp =r (mod g),
—]—P-— =L (mod 1).
q

Thus the entire unit interval is covered.
To see that f satisfies (), (8), note that each term has period 1
and, further,

A@)f(x + ) = A#x)¢(x + k) + A&\ + B(x + 2k) + - - -
= Mx)(f(2) — ¢())
= M=)f ().

For continuity we add the condition that ¢(x) =0 at the finite set of
points at which A(x), A(x—h), - - - are discontinuous.
Having f(x) we put

@), 0==z=h
@ - {
glx + k), all x.
Then for 0Zx<1+4h—q~'—e there exists an » such that
0= x— nh <h.
Then
g(x) = gz — nk) = f(x — nh) = - - - = f(x — ) = f(x).

4. Continuous case, incommensurable periods. If f(x), g(x) are
continuous functions of periods 1, 8 (f irrational, §<1) and if f(x)
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=g(x) for 0=x=<140, then we claim that f(x), g(x) are both (the
same) constant. Let 0 <x <f. We show that

f(x)=f({x+m0}) (m=0) 1)"')‘
This is obvious for m=0. If proved for m =%, then

fx) = f({= + #6})

= g({x + #})

= 80+ {x + #0})

= 1@ + {x + #6})

= f(0 + x + %9)

= f({= + (& + De}).
Since {x+m0} is dense in [0, 1] and f is continuous, f(x) is constant
on [0, 1] and therefore identically. Consequently g(x) is identically
this same constant.

To show that the theorem is best possible we construct, as before,
a continuous f(x) satisfying

(a) fx+1) =f(x) (all x),

(b) flx+0)=f(x) (0Zx=<1—¢),
where 0 <e<1.

We put

1, 0=<x=1-—¢
A=) = {0, 1—e<2<1,
Mz 4+ 1), all x.

Let I be [1—¢, 1]. The sets I+nf (mod 1) cover [0, 1]. Hence there
is an N such that I4#xf, mod 1, =0, - - -, N, cover [0, 1]. Thus

AME)A(x — ON(x — 26) - - - Mz — NO) = 0.

Let E be the set of points of discontinuity of all the functions A(x),

Ax—0), - - -, N(x—N0). E is finite. Now let ¢(x) be any function
satisfying
o(x+ 1), all ,
o(x) = 0, 0=2=x=<1—g¢
0, x & E.

Then
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f(x) = ¢(x) + Al +6) + - -+
FA@NE+0) - - - Az + (N — 1)8)¢(x + NO)

is continuous, and it is easy to check that it is a solution of our prob-
lem. Finally, g is defined as the function of period  which agrees
with f on [0, 6]. Here, as in the other two cases, ¢ can be chosen so
that f#g.

We remark that an alternate approach to the last construction
leads to an interesting class of problems in harmonic analysis. Let
f(x) be the required function, and define a(x)=f(x+60) —f(x). Then
a is continuous, with period 1, and has its support in (1—¢, 1) mod
1. If

f ~ Z c“let‘nz
and
an~ E a”ezttnz’
then
an
Cn = m .

Thus it is not difficult to see that our problem is equivalent to the

following.
Find a nonzero continuous function a(x) such that:
(1) alx+ 1) = a(x) (all 2),
()] Suppa C (1 — ¢, 1) mod 1,
1
(3) Cn = (ezﬁno —_ 1)—1 f a(x)e—hinz dx
1—e

are the Fourier coefficients of a continuous function f. It is not obvi-
ous, a priori, that a function @ with support restricted by (2) can
have its Fourier coefficients small enough for those # such that {8}
is close to 0 mod 1. “Small enough” means condition (3).

Our proof, of course, shows that such a function does exist.
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