
EE 261 The Fourier Transform and its Applications

Fall 2006

Final Exam Solutions

Notes:

There are 7 questions for a total of 120 points

Write all your answers in your exam booklets

When there are several parts to a problem, in many

cases the parts can be done independently, or the

result of one part can be used in another part.

Please be neat and indicate clearly the main parts of

your solutions



1. (15 points) Let f(t) be a periodic signal of period 1. One says that f(t) has half-wave
symmetry if

f(t − 1
2
) = −f(t) .

(a) Sketch an example of a signal that has half-wave symmetry.

(b) If f(t) has half-wave symmetry and its Fourier series is

f(t) =
∞∑

n=−∞
cne2πint

show that cn = 0 if n is even.
Hint: −cn = −

∫ 1
0 e−2πintf(t) dt =

∫ 1
0 e−2πintf(t − 1

2) dt.

Solution:

(a) A simple example is f(t) = sin(2πt). The graphs of sin(2πt) and sin(2π(t − 1
2)) are

shown.
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Algebraically,

sin(2π(t− 1
2
)) = sin(2πt − π) = − sin 2πt .

1



(b) The hint says

−cn = −
∫ 1

0
e−2πintf(t) dt =

∫ 1

0
e−2πintf(t − 1

2
) dt .

We make a change of variable u = t − 1
2 in the second integral:

∫ 1

0

e−2πintf(t − 1
2
) dt =

∫ 1/2

−1/2

e−2πin(u+ 1
2
)f(u) du

=
∫ 1/2

−1/2
e−2πinue−2πin 1

2 f(u) du

= e−πin

∫ 1/2

−1/2
e−2πinuf(u) du

= e−πincn, (because we can integrate over any cycle to compute cn).

Thus
−cn = e−πincn .

If n is even then e−πin = 1 and we have

−cn = cn ,

hence
cn = 0 .

A slightly different route to the same end is as follows. Again it uses the substitution
u = t − 1

2 in an integral.

cn =
∫ 1

0

e−2πintf(t) dt

=
∫ 1/2

0
e−2πintf(t) dt +

∫ 1

1/2
e−2πintf(t) dt

=
∫ 1/2

0
e−2πintf(t) dt −

∫ 1

1/2
e−2πintf(t − 1

2
) dt

=
∫ 1/2

0

e−2πintf(t) dt −
∫ 1/2

0

e−2πin(u+ 1
2
)f(u) du

=
∫ 1/2

0
e−2πintf(t) dt − e−πin

∫ 1/2

0
e−2πinuf(u) du ,

and if n is even the integrals cancel, giving cn = 0.
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2. (20 points) Sampling using the derivative Suppose that f(t) is a bandlimited signal with
Ff(s) = 0 for |s| ≥ 1 (bandwidth 2). According to the sampling theorem, knowing the values
f(n) for all integers n (sampling rate of 1) is not sufficient to interpolate the values f(t) for
all t. However, if in addition one knows the values of the derivative f ′(n) at the integers then
there is an interpolation formula with a sampling rate of 1. In this problem you will derive
that result.

Let F (s) = Ff(s) and let G(s) = 1
2πi(Ff ′)(s) = sF (s).

(a) For 0 ≤ s ≤ 1 show that

(III ∗ F )(s) = F (s) + F (s − 1)
(III ∗ G)(s) = sF (s) + (s − 1)F (s − 1)

and then show that

F (s) = (1 − s)(III ∗ F )(s) + (III ∗ G)(s) .

(b) For −1 ≤ s ≤ 0 show that

(III ∗ F )(s) = F (s) + F (s + 1)
(III ∗ G)(s) = sF (s) + (s + 1)F (s + 1)

and then show that

F (s) = (1 + s)(III ∗ F )(s) − (III ∗ G)(s) .

(c) Using parts (a) and (b) show that for all s, −∞ < s < ∞,

F (s) = Λ(s)(III ∗ F )(s) − Λ′(s)(III ∗G)(s) ,

where Λ(s) is the triangle function

Λ(s) =

{
1 − |s|, |s| ≤ 1 ,

0, |s| ≥ 1 .

(d) From part (c) derive the interpolation formula

f(t) =
∞∑

n=−∞
f(n)sinc2(t − n) +

∞∑

n=−∞
f ′(n)(t − n)sinc2(t − n) .

Solutions:

(a) Since F (s) is zero outside of |s| ≤ 1, if we restrict s to lie between 0 and 1 we only get
a few shifts F (s − n) that are nonzero, namely,

(III ∗ F )(s) =
∞∑

n=−∞
F (s − k)

= · · ·+ F (s + 2) + F (s + 1)︸ ︷︷ ︸
=0

+F (s) + F (s − 1) + F (s − 2) + · · ·︸ ︷︷ ︸
=0

= F (s) + F (s − 1)
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Since G(s) = sF (s) it’s the same thing; only two nonzero terms in III ∗ G:

(III ∗ G)(s) =
∞∑

n=−∞
(s − k)F (s − k) = sF (s) + (s − 1)F (s − 1) .

Taking these two equations together, we multiply the first by s − 1,

(s − 1)(III ∗ F )(s) = (s − 1)F (s) + (s − 1)F (s − 1)
(III ∗ G)(s) = sF (s) + (s − 1)F (s − 1)

and subtract the first from the second, giving

(III ∗ G)(s)− (s − 1)(III ∗ F )(s) = F (s) ,

or
F (s) = (1 − s)(III ∗ F )(s) + (III ∗ G)(s) .

This holds when 0 ≤ s ≤ 1.
(b) The reasoning is very similar if −1 ≤ s ≤ 0. In this case

(III ∗ F )(s) =
∞∑

n=−∞
F (s − k) = F (s + 1) + F (s)

and

(III ∗ G)(s) =
∞∑

n=−∞
(s − k)F (s − k) = (s + 1)F (s + 1) + sF (s) .

Multiply the first equation by s + 1:

(s + 1)(III ∗ F )(s) = (s + 1)F (s + 1) + (s + 1)F (s)

and subtract the second equation,

(s + 1)(III ∗ F )(s) − (III ∗ G)(s) = F (s) .

(c) We now have

F (s) = (1− s)(III ∗ F )(s) + (III ∗ G)(s) , 0 ≤ s ≤ 1
F (s) = (1 + s)(III ∗ F )(s) − (III ∗ G)(s) , −1 ≤ s ≤ 0 .

Moreover, F (s) = 0 outside the interval −1 ≤ s ≤ 1. From

Λ(s) =

{
1 − |s|, |s| ≤ 1 ,

0, |s| ≥ 1 .
=





1 − s , 0 ≤ s ≤ 1
1 + s , −1 ≤ s ≤ 0
0 , |s| ≥ 1

and

Λ′(s) =





−1 , 0 ≤ s ≤ 1
1 , −1 ≤ s ≤ 0
0 , |s| ≥ 1

we see that we can write

F (s) = Λ(s)(III ∗ F )(s) − Λ′(s)(III ∗G)(s)

for all −∞ < s < ∞.
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(d) To derive the interpolation formula we take the inverse Fourier transform of

F (s) = Λ(s)(III ∗ F )(s) − Λ′(s)(III ∗G)(s) .

We work separately with the two terms on the right. For the first,

F−1(Λ(III ∗ F ))(t) = sinc2t ∗ (f(t)III(t))

= sinc2t ∗

( ∞∑

n=−∞
f(n)δ(t − n)

)

=
∞∑

n=−∞
f(n)sinc2(t − n) .

For the second, first note that by duality

F−1Λ′(t) = −2πitF−1Λ(t) = −2πit sinc2t .

Then
F−1(Λ′(III ∗ G))(t) = (−2πit sinc2t) ∗ (

1
2πi

f ′(t)III(t))

= −(t sinc2t) ∗
( ∞∑

n=−∞
f ′(n)δ(t − n)

)

= −
∞∑

n=−∞
f ′(n)(t − n)sinc2(t − n) .

Putting these two results together we obtain the interpolation formula

f(t) = F−1(Λ(III ∗ F ))(t) −F−1(Λ′(III ∗ G))(t)

=
∞∑

n=−∞
f(n)sinc2(t − n) +

∞∑

n=−∞
f ′(n)(t − n)sinc2(t − n) .
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3. (20 points) The DFT and linear interpolation

(a) Let y be the discrete signal, periodic of order M ,

y = (1 ,
1
2

, 0 , . . . , 0 ,
1
2
)

Show that its DFT is
Y [m] = 1 + cos(2πm/M) .

(b) Let f = (f[0] , f[1] , . . . , f[N−1]) be a discrete signal and let F = (F[0] , F[1] , . . . , F[N−
1]) be its DFT. Recall that the upsampled version of f is the signal h of order 2N obtained
by inserting zeros between the values of f, i.e.,

h = (f[0] , 0 , f[1] , 0 , f[2] . . . , 0 , f[N − 1] , 0) .

Show that f̃ = h ∗ y is the ‘linearly interpolated’ version of f:

(f[0] ,
f[0] + f[1]

2
, f[1] ,

f[1] + f[2]
2

, f[2] , . . . , f[N − 1] ,
f[N − 1] + f[0]

2
) .

Hint: Here we take M = 2N for the period of y. Note that

y = δ0 +
1
2
δ1 +

1
2
δ2N−1

and remember the effect of convolving with a shifted discrete δ. Line up the 2N -tuples.

(c) In a problem set you showed that the DFT of h is a replicated form of F,

H[m] = F[m] m = 0, 1, . . . , 2N − 1

H = (

H︷ ︸︸ ︷
F[0] , F[1] , . . . , F[N − 1]︸ ︷︷ ︸

F

, F[0] , F[1] , . . . , F[N − 1]︸ ︷︷ ︸
F

)

Assuming this, find the DFT of f̃.

Solutions :

(a) From the definition of the DFT:

Y [m] =
M−1∑

n−0

k[n]e−2πimn/M

= 1 +
1
2
e−2πim/M +

1
2
e−2πim(M−1)/M

= 1 +
1
2
e−2πim/M +

1
2
e−2πime2πim/M

= 1 +
1
2
e−2πim/M +

1
2
e2πim/M

= 1 + cos(2πm/M) .
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(b) We have that

h ∗ y = h ∗ (δ0 +
1
2
δ1 +

1
2
δ2N−1)

= h +
1
2
(h shifted by 1) +

1
2
(h shifted by 2N − 1)

With
h = (f[0] , 0 , f[1] , 0 , f[2] . . . , 0 , f[N − 1] , 0)

we have, using periodicity,

1
2
(h shifted by 1) = (0 ,

1
2
f[1] , 0 ,

1
2
f[2] , . . . , 0 ,

1
2
f[N − 1] , 0,

1
2
f[0]) .

Shifting the components in h to the left by 2N − 1 has, by periodicity, the same effect
as shifting them to the right by 1, since h[k − (2N − 1)] = h[k + 1 − 2N ] = h[k + 1]. So

1
2
(h shifted by 2N − 1) = (0 ,

1
2
f[0] , 0 ,

1
2
f[1] , . . . , 0 ,

1
2
f[N − 1])

Adding these up,

h +
1
2
(h shifted by 1) +

1
2
(h shifted by 2N − 1) =

+ (f[0] , 0 , f[1] , 0 , f[2] , . . . , 0 , f[N − 1] , 0)

+ (0 ,
1
2
f[1] , 0 ,

1
2
f[2] , . . . , 0 ,

1
2
f[N − 1] , 0,

1
2
f[0])

+ (0 ,
1
2
f[0] , 0 ,

1
2
f[1] , . . . , 0 ,

1
2
f[N − 1])

= (f[0] ,
f[0] + f[1]

2
, f[1] ,

f[1] + f[2]
2

, f[2] , . . . , f[N − 1] ,
f[N − 1] + f[0]

2
))) .

(c) From Part (a) the DFT of y is

Y [n] = 1 + cos(2πm/M) .

Thus, by the convolution theorem,

F f̃ [m] = (F h[m])(F y[m])

= H [m]Y [m]
= F[m](1 + cos(2πm/M)) .
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4. (10 points) A linear system L has the inputs (on the left) and outputs (on the right) shown
below.

-2


-1


1 2 3 4
0

1

2

0 -1


1 2 3 4
0

1

2

0-2

-2 -1 1 2 3 4
0

1

2

0 -1 1 2 3 4
0

1

2

0-2

(a) Is L time-invariant? Justify your answer.

(b) Sketch the output of L given the input below.

-2 -1 1

2

3 4
0

1

2

0

-1

Solutions:
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(a) L is not time-invariant. Call the inputs and outputs v1(t), w1(t) = Lv1(t) and v2(t),
w2(t) = Lv2(t), respectively. Evidently v2(t) = v1(t − 1), and if L were time invariant
we would have w2(t) = w1(t − 1). We don’t.

(b) The sample input is 2vt(t) − v2(t). Since L is linear,

L(2v1(t) − v2(t)) = 2Lv1(t) − Lv2(t) = 2w1(t)− w2(t) ,

which looks like this:

-2 -1 1

2

3 4
0

1

2

0

-1

-2 -1 0 1 2 3 4
0

1

2

-1
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5. (15 points) Suppose we model the Stanford Clock Tower bells as a system, where the hammer
(to hit the bell) is the input, the bell is the system, and the ringing sound is the output.

(a) Is the system linear (approximately)? Is it time invariant?

(b) Is this system stable? (Recall that ‘stable’ means bounded inputs result in bounded
outputs.)

(c) Give an analytic expression that might represent the impulse response, h(t), of the
system. Justify your answer.

Solution:

(a) It’s reasonable to consider that the system is linear. If we hit the bell with two hammers
(adding the inputs) then the sound will mix additively. If we hit the bell twice as hard,
for example, the sound will be (approximately) twice as loud. Might be interesting to
know how realistic this is!
Likewise, it’s reasonable to consider that the system is time-invariant, since if we hit it
later we just get the sound later. (Though the shifted sound might be mixing with the
fading sound from the earlier hammer blow.)

(b) Stability means that a bounded input will result in a bounded output. This system
is stable because the output cannot be unbounded - the ringing sound will never be
infinitely loud.

(c) We can consider the impulse response as the output due to an input impulse – imagine
hitting the bell with a hammer for a very short period of time. The impulse response
must be zero for t < 0 because the bell cannot produce sound without some kind of
input. This indicates the need to use the unit step function u(t).
Secondly, because the sound is ringing and oscillatory, we know that the impulse response
should include a sinusoidal term of some frequency ν0.
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Lastly, the ringing sound is decaying – the bell will not continue to make sound forever
and the sound is in fact dying away. Thus, we will need to multiply our impulse response
with a decaying exponential term. The impulse response should look something like this:

h(t) = u(t)e−at sin(ν0t) , a > 0 .
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6. (30 points) Consider the square shown below to be represented by a functions f(x1, x2) of x1

and x2. The gray level shows the value at a given point, with black being 1 and white being
0. Next to f(x1, x2) is a plot of the magnitude of its Fourier transform |Ff(ξ1, ξ2)|.

Let a > 1 be a fixed constant, and let A be the matrix

A =
(

cos(π
6 ) − sin(π

6 )
sin(π

6 ) cos(π
6 )

)

The problem involves a number of figures and is stated on the next page.
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Consider the following modifications of f(x1, x2):

1. f(ax1, x2) 2. f(x1, ax2) 3. f(x1 + a, x2)

4. f

(
A

(
x1

x2

))
5. f

(
A−1

(
x1

x2

))
6. f(x1, x2) ∗ sinc(ax1) sinc(ax2)

Match the modification 1 – 6 of f(x1, x2) with the corresponding plot (i) – (vi) and with the
plot of the corresponding Fourier transform (A) – (F). Give brief explanations.

(i) (ii) (iii)

(iv) (v) (vi)

(A) (B) (C)

(D) (E) (F)
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Solutions:

The function f(x1, x2) is black over the square shown. To make the matches, you have to ask
yourself what set of points will correspond to those points under the given transformation of
f . The matches are as follows:

1. f(ax1, x2): Since a > 1 this shrinks the square in the x1-direction and so that’s figure (vi),
i.e., the rectangle in figure (vi) will be stretched to the square via (x1, x2) 7→ (ax1, x2)
and so f(ax1, x2) will be black over the rectangle in (vi). For the Fourier transform,
F(f(ax1, x2) = (1/a)Ff(ξ1/a, ξ2), so that’s stretched in the ξ1 direction and the whole
figure is likewise stretched. This matches with figure (A).

2. f(x1, ax2). Here the reasoning is the same as in the previous part, but applied in the x2

and ξ2 directions. The matches are with (ii) and (F).

3. f(x1 +a, x2). This is a shift in the x1 direction by an amount a to the left, so the square
hasn’t changed shape, just location relative to where it was before. There is only a phase
change in the Fourier transform, which has magnitude 1, thus the plot is the same as
for Ff(ξ1, ξ2). The matches are with (v) and (C).

4. f

(
A

(
x1

x2

))
. The matrix A is a counterclockwise rotation through π/6. As we showed

in class, the spectrum is also rotated counterclockwise by π/6. Since to rotation is
counterclockwise by π/6 the square in (iv) is rotated to the ‘straight’ square. Similarly
with the Fourier transform. The matches are with (iv) and (D).

5. f

(
A−1

(
x1

x2

))
. This is a clockwise rotation through π/6. The matches are with (i) and

(E).

6. f(x1, x2) ∗ sinc(ax1) sinc(ax2). Well, there’s only one choice left, so the matches have to
be with (iii) and (B). Here’s an explanation. Take the Fourier transform to get, by the
convolution theorem,

F(f(x1, x2) ∗ sinc(ax1) sinc(ax2)) = Ff(ξ1, ξ2)Πa(ξ1)Πa(ξ2) .

This cuts off Ff(ξ1, ξ2) by a 2D-rect function of width a. That matches with figure (B)
(approximately – numerical computations, of course). In the spacial domain the effect
is that of a lowpass filter, so the sharp edges of the square are smeared out somewhat.
That’s figure (iii).

14



7. (10 points) Again consider the square shown below to be represented by a functions f(x1, x2)
of x1 and x2. The gray level shows the value at a given point, with black being 1 and white
being 0. Thus the drawing shows precisely where f(x1, x2) = 1.

Assume the outside dimension of the square is 1 and the inside dimension of the square is .9.
Find the Fourier transform of f(x1, x2).

Solution: The 2D rect function (which is separable) Π(x1, x2) = Π(x1Π(x2) corresponds to a
filled-in black square of side length 1. Thus the black rim we see is the result of subtracting
from this a 2D rect function of width 0.9. That is,

f(x1, x2) = Π(x1Π(x2)− Π(x1/.9)Π(x2/.9) .

Everything in sight is separable, and using the stretch theorem the Fourier transform is

Ff(ξ1, ξ2) = sinc(ξ1) sinc(ξ2) − .81 sinc(.9ξ1) sinc(.9ξ2) .
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