EE 261 The Fourier Transform and its Applications Fall 2007 Solutions to Midterm Exam

- There are 5 questions for a total of 110 points.
- Please write your answers in the exam booklet provided, and make sure that your answers stand out.
- Don't forget to write your name on your exam book!

1. (15 points) Let $f(x)$ be a real, periodic function of period 1 . The autocorrelation of f with itself is the function

$$
(f \star f)(x)=\int_{0}^{1} f(y) f(y+x) d y .
$$

(a) Show that $f \star f$ is also periodic of period 1 .
(b) If

$$
f(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x}
$$

show that the Fourier series of $(f \star f)(x)$ is

$$
(f \star f)(x)=\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2} e^{2 \pi i n x}
$$

From the definition of autocorrelation

$$
\begin{aligned}
(f \star f)(x+1) & =\int_{0}^{1} f(y) f(y+x+1) d y \\
& =\int_{0}^{1} f(y) f(y+x) d y
\end{aligned}
$$

since $f(y+x+1)=f(y+x)$ by periodicity of f. This shows rhat $f \star f$ is periodic of period 1.

For part (b) we plug the Fourier series of f into the definition of autocorrelation:

$$
\begin{aligned}
(f \star f)(x) & =\int_{0}^{1} f(y) f(y+x) d y \\
& =\int_{0}^{1}\left(\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n y}\right)\left(\sum_{m=-\infty}^{\infty} \hat{f}(m) e^{2 \pi i m(y+x)}\right) d y \\
& =\int_{0}^{1}\left(\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n y}\right)\left(\sum_{m=-\infty}^{\infty} \hat{f}(m) e^{2 \pi i m y} e^{2 \pi i m x}\right) d y \\
& =\int_{0}^{1} \sum_{n, m=-\infty}^{\infty} \hat{f}(n) \hat{f}(m) e^{2 \pi i n y} e^{2 \pi i m y} e^{2 \pi i m x} d y
\end{aligned}
$$

Now swap the summation and integration

$$
\begin{aligned}
\int_{0}^{1} \sum_{n, m=-\infty}^{\infty} \hat{f}(n) \hat{f}(m) e^{2 \pi i n y} e^{2 \pi i m y} e^{2 \pi i m x} d y & =\sum_{n, m=-\infty}^{\infty} \hat{f}(n) \hat{f}(m) e^{2 \pi i m x} \int_{0}^{1} e^{2 \pi i n y} e^{2 \pi i m y} d y \\
& =\sum_{n, m=-\infty}^{\infty} \hat{f}(n) \hat{f}(m) e^{2 \pi i m x} \int_{0}^{1} e^{2 \pi i(n+m) y} d y
\end{aligned}
$$

We've seen that integral of exponentials. It will only be nonzero if $n+m=0$, i.e., if $m=-n$, in which case it integrates to 1 . Thus what remains is

$$
\sum_{n=-\infty}^{\infty} \hat{f}(n) \hat{f}(-n) e^{2 \pi i n x}
$$

But now we use the symmetry property of Fourier coefficients,

$$
\hat{f}(-n)=\overline{\hat{f}(n)} .
$$

With this the sum becomes

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2} e^{2 \pi i n x}
$$

as we were asked to show.
2. (10 points each)
(a) If $f(t) * g(t)=h(t)$ what is $f(t-1) * g(t+1)$ in terms of $h(t)$?

Solution Take the Fourier transform. Convolution becomes multiplication and the result is:That gives

$$
e^{-2 \pi i s} \mathcal{F} f(s) e^{2 \pi i s} \mathcal{F} g(s)=\mathcal{F} f(s) \mathcal{F} g(s)=\mathcal{F}(f * g)(s)=\mathcal{F} h(s)
$$

Thus we get back what we started with:

$$
f(t-1) * g(t+1)=h(t) .
$$

The next three parts are related.
(b) Show that the following relation holds for any two functions u and v :

$$
\int_{-\infty}^{\infty} u(t) v(-t) d t=\int_{-\infty}^{\infty} \mathcal{F} u(s) \mathcal{F} v(s) d s
$$

Solution Let $w(t)=(u * v)(t)$ then

$$
w(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau
$$

We also know that $w=\mathcal{F}^{-1}(\mathcal{F} u \cdot \mathcal{F} v)$ by the convolution theorem. This means that

$$
w(t)=\int_{-\infty}^{\infty} \mathcal{F} u(s) \mathcal{F} v(s) e^{2 \pi i s t} d s
$$

Hence

$$
\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau=\int_{-\infty}^{\infty} \mathcal{F} u(s) \mathcal{F} v(s) e^{2 \pi i s t} d s
$$

Evaluating this equality at $t=0$, we obtain the desired relation

$$
\int_{-\infty}^{\infty} u(\tau) v(-\tau) d \tau=\int_{-\infty}^{\infty} \mathcal{F} u(s) \mathcal{F} v(s) d s
$$

(Replace the variable τ with the variable t.)
(c) Using the result derived in the previous part (even if you couldn't derive it), show that the following holds for any two functions f and g :

$$
\int_{-\infty}^{\infty} f(t) \mathcal{F} g(t) d t=\int_{-\infty}^{\infty} \mathcal{F} f(s) g(s) d s
$$

Solution Notice that $v^{-}=\mathcal{F F} v$. Let $g=\mathcal{F} v$ and $f=u$ then $\mathcal{F} g=v^{-}$and $\mathcal{F} f=\mathcal{F} u$. Therefore the relation derived in the previous part becomes

$$
\int_{-\infty}^{\infty} f(t) \mathcal{F} g(t) d t=\int_{-\infty}^{\infty} \mathcal{F} f(s) g(s) d s
$$

(d) Calculate the following integral:

$$
\int_{-\infty}^{\infty} \frac{e^{\pi i t} \operatorname{sinc}(t)}{1+4 \pi^{2} t^{2}} d t
$$

Solution Take $f(t)=e^{j \pi t} \operatorname{sinc}(t)$ and $\mathcal{F} g(t)=\frac{1}{1+4 \pi^{2} t^{2}}$. Then $\mathcal{F} f(s)=\Pi\left(s-\frac{1}{2}\right)$ and $g(s)=\frac{1}{2} e^{-|s|}$.
Plugging into the expression derived in the previous part, we obtain the following result

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{j \pi t} \operatorname{sinc}(t)}{1+4 \pi^{2} t^{2}} d t & =\frac{1}{2} \int_{-\infty}^{\infty} \Pi\left(s-\frac{1}{2}\right) e^{-|s|} d s \\
& =\frac{1}{2} \int_{0}^{1} e^{-s} d s \\
& =-\frac{1}{2}\left[e^{-s}\right]_{0}^{1} \\
& =-\frac{1}{2}\left(e^{-1}-1\right) \\
& =\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{aligned}
$$

3. (20 points) Linearity and shifting properties of the Fourier transform Suppose we are given the following signal:

and we are told that its Fourier transform is

$$
\mathcal{F} f(s)=4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{-i 3 \pi s}
$$

Using $O N L Y$ this information, find the Fourier transform of the following signals:
(a) $g(x)$

(b) $h(x)$

Solution:
(a) It can be seen that $f(x)=g(x)+g(x-2)$. Taking the Fourier transform on both sides:

$$
\begin{aligned}
\mathcal{F} f(s) & =\mathcal{F} g(s)+\mathcal{F} g(s) e^{-i 4 \pi s} \\
4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{-i 3 \pi s} & =\mathcal{F} g(s)\left(1+e^{-i 4 \pi s}\right)
\end{aligned}
$$

Rearranging the equation, we have

$$
\begin{aligned}
\mathcal{F} g(s) & =\frac{4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{-i 3 \pi s}}{\left(1+e^{-i 4 \pi s}\right)} \\
& =\frac{4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{-i 3 \pi s}}{2 e^{-i 2 \pi s} \cos (2 \pi s)} \\
& =2 \operatorname{sinc}^{2}(s) \cos (\pi s) e^{-i \pi s}
\end{aligned}
$$

(b) In this part, $h(x)=f(x)+f(-x)$. Taking the Fourier transform gives us:

$$
\begin{aligned}
\mathcal{F} h(s) & =\mathcal{F} f(s)+\mathcal{F} f(-s) \\
& =4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{-i 3 \pi s}+4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) e^{i 3 \pi s} \\
& =4 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s)\left(e^{-i 3 \pi s}+e^{i 3 \pi s}\right) \\
& =8 \operatorname{sinc}^{2}(s) \cos (\pi s) \cos (2 \pi s) \cos (3 \pi s)
\end{aligned}
$$

4. (20 points) How well do you know your transform?

In this question, the figure on the left is the real signal $f(t)$ and the figure on the right shows either the phase of $\mathcal{F} f(s)$, denoted by $\angle \mathcal{F} f(s)$; or the magnitude of $\mathcal{F} f(s)$, denoted by $|\mathcal{F} f(s)|$.

State if each of the given Fourier transform pairs is possible. Justify your results.
(a) Is this Fourier transform pair possible?

Odd function with compact support

Solution:

Since $f(t)$ is a real and odd function, we would expect $|\mathcal{F} f(s)|$ to be even and the value $|\mathcal{F} f(0)|$ to be zero. This is what is observed and hence, this is a possible pair.
To come to a definite conclusion, we should expect the phase profile, $\angle \mathcal{F}(s)$, to be odd and take on only values $\pm \frac{\pi}{2}$
(b) Is this Fourier transform pair possible?

Even function with compact support

Solution:

Since $f(t)$ is a real and even function, we would expect its Fourier transform to be real and even as well. A real function can only take on a phase of 0 or $\pm \pi$. This is not the case for $\angle \mathcal{F}(s)$ and hence this pair cannot be possible.
(c) Is this Fourier transform pair possible?

Shifted even function with compact support

Solution:

This is similar to the previous part. The shift induces a linear phase term in $\mathcal{F} f(s)$. However, since $f(t+a)$ is a real and even function, where a is the shift, we would expect its Fourier transform to take on a phase of 0 or $\pm \pi$. This is not the case for $\angle \mathcal{F}(s)$ because we see a linear phase term added to a continuum of phases between $b \leq|s| \leq c$. Hence this pair cannot be possible.
(d) Is this Fourier transform pair possible?

Solution:

This is possible. The phase takes on the values 0 where $\mathcal{F} f(s)$ is positive and $\pm \pi$ where $\mathcal{F} f(s)$ is negative. Moreover, $\angle \mathcal{F}(s)$ is an odd function.
5. (15 points) Let $f(x)$ be a signal and for $h>0$ let $A_{h} f(x)$ be the averaging operator,

$$
A_{h} f(x)=\frac{1}{2 h} \int_{x-h}^{x+h} f(y) d y=\frac{1}{2 h} \int_{-h}^{h} f(x+y) d y=\frac{1}{2 h} \int_{-h}^{h} f(x-y) d y
$$

(a) Show that we should define $A_{h} T$ for a distribution T by

$$
\left\langle A_{h} T, \varphi\right\rangle=\left\langle T, A_{h} \varphi\right\rangle
$$

(b) Assuming the result in part (a) (even if you didn't derive it), what is $A_{h} \delta$?

Solutions: Suppose ψ is a smooth function. Then the pairing $\left\langle A_{h} \psi, \varphi\right\rangle$ with a test function φ is given by integration, and

$$
\begin{aligned}
\left\langle A_{h} \psi, \varphi\right\rangle & =\int_{-\infty}^{\infty} A_{h} \psi(x) \varphi(x) d x \\
& =\int_{-\infty}^{\infty}\left(\frac{1}{2 h} \int_{-h}^{h} \psi(x+y) d y\right) \varphi(x) d x \\
& =\frac{1}{2 h} \int_{-h}^{h} \int_{-\infty}^{\infty} \psi(x+y) \varphi(x) d x d y
\end{aligned}
$$

Now make the change of variable $u=x+y$ in the inner integral,

$$
\int_{-\infty}^{\infty} \psi(x+y) \varphi(x) d x=\int_{-\infty}^{\infty} \psi(u) \varphi(u-y) d u
$$

leading to

$$
\begin{aligned}
\frac{1}{2 h} \int_{-h}^{h} \int_{-\infty}^{\infty} \psi(x+y) \varphi(x) d x d y & =\frac{1}{2 h} \int_{-h}^{h} \int_{-\infty}^{\infty} \psi(u) \varphi(u-y) d u d y \\
& =\int_{-\infty}^{\infty} \psi(u)\left(\frac{1}{2 h} \int_{-h}^{h} \varphi(u-y) d y\right) d u \\
& =\int_{-\infty}^{\infty} \psi(u)\left(\frac{1}{2 h} \int_{-h}^{h} \varphi(u-y) d y\right) d u \\
& =\int_{-\infty}^{\infty} \psi(u)\left(\frac{1}{2 h} \int_{-h}^{h} \varphi(u+y) d y\right) d u \\
& =\int_{-\infty}^{\infty} \psi(u) A_{h} \varphi(u) d u \\
& =\left\langle\psi, A_{h} \varphi\right\rangle
\end{aligned}
$$

Thus, for a general distribution T we define

$$
\left\langle A_{h} T, \varphi\right\rangle=\left\langle T, A_{h} \varphi\right\rangle .
$$

Next, to find $A_{h} \delta$ we have for any test function φ,

$$
\begin{aligned}
\left\langle A_{h} \delta, \varphi\right\rangle & =\left\langle\delta, A_{h} \varphi\right\rangle \\
& =A_{h} \varphi(0) \\
& =\frac{1}{2 h} \int_{-h}^{h} \varphi(y) d y \\
& =\frac{1}{2 h} \int_{-\infty}^{\infty} \Pi_{2 h}(y) \varphi(y) d y \\
& =\left\langle\frac{1}{2 h} \Pi_{2 h}, \varphi\right\rangle
\end{aligned}
$$

We conclude that

$$
A_{h} \delta=\frac{1}{2 h} \Pi_{2 h}
$$

