EE 261 The Fourier Transform and its Applications Fall 2007 Problem Set One Due Wednesday, October 3

1. Some practice with geometric sums and complex exponentials

We'll make much use of formulas for the sum of a geometric series, especially in combination with complex exponentials.
(a) If w is a real or complex number, $w \neq 1$, and p and q are any integers, show that

$$
\sum_{n=p}^{q} w^{n}=\frac{w^{p}-w^{q+1}}{1-w}
$$

(Of course if $w=1$ then the sum is $\sum_{n=p}^{q} 1=q+1-p$.)
Discuss the cases when $p=-\infty$ or $q=\infty$. What about $p=-\infty$ and $q=+\infty$?
(b) Find the sum

$$
\sum_{n=0}^{N-1} e^{2 \pi i n / N}
$$

and explain your answer geometrically.
(c) Derive the formula

$$
\sum_{k=-N}^{N} e^{2 \pi i k t}=\frac{\sin (2 \pi t(N+1 / 2))}{\sin (\pi t)}
$$

2. Some practice combining simple signals. (5 points each)

The triangle function with a parameter $a>0$ is

$$
\Lambda_{a}(t)=\Lambda(t / a)= \begin{cases}1-\frac{1}{a}|t|, & |t| \leq a \\ 0, & |t|>a\end{cases}
$$

The graph is

The parameter a specifies the width, namely $2 a$. Alternately, a determines the slopes of the sides: the left side has slope $1 / a$ and the right side has slope $-1 / a$. We can modify Λ_{a} by scaling the height and shifting horizontally, forming $b \Lambda_{a}(t-c)$. The slopes of the sides of the scaled function are then $\pm b / a$. The graph is:

Express each of the following as a sum of two shifted, scaled triangle functions $b_{1} \Lambda_{a_{1}}\left(t-c_{1}\right)+$ $b_{2} \Lambda_{a_{2}}\left(t-c_{2}\right)$. Think of the sum as 'left-triangle' plus a 'right-triangle' ('right' meaning to the right, not having an angle of 90°). For part (d), the values x_{1}, x_{2} and x_{3} cannot be arbitrary. Rather, to be able to express the plot as the sum of two Λ 's they must satisfy a relationship that you should determine.

3. Creating periodic functions. (5 points each)

Let $f(t)$ be a function, defined for all t, and let $T>0$. Define

$$
g(t)=\sum_{n=-\infty}^{\infty} f(t-n T) .
$$

(a) Provided the sum converges, show that $g(t)$ is periodic with period T. One sometimes says that $g(t)$ is the periodization of $f(t)$.
(b) Let $f(t)=\Lambda_{1 / 2}(t)$. Sketch the periodizations $g(t)$ of $f(t)$ for $T=1 / 2, T=3 / 4, T=1$, $T=2$.
(c) If a function $f(t)$ is already periodic, is it equal to its own periodization? Explain.
4. Combining periodic functions. (5 points each)
(a) Let $f(x)=\sin (2 \pi m x)+\sin (2 \pi n x)$ where n and m are positive integers. Is $f(x)$ periodic? If so, what is its period?
(b) Let $g(x)=\sin (2 \pi p x)+\sin (2 \pi q x)$ where p and q are positive rational numbers (say $p=m / r$ and $q=n / s$, as fractions in lowest terms). Is $g(x)$ periodic? If so, what is its period?
(c) Show that $f(t)=\cos t+\cos \sqrt{2} t$ is not periodic. (Hint: Suppose by way of contradiction that there is some T such that $f(t+T)=f(t)$ for all t. In particular, the maximum value of $f(t)$ repeats. This will lead to a contradiction.)
(d) Consider the voltage $v(t)=3 \cos \left(2 \pi \nu_{1} t-1.3\right)+5 \cos \left(2 \pi \nu_{2} t+0.5\right)$. Regardless of the frequencies ν_{1}, ν_{2} the maximum voltage is always less than 8 , but it can be much smaller. Use MATLAB (or another program) to find the maximum voltage if $\nu_{1}=2 \mathrm{~Hz}$ and $\nu_{2}=1$ Hz. [From Paul Nahim, The Science of Radio]
5. Some practice with inner products. (5 points each)

Let $f(t)$ and $g(t)$ be two signals with inner product

$$
(f, g)=\int_{-\infty}^{\infty} f(t) \overline{g(t)} d t
$$

Define the reversed signal to be

$$
f^{-}(t)=f(-t) .
$$

Define the delay operator, or shift operator by

$$
\tau_{a} f(t)=f(t-a) .
$$

(a) If both $f(t)$ and $g(t)$ are reversed, what happens to their inner product?
(b) If one of $f(t)$ and $g(t)$ is reversed, what happens to their inner product?
(c) If both $f(t)$ and $g(t)$ are shifted by the same amount, what happens to their inner product?
(d) If one of $f(t)$ and $g(t)$ is shifted, what happens to their inner product?
(e) If both $f(t)$ and $g(t)$ are shifted but by different amounts, what happens to their inner product?
(f) What, if anything, changes in these results if f and g are periodic of period 1 and their inner product is

$$
(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t
$$

6. The Dirichlet Problem, Convolution, and the Poisson Kernel When modeling physical phenomena by partial differential equations it is frequently necessary to solve a boundary value problem. One of the most famous and important of these is associated with Laplace's equation:

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

where $u(x, y)$ is defined on a region R in the plane. The operator

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

is called the Laplacian and a real-valued function $u(x, y)$ satisfying $\Delta u=0$ is called harmonic. The Dirichlet problem for Laplace's equation is this:

Given a function $f(x, y)$ defined on the boundary of a region R, find a function $u(x, y)$ defined on R that is harmonic and equal to $f(x, y)$ on the boundary.

Fourier series and convolution combine to solve this problem when R is a disk. As with many problems with circular symmetry is helpful to introduce polar coordinates (r, θ), with $x=r \cos \theta, y=r \sin \theta$. Writing $U(r, \theta)=u(r \cos \theta, r \sin \theta)$, so regarding u as a function of r and θ, Laplace's equation becomes

$$
\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} U}{\partial \theta^{2}}=0
$$

(You need not derive this.)
(a) Let $\left\{c_{n}\right\}, n=0,1, \ldots$ be a bounded sequence of complex numbers, let $r<1$ and define $u(r, \theta)$ by the series

$$
u(r, \theta)=\operatorname{Re}\left\{c_{0}+2 \sum_{n=1}^{\infty} c_{n} r^{n} e^{i n \theta}\right\} .
$$

From the assumption that the coefficients are bounded, and comparison with a geometric series, it can be shown that the series converges. Show that $u(r, \theta)$ is a harmonic function.
(b) Suppose that $f(\theta)$ is a real-valued, continuous, periodic function of period 2π and let

$$
f(\theta)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}
$$

be its Fourier series. Now form the harmonic function $u(r, \theta)$ as above, with these coefficients c_{n}. This solves the Dirichlet problem of finding a harmonic function on the unit disk $x^{2}+y^{2}<1$ with boundary values $f(\theta)$ on the unit circle $x^{2}+y^{2}=1$; precisely,

$$
\lim _{r \rightarrow 1} u(r, \theta)=f(\theta) .
$$

You are not asked to show this - it requires a fair amount of work - but assuming that all is well with convergence, explain why one has

$$
u(1, \theta)=f(\theta)
$$

[This uses the symmetry property of Fourier coefficients.]
(c) The solution can also be written as a convolution: show that

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi) P(r, \theta-\phi) d \phi
$$

where

$$
P(r, \theta)=\frac{1-r^{2}}{1-2 r \cos \theta+r^{2}} .
$$

[Introduce the Fourier coefficients of f. You'll have to sum a geometric series.]
(d) The function $P(r, \theta)$ is called the Poisson kernel. Show that it is a harmonic function. [This is a special case of the result you established in Part (a).]
Parts (c) and (d) together exhibit a property of convolution that we'll see repeatedly; The convolution of two functions inherits the nicest properties of each. In this case we convolve a continuous function f (a good property) with a harmonic function P (a nicer property) and the result is a harmonic function.

