
TheFourierTransformAndItsApplications-Lecture09  

Instructor (Brad Osgood):Oh, I'm on. What a surprise. All right. Did you get the word 
back in the back control room that I want to show a couple pictures today? Move the 
camera up and down if you want to say, "Yes." Very good. All right.  

Okay. Today we're gonna continue with our study of convolution. And let me remind you 
of the star of the show and how we got there. So last time we introduced convolution in a, 
what I hope you thought, was a natural way to answer a reasonable, natural question in 
signal processing. So we talked about how do you combine two signals in such a way that 
their Fourier transforms multiply. We are led to convolution by asking for the Fourier 
transform of a combination of f and g is the product of the Fourier transform. So the 
Fourier transform of f times the Fourier transform of g. And what we found was that the 
combination was certainly not obvious, but actually quite least compactly written. So the 
answer was given by, the convolution of two functions. I can either look at the 
convolution of g with f or f with g; it doesn't matter. The convolution is the integral from 
-8 to 8 of, I think just to be consistent with how I wrote it last time I believe, g of x minus 
y, f of y, dy. That is to say, if this combination is defined, if this is the way you combine f 
and g according to this integral, then the Fourier transform of the convolution is the 
product of the Fourier transforms, which is quite a remarkable statement. I mean, all 
these operations are not to be taken lightly.  

Certainly, the Fourier transform is a complicated enough operation, involving an integral 
from -8 to 8, a complex exponential, the rest of that stuff. This integral, although, it 
doesn't involve any complex quantities, is certainly, again, nothing to be taken for 
granted. And the fact that you combine these two complicated operations, and they 
combine in such a simple way is pretty impressive. And not only pretty impressive, it's 
pretty useful. In fact, before talking anymore about any general properties of the Fourier 
transform, let me give you an example of just this sort of thing in action. So let me give 
you an example of this in filtering. And I'm gonna take a particular – I'm not gonna spend 
a lot of time on this, but I just want to show you that I'm not making this up. Because 
we're gonna return to a lot of these ideas repeatedly throughout the course, and also 
similar examples, and sometimes study them in greater depth as we go through the 
course. The example that I have in mind, though, to start with was one that I borrowed 
from a book by Briggs and Henson on the discrete Fourier transform. I think I put this in 
a list of references that's on the website, and it's called something like The DFT: An 
Owners' Manual. It's very well written, and has all sorts of good examples and good 
problems in it. And the one problem they study is the problem – they use as an example, 
actually of filtering, is the study of terbidity. Now, I think we actually had some people in 
earth sciences in the class at one point, I think I remember that. Anybody know what 
terbidity is? Anybody from earth science in here today?  

Terbidity is sort of a study of, I don't know whether it's a measure of the clearness of 
water or the murkiness of water, but it has to do with measuring the clarity of water. And 
the idea is, that particles are suspended in water, and light scatters off of particles, and 
you sort of measure how light scatters; that's a measure of the murkiness. It's a measure 



of the more particles, the more scattering and the more murky it is. And terbidity varies 
over time. And one of the problems is to study how it varies over time. So they presented 
the results of a study of the terbidity of the subglacial waters in the Yukon territory of 
Canada. So you get a picture that looks something like this. I'll show it to you. Can we 
get a shot of that? You want to put it here? Let's see how that is. So that's a picture of 
terbidity. Now, the scales here aren't so important. The horizontal scale is time, and I 
think it's over a period of months. And the vertical scale is terbidity, whatever that means. 
Now, so you put sensors down in this very deep subglacial water and you measure the 
murkiness of light, using whatever scale and whatever techniques are involved, and it 
oscillates over time.  

Now, in this picture you see not much. So you see a couple of examples. You see a 
generally periodic phenomenon, but you see a lot of jaggedness in there, you see a lot of 
jaggedness in the picture. So, like I said, the horizontal scale is time, I think it's a period 
of months, and the vertical scale is whatever it is. And you certainly see a periodic 
phenomenon here, but it's noisy or it's jagged. And you want to get rid of the jaggedness 
of this. Now, the way to do this, the way to get rid of the jaggedness, the way to smooth 
out the data a little bit, is to do it not in the time domain, as you see it presented, but to do 
it in the frequency domain exactly in the way that we were talking about. So the first step 
in the analysis of this data, or in the smoothing of this data, is to take the Fourier 
transform. Now, in fact, the data is given to you in discrete form. So what you're actually 
taking is the discrete Fourier transform, and we're gonna get to that shortly, but think of 
everything here as just sort of continuous, and think about actually taking the Fourier 
transform by whatever means you have.  

And if you do that, you get a picture that looks like this. So this is a picture in the 
frequency domain; this is a picture of the Fourier transform of the signal. As a matter of 
fact, it's two pictures. The first picture is a set of frequencies going all the way out. And 
I'm only drawing the positive frequencies here. When you take the Fourier transform, of 
course for a real signal, you have positive and negative frequencies, but ones a complex 
conjugate of the other. So actually what's being plotted here is the magnitude of the 
Fourier transform only for the positive frequencies. And you see it goes all the way out. 
The high frequencies here – and this is just a section of it just showing the first 40 or so 
frequencies. Again, high frequencies are what's causing the jaggedness. Just as in the 
same case with Fourier series, the high harmonics are causing the signal to oscillate 
quickly, well, the same thing with the Fourier transform. Although, the spectrum is 
continuous it's the same principle; high frequencies are causing sharp oscillations, or 
rapid oscillations. So what do you want to do to smooth it? The natural thing to smooth it 
is to just kill off the high frequencies. Now, how do you kill off the high frequencies? 
The simplest way of doing it is by multiplying by rectangle function in the frequency 
domain. Okay. So you kill off high frequencies by multiplying, in the frequency domain, 
by a scaled rectangle function. That is to say, if the picture in the frequency domain is 
something like this, where the frequencies are going all the way out, then you just 
multiply it by a function, which is one, my rectangle function. Functions, which is one up 
to a certain point, say a cutoff frequency, from minus new c to plus new c, let's think of 
that as the cutoff frequency, and then a zero outside that. So you eliminate all frequencies 



below minus the cutoff range and above plus the cutoff range, and you keep the 
frequencies in between.  

The other way of putting this is you are passing the low frequencies, or eliminating the 
high frequencies. And so this is called a low-pass filter, it passes the low frequencies. So 
if you do that, then in the frequency domain the result is to take a rectangle function p, I 
guess the way I've scaled it I'd represent it as p sub 2c, it has total width 2 new sub c, new 
sub c is supposed to be the cutoff frequency here, times the Fourier transform of the 
terbidity signal, whatever you want to call that, t. This is Fourier transform of the 
terbidity. That's what it looks like in the frequency domain. What does it look like in the 
time domain? Back in the time domain, you'd take the inverse Fourier transform of this or 
you ask yourself what convolution leads to the product of these two functions in the 
frequency domain. And we know what that is. So in the time domain this is convolution. 
It would be, I believe, 2 new sub c sinc 2 new sub c times t convolved with the original 
terbidity function t, whatever you want to call it, T of t. It's convolution in time, 
multiplication in frequency. And the result is, in this case, is to kill off the high 
frequencies. And I'll show you what the picture looks like. I'll show you what that picture 
looks like for two cases. One is if you keep I think the first 40 or so frequencies, and the 
other, I'm gonna show you the graphs in just a second, and the other I think of is if you 
just keep like the first 10 or 15, and you get two different pictures. This is, once again, the 
picture in the frequency domain. The picture in the time domain looks like this.  

So what you do is, again, you carry out this multiplication in the frequency domain and 
then you just take the inverse Fourier transform, or you know what the result is gonna be 
so you just compute the convolution. It has to be computed numerically, of course; 
everything here inside is actually discrete data. So in the first case, here, this is I think 
only keeping, like, the first 10 or 15 frequencies, something like that, I can't remember 
exactly what they did. I'm sorry. I didn't have a chance to look it up this morning to get 
the precise cutoffs that they used. And this one is keeping maybe the first 20 or 30, 
maybe up to 40 frequencies. So you see you still have a certain amount of jaggedness in 
here. Here you see, very quite strongly, that the thing has been smoothed out and you can 
see the periodic nature of it. So this is an actual study of actual data. By the way, they 
rescaled here. The scale on the vertical axis is different because I think they just 
subtracted off the mean, so they get it to oscillate around zero instead of oscillating 
around whatever it was. That's why the scale is different here on the vertical axis.  

All right. Now, there's a serious question involved when you're applying these techniques 
to real data, where something real is at stake. Namely, you might say that, let's go back to 
the original picture, there's a lot of noise in here that doesn't belong. Some how it's a 
concept of our sensors or whatever, result of a faulty experimental technique, that I'm 
getting all these extra jagged edges in there. You know, who knows why that's 
happening. So I want to filter those out. And I can filter them out very dramatically, and 
to get this picture, by only keeping the first however many frequencies or I can flip to the 
model a little bit less dramatically by allowing a certain number of high frequencies to 
creep in. And the question is, when are you filtering out something essential, and when 
are you filtering out just noise? That is to say, when are you presenting the real genuine 



physical phenomenon to focus on what should be understood, and when are you 
committing scientific fraud. Each of this must answer this question in his or her own way, 
I suppose. But that's the issue. You are – the original signal, everybody would believe, is 
imperfect. I mean, it has something attached to it, it has something that goes along with it, 
that shouldn't really be there. How much do you take away? That's the question. You 
have a lot of power when you have these mathematical techniques at your disposal. And 
the question is, use them wisely, young ones. So I'll show you more such examples as we 
go along, but I didn't want to talk about anymore sort of general properties of 
convolution, which I'll turn to now, without showing you how it looks in action. And you 
can look – I don't know whether we'll come back to this particular example when we do 
the DFT, but I'll refer you to it again when we talk about it. Because they actually have 
the, in the Briggs and Henson book, I think they have the data and they have a little bit 
more details about this. It's nice. And this is just one example of many possible examples.  

As a matter of fact, let's stay on the subject of filtering for just a second here. Okay, we 
are down now with this. You may raise the screen. Okay, thank you. Filtering, or what's 
called filtering, is probably one of the main uses of convolution. And just in the kind of 
form that we were looking at. All right. You want to eliminate some frequencies, let some 
other frequencies go through. You do that in the frequencies domain, and then the 
question is: What are the consequences of that in the time domain?  

And there's a little terminology that goes along with this, and, again, we'll come back to 
this topic a little later on in the class, but it's probably worthwhile saying it now. Many of 
you have, no doubt, heard this terminology and studied different aspects, different kinds 
of filters in different classes. And, again, we'll also come back to it. But let me just say a 
little bit now. Filtering is often, not always, but often, almost synonymous with 
convolution. There are reasons for that so-called time invariants or spacial invariants of 
convolution as it's associated with the filters. This is not always the case, but it's, like, 
almost always the case. And the idea is that the filter is defined by sort of a fixed function 
that you're convolving with or, in the frequency domain, a fixed function that you're 
multiplying the Fourier transforms with. The inputs vary, but the filter function stays that 
same. So you imagine a system is a system that convolves an input, which can vary, you 
know, one input, another input, another input, with a fixed function – or fixed signal. And 
the fixed signal is called the impulse response. Again, for reasons which we will 
understand a little bit more when we have a little bit more information about delta 
functions and linear systems, and so on. But there's no reason why you shouldn't learn the 
words now. That is to say, a filter, when it is given by convolution, is of this form, say, g 
is equal, let me use different [inaudible], f convolved with h. So the idea here is f is the 
input that can vary, you put different inputs into the system, h is fixed, and that's called 
the impulse response, and then what results from that is the output. Now, again, that's the 
picture in the time domain.  

The picture in the frequency domain is what you really think of most often when you're 
designing filters to accomplish a certain purpose. Because the picture in the frequency 
domain is much simpler, it's just multiplication. So in the frequency domain, that is to 
say, taking the Fourier transforms, let me use the uppercase notation here, you write this 



as, say, G of s is equal to capital F of s times capital H of s. And in this context, capital H 
of s is always called the transfer function, and it's always written as capital H. I don't 
know why, but it always is somehow. So capital H is called the transfer function, 
sometimes called the system function. I am a little hesitant here, actually, because I'm not 
sure sometimes whether this terminology applies to the time domain or the frequency 
domain. Certainly, in the frequency domain, it's called the transfer function. I was gonna 
say it's sometimes called the system function, but I'm not sure if that refers to capital H or 
little h…transfer function. So to design a filter, then, is often to design the appropriate 
transfer function, to think about things in the frequency domain. And there's this, it's an 
art as much as it is a science. To design a filter is to design H, the transfer function. All 
right. And then let nature take it's course. Multiplying the frequency domain, convolve in 
the time domain. So, for example, the low-pass filter is a very simple cutoff. Low-pass is 
multiplied by a rec function. I won't specify the width here. But the idea is just multiply it 
by a scaled rectangle function of whatever the appropriate width is. And, again, the 
height is one here. So I'm multiplying just by one, so I'm not changing it all in the range 
where the function is one, where the function is non-zero, and then it kills it off 
completely outside that. Now, the problem with a low-pass filter, this is called the ideal 
low-pass filter, because it's a sharp cutoff. It cuts off exactly at the frequency.  

Now, you can achieve that, actually, digitally; you can't achieve that in analog form. You 
can't wire this into a circuit that's gonna give you a sharp cutoff. So what people 
sometimes do is they have a gradual roll off. There are also consequences to cutting off 
very sharply, as opposed to cutting off sort of more gradually. And we will talk about 
some of these things. Although, they get very specialized, and it gets very, like I say, gets 
into sort of high art and the occult. So we're only gonna go into it to a certain extent. But 
it's certainly simplest to think about the ideal cases, some of the ideal low-pass filters, 
when you just multiply it by a rec function. And then the consequence in the time domain 
is just convolving with a scaled sinc function. It's not hard to say, certainly, and at least in 
the frequency domain it's not hard to see what's going on. Other possibilities, again, 
without spelling it out, is the high-pass filter. A high-pass filter would be to pass the high 
frequencies and filter out the low frequencies. So, for example, why would you want to 
have a high-pass filter? What's an example where you would want to only keep the high 
frequencies and eliminate the low frequencies? Actually, I'll give you a hint, it comes up 
a lot in imaging problems.  

Student: 

Edge detection.  

Instructor (Brad Osgood):Edges, edge detection, exactly. And in an image, we're gonna 
talk about higher dimensional Fourier transforms and so on, but just imagine that edges 
are determined by a very rapid change of either light or dark or some rapid change in the 
picture, in the image. And that's characterized in the frequency domain, in the spectral 
picture, by very high frequencies. So if you want to emphasize the edges, whereas just 
sort of a placid scene, there's not much variation in the shading, not much very variation 
in the intensity. And edge is a very rapid variation in intensity, say, from black to white. 



Whereas, just the ordinary scene, this desk or something like that might not have much of 
a variation. So if you want to emphasize the edges, I mean, if it doesn’t have very much 
variation that would be typically low frequency, you want to kill those off, and then 
emphasize only the high frequency. That would detect the edges in an image. What does 
the transfer function look like for a high-pass filter? What sort of function would I 
multiply the spectrum by to keep only the high frequencies and to kill off the low 
frequencies?  

Well, to do that, once again, to keep the high frequencies but to eliminate the low 
frequencies, I would have the function be one from a certain stage on. And I'm keeping 
everything symmetric, again, because remember mathematically we have both positive 
frequencies and negative frequencies. So, again, there's sort of a cutoff frequency, new 
sub c and minus new sub c. The function would be one going out ideally to 8 from new 
sub c, and one down here out to -8 and it'd be zero in between. You can easily write down 
a formula for that function. You can take a couple of rectangle functions and stretch 
them, and subtract them, and do all sorts of stuff with them, it's not hard, I won't do it, but 
I actually do it in the notes. There's some extra complications that come into this because 
this thing doesn't have such an easy Fourier transform. Actually, delta functions come 
into this. Although, the transfer function looks pretty simple, the affect in the time 
domain is a little bit more complicated. And we do not quite have the technology yet to 
deal with it. But at least at an intuitive level, understanding what you want to do, it's easy 
enough to draw the picture.  

And another possibility would be a bandpass filter, where you pass a range of frequencies 
and you eliminate all of the frequencies outside that band. And, again, it's not hard to 
draw the picture of what that should like in the frequency domain. If you want to pass a 
band of frequencies then you want to multiply by a shifted rectangle function that has 
only a certain extent. And, again, because the frequencies mathematically are both 
positive and negative and symmetric about the origin, I multiply by the complete – the 
transfer function for a bandpass filter will look something like this. So, again, it has 
height one, so I'm just multiplying by one within a certain band of frequencies, whatever 
they are, I won't label the axis here, here's zero, and zero elsewhere. So I multiply the 
Fourier transform, or the desired signal, the filter that I want to signal, by a function that 
looks like that, that keeps only the frequencies in a certain band of frequencies and it kills 
off the rest. And then I take the convolution in the time domain by whatever function has 
this Fourier transform. And that's not hard. You did a homework problem on the 
modulation theorem. You know how to get the Fourier transform, or the inverse Fourier 
transform, of a signal that look like that. Not so bad, and it's extremely important. The 
whole idea of filtering, the whole idea of computing convolutions in the time domain to 
see what happens to the signal, whether discretely or analog, is a big industry. So for 
right now, actually, I'm not gonna say too much more about filters. Some explicit 
formulas are given in the notes. But the main idea that I wanted to get across was, really, 
the ease of it, and the ease of it when you think of it in the frequency domain. It's not so 
easy when you think of it in the time domain. And that's really the next thing I wanted to 
talk about.  



So, I mean, of course you could be more or less sophisticated, but at least at the level 
we've been talking about, which really covers the essential ideas, it's easy to understand 
filtering, or what you're trying to get at, that is to say, convolution in frequency; not so 
easy in time. And that leads me to the next important thing I wanted to say about 
convolution in general. Now, I do want to talk a little bit about convolution in general, 
some of the properties of convolution in general. And I guess the first one is: How do you 
interpret convolution? Well, now, before I – let me talk about visualizing. So it's not so 
easy in time. So to see what happens to filtering in time, you would need to – to do this 
you need to visualize f convolved with h, where h is the given impulse response, the 
Fourier transform of the transfer function, or the inverse of the Fourier transform of the 
transfer function. You need to visualize convolution.  

Now, I don't recommend this. I felt like I had to say a little bit about it in the notes. But 
many books spend many pages, and probably insist on you spending many hours, on 
trying to visualize the convolution of two given functions. And the phrase you here is flip 
and drag. I mean, I think it is an idiotic waste of brain cells and time to sit in a dark room 
quietly trying to visualize convolution. Remember when I said it was idiotic to try to 
visualize when two functions were orthogonal, in terms of the inner product? Well, I 
think it is equally idiotic to try to visualize convolution. I think the way to visualize 
convolution, if there is a way, is to think in terms of multiplying in the frequency domain. 
I mean, one of the things you start to build up is a certain amount of intuition about what 
Fourier transforms look like. And it's not so hard, or it might not be as hard, to visualize 
the product of a couple of Fourier transforms, and then, again, maybe if you know what 
the spectrum is like you have some sense of what the signal is like. But you tell me the 
truth, you be honest with me. Do you think that you can really visualize the convolution 
with the sinc function? I mean, for the low-pass filter the product in the frequency 
domain is very simple. It's the multiplication of the rectangle function times the signal. In 
the time domain it's the convolution of a sinc function with a signal that looks like sinc of 
x minus y, f of y, dy for a given function f. Now you know what the sinc function looks 
like. Are you trying to tell me that you can flip and drag this thing and visualize this 
thing? I don't think so. So don't even try. Let me just say, hard to visualize; a challenge. 
So I like to think that I have allowed you to put that burden down; don’t do it. Now, if 
you can visualize, though, a fair question is can you interpret it. Is there sort of an 
interpretation, a natural interpretation of convolution that will lead you to know when to 
apply it, when you should expect to see it, what sort of features you should expect to see. 
So you can't visualize convolution easily. Is there a good interpretation? All right. How 
do you think about convolution, what is convolution really? I mean, you could write 
down the formula as the integral, but, you know, how do I think about that?  

Now, here, too, I want to offer you some advice, but I also want to exercise a certain 
amount of caution in this. Convolution is a really pretty general operation, and it comes 
up in a lot of different ways. I think it would be a mistake to try to attach to convolution a 
single interpretation. You see that sometimes, and people try to do that, but I think the 
fact is, that it's one of those things that you get used to using, and you use it in different 
ways, and, consequently, you interpret it in different ways. I think the best thing to say is, 
"convolution is what convolution does." And you get used to using it in so many different 



ways that you will automatically somehow attach the appropriate interpretation when 
called for in the appropriate setting. So it's used in many ways. It's not subject to a single 
interpretation, I would say. And you do yourself no favor if you try to peg it only one 
way. I think it's somewhat analogous here, and I think I may have mentioned this earlier 
in class, to the idea of a definite integral. I mean, you learned the definite integral, when 
you were learning calculus, by typically a simple motivating problem, like area under a 
curve, something like that. But you don't always think of the integral as the area under a 
curve. If you always try to think of the integral as the area under the curve, you do 
yourself no service because in some cases, in some problems, where the integral is called 
for, it's not called for in the context of applying the area under a curve; it's called for in 
some other different context. Well, the same sort of thing happens with convolution. It's 
not always called for in the one, it may be called for in different context. So to try to 
attach one interpretation to it I think is a mistake. If you use it often enough, if you use it 
in a lot of different settings you get very used to it, and you get very used to sort of 
thinking about it and thinking about it in different ways.  

Now, I do, however, want to offer a maxim that is often helpful, not universal but often 
helpful, for the way convolution comes up. So I feel like I'm retreating a little bit from 
this strong statement that it's not something to an interpretation and you shouldn't really 
think about it that way. I think it is fair to say that in many contexts convolution is 
interpreted or arises in the context of smoothing or averaging. Context convolution is 
associated with smoothing or averaging. Now, even that is not, again, universal. The low-
pass filter smoothes; the high-pass filter does not smooth. But, actually, the difference 
between the two mathematically is the low-pass filter involves convolution with a 
function; the high-pass filter involves convolution with distributions, or delta functions, 
and that's not a smoothing operation. But convolution with a function is often associated 
with smoothing or averaging. Eliminating the jaggedness in data, like we did with the 
terbidity, can be thought of as smoothing the data or it can also be thought of as 
averaging the data. You replace a sharp jump by an average value between the two 
jumps. And we're gonna return to that when we talk about systems.  

So, again, even this has to be qualified somewhat. But, again, we don’t have this sort of 
technology yet at our disposal to make that too much more precise. Although, I will say a 
little bit more. But, again, we're gonna see different aspects of this all throughout the 
different topics that we talk about in the course. Almost everything we do is gonna 
somehow touch convolution or vice versa. It really is that important an operation in the 
whole context of Fourier analysis. But in general, I'd say, if you're looking for sort of an 
aphorism, if you look at the convolution of two functions, f convolved with g has, 
together, the convolution has the best properties of f and g separately. Or you might even 
say that f convolved with g is at least as good as f and g separately, and it's often better; f 
convolved with g is usually smoother than f and g or necessarily be separately. Like all 
aphorisms, there are exceptions to it; it only holds when you're talking about functions. 
The cutoff is when you convolve with a delta function, where nothing changes at all. But 
for functions, the convolution of two is generally smoother than each. I'll give you an 
example of this. I'll give you several examples of this. One example is if I take the 
rectangle function and I convolve it with itself, I get the triangle function. Now, there's a 



problem you have to work on this actually with a scaled rectangle function, where you 
actually have to compute this by evaluating the integral. As we actually ask to once in 
your life, and probably only once in your life, you should compute a couple of 
convolution integrals and see how it works out. I'm not asking you to visualize, I'm 
asking to actually compute the integral, and to show that according to the formula for 
convolution is integration, the convolution of a rectangle function with itself, or a scaled 
rectangle function, gives you a scaled triangle function.  

Now, why do I say this is an illustration of this property, that f convolved with g is 
smoother than f or g separately, because the rectangle function is discontinuous; the 
triangle function is continuous. It averages it out. But you've averaged out that jump that 
the rectangle function takes and actually made a continuous function out of it. So these 
are discontinuous on the left-hand side and continuous on the right-hand side. And, by the 
way, from this formula and from the convolution theorem, and I promised this was 
coming, and I know I mentioned it in the notes, the Fourier transform of the convolution, 
of course, is the product of the Fourier transforms, and the Fourier transform of the 
rectangle function is the sinc function. So this is sinc squared. And that is a very rapid, 
very quick proof that the Fourier transform of the triangle function is equal sinc squared. 
That's the other reason why the Fourier transform of the triangle function is sinc squared. 
Now, whether or not that's really a simpler proof, I'm not so sure. You could calculate the 
Fourier transform of the triangle function by direct integration, and there's not that much 
involved in it. Whereas, discovering convolution, proving the convolution theorem, 
establishing by hand that the convolution of the rectangle function with itself and the 
triangle function, and then concluding that the Fourier transform of the triangle function 
is sinc squared, well, that's a little bit of a long root. Even as fast I talk, it took me a long 
time to say. So whether or not it's a simpler way of doing it, I don't know, but at least it's 
a nice sort of consistency check and it sort of explains why something like that should be 
true. Another example of this may be even a more striking example that comes up is with 
regard to differentiability. And, again, you have a couple of homework problems on just 
these sorts of properties of convolution, actually, about periodic functions, convolving 
periodic functions to produce periodic function, and so on. And all that is by way of 
getting you to think about the fact that what properties the individual functions have are 
inherited by the convolution or in some cases enhanced by convolution. Another is if, 
say, f is a differentiable function but g is not then the convolution is differentiable, and 
you can say what its derivative is. Actually, the derivative of the convolution is I put the 
derivative on f and take the convolution as f prime convolved with g. And same thing for 
higher derivatives; all sorts of really interesting, wonderful formulas and properties like 
this hold similarly with higher derivatives.  

Of course, if both f and g are differentiable then that's fine, and then I can put the 
derivative on either one. But the idea here is that you can take a non-smooth function and 
convolve it with a smooth function and the result is smooth. And not only that, it tells you 
how to compute the derivative. The derivative of this new differentiable function, f 
convolved with g, is f prime convolved with g. It's nice. All this stuff is great. I am, of 
course, skating over a few things here. There are always issues that convolution is 
defined by an infinite integral; there are issues about convergence of the integral, and so 



on. Those are real issues, but, again, the rigger police are banned from this room until I 
let them back in. I will let them back in to some extent before too long, I have to. But, for 
now, just think of this formally, and get some practice, get some ideas with using the 
properties and using the formulas because it's really just great. All right. Let me finish up 
today, and we're gonna talk about more properties on Monday, more applications on 
Monday, but let me finish up today with another important area where convolution is 
applied. And, actually, it harkens back to the work we did with Fourier series, where we 
first met convolution there in connection with solving the heat equation for heating up a 
ring. And I want to show you how convolution, again, arises in the context of the heat 
equation, but this time we'll just do it along a straight line. And you'll see how quickly 
convolution leads to the solution of the equation. So I want to talk about convolution of 
differential equations. To do that I need a general formula here. We need what's 
sometimes called, "The Derivative Theorem for Fourier transforms." So this you can 
think of as a general property of Fourier transforms. And, again, I'm not gonna write out 
all the assumptions very carefully here. But it says this, it says if you take the Fourier 
transform of the derivative of a function, it is 2pis times the Fourier transform of the 
original function f of s. Let me put my variables in here. The Fourier transform of f prime 
at s is 2pis times the Fourier transform of f at s. If the function is differentiable then it has 
a Fourier transform. And, again, there's a certain amount of things here that I am 
sweeping under the rug, but that's the main thing to understand, is the Fourier transform 
turns differentiation into multiplication. If you're looking for an interpretation of this in 
words, some that you can repeat and mention to friends in passing, it would be that the 
Fourier transform turns differentiation into multiplication. This is a fundamental property 
of the Fourier transform, and is really one of the reasons why it comes up in a lot of 
different applications; beyond what we're gonna talk about right now, but it comes up 
quite often. And similarly for higher derivatives. The Fourier transform of the f derivative 
is 2pis to the n, ordinary power, this is the nth derivative, times the Fourier transform of 
the original function f.  

Now, let me show you why that's true very briefly, and I'll only do it for a special case. It 
actually holds quite generally, but let me give you a derivation of just the formula for the 
first derivative in the case when I know the function f of t tends to zero, say as t tends to 
plus or minus infinity. As it turns out, you can actually do it more generally, but if you 
make this assumption, it's a very quick derivation. It follows quite easily from integration 
by parts. So how do I take the Fourier transform of f prime at s. And as you've heard me 
say many times, you have no recourse here other than to repeal to the definition. The 
definition of the Fourier transform is the integral from -8 to 8 of e to the minus 2pi st, f 
prime of t, dt. Well, look at that integral, if that doesn't call out for integration by parts 
then nothing does. It's something times the derivative of something else, so for God's 
sake, integrate that by parts. That is to say if I let u equal e to the minus 2pi st, and dv 
equals f prime of t, dt, then what happens if I integrate this by parts. If I integrate this by 
parts then I get f of t times e to the minus 2pi st evaluated between -8 to 8 minus the 
integral of vdu. So that's minus the integral from -8 to 8, f of t times du, gives me a minus 
2pis, I'm differentiating with respect to t, times e to the minus 2pi st, dt. Now, this term 
is, by our assumption, that the function tends to zero ± 8. This term is gone, the boundary 
terms are gone, and all that remains is the integral. But the integral, that 2pis, the minus 



signs cancel, minus a minus, and that 2pis comes out of the integral as a constant when 
I'm integrating with respect t. So this is 2pis times the integral from -8 to 8, e to the minus 
2pi st, f of t, dt. And so that's just 2pis times the Fourier transform of the original 
function. That's all there is, that's all there is to it. So it's not hard, but it's an extremely 
important property. So, once again, the aphorism that goes with it is Fourier transforms 
turn differentiation into multiplication.  

Now, let me show you how we're gonna use this. I don't know if I'll quite finish this 
today, but I want to give you the setup. So let's go back to the heat equation, but this time 
I'm gonna consider the heat equation on an infinite rod, essentially, the real line. So I 
want to do the heat equation on an infinite rod. Once again, the heat equation says u of xt 
is the temperature at a point x at time t. And I am given the initial temperature. The rod is 
heated up to some initial temperature that's u of x at zero, that's say, f of x. No periodicity 
assumptions here or anything, right, it's just everything takes place on an infinite rod, so 
essentially the real line. And the problem is find u. So u is the temperature – u is 
governed by the heat equation. And the heat equation, or the diffusion equation, the heat 
equation says use of t is equal to one-half uxx, that's the one-dimensional heat equation, 
and the one-half there is just for the calculation, just for the constants. Ordinarily, for the 
general heat equation, there would be a constant in here depending on the nature of the 
rod and so on. Now, again, u is a function of two variables. On the left-hand side is the 
derivative with respect to t, on the right-hand side is the second derivative with respect to 
s. What I'm gonna do is I'm gonna take the Fourier transform of both sides of that 
equation with respect to x, with respect to the spacial variable. I want to take the Fourier 
transform in the spacial variable. This might be a little bit easier. If lowercase u is the 
original function, then the Fourier transform I'll call capital U of st. So, again, the t is sort 
of just tagging along for the ride. It's the spacial variable that I'm taking the Fourier 
transform with respect to. So what about the left-hand side, what is the Fourier transform 
of u of t? So that's the integral from -8 to 8 of the derivative of e to the minus 2pi st, the 
derivative ddt of u of xt, dx, by definition of the Fourier transform. So I'm taking the 
derivative with respect to t here, I'm integrating with respect to x, so this derivative 
comes out of the integral. That is, I can write this as ddt of the integral from -8 to 8 of e to 
the minus 2pi st, u of dx. I'm taking the Fourier transform with respect to x, and I'm 
calling it spacial variable x. The Fourier transform is e to the minus 2pi sx.  

If I take the Fourier transform of the time derivative, that's this. I can pull the time 
derivative out because the only thing that depends on time here is this u. And so that is 
ddt of capital U of st. That is the Fourier transform of the spacial variable of the time 
derivative is just the time derivative of the Fourier transform, if you want to say it in 
words. So that's what happens to the left-hand side. What about the right-hand side. Well, 
the right-hand side of the heat equation I use the derivative theorem. I have two 
derivatives, the second derivative with respect to x. If I take the Fourier transform of the 
right-hand side then what comes out is a factor of 2pis squared. So the Fourier transform 
of uxx, again, with respect to the spacial variable, is gonna give me 2pis squared times 
the Fourier transform of the original function undifferentiated at st. Again, t is sort of 
going along for the ride here, it's the transform in the spacial variable that counts. So 
that's minus 4pi squared is minus one, so it's minus 4pi squared, s squared, capital U of st. 



So plug into the heat equation, there it is. Plug into the heat equation ut equals one-half 
uxx transforms to ddt of U st is equal to minus 2p squared, s squared times U st. Now, 
look at this, that's an ordinary differential equation for capital U. It's a derivative with 
respect to time. This is a constant, as far as time is concerned. It's ddt of U is equal to a 
constant times U. What is the solution? The solution is U of st is equal to U of s zero, the 
initial condition, times e to the minus 2p squared, s squared, t. Well, anybody could solve 
that equation, your little brother and sister can solve that equation.  

Now, what is Us zero? That is the Fourier transform of the initial condition. That's the 
integral from -8 to 8 of Ux zero, e to the minus 2pi sx, dx. Ux zero is the initial 
temperature distribution f. So that's the integral from -8 to 8, f of x times e to the minus 
2pi sx. That's the Fourier transform of f, let's call that, say, capital F of s. So what is 
capital U in terms of all the data that I have? So U of sx is equal to F of s times e to the 
minus 2p squared, s squared, t. The Fourier transform of the right-hand side is the product 
of two functions, The Fourier transform is the product of two functions, the product of 
this Gaussian with the Fourier transform of the initial data. What is the solution? The 
solution is the convolution of the two. Now, you have to recognize, one knows, what 
happens to the Fourier transform of Gaussian, actually. That is the Fourier transform – I'll 
just give you this fact. The square root of one over the square root of 2pt times e to the 
minus x squared over two t. Well, you have to use the scaling theorem here, and that's all 
that's involved. The Fourier transform of this is this, equals e to the minus 2p squared, s 
squared, t. That uses the fact the Fourier transform of the Gaussian. So what is the actual 
form of the solution? The form of the solution then is U of xt is the convolution, this is so 
cool, it is f of x convolved with that function, e to the minus one over the square root of 
2pt, e to the minus 2p squared, e to the minus x squared over 2t. Convolution comes into 
the solution of differential equations because often in solving differential equations, if 
you take the Fourier transform, differentiation becomes multiplication, multiplication in 
the frequency domain becomes convolution in the time domain on taking the inverse of 
the Fourier transform.  

So in the time domain, I'll write this integral out next time more fully next time so you 
get the full power of it, it's the convolution of the initial data with what's called the heart 
kernel for the infinite line, or for the rod. And that's lightening fast how the heat equation 
is solved and how convolution comes into it in a very fundamental way. And that's it for 
today. For Monday, I'll say one more thing, we're gonna talk about the central limit 
theorem. It is a real gem and a real jewel in this class, I think, to see how convolution 
applies to that theorem. So read over that material very carefully over the weekend so I 
don't have to do a lot of background on probability. Thank you all. Bye.  

[End of Audio] 
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