
TheFourierTransformAndItsApplications-Lecture14  

Instructor (Brad Osgood):Okay. Let me circulate, starting over this side of the room 
this time, the sign-up sheet for the midterm exams. So remember, next week, next 
Wednesday, we have the midterm exam for the class at three sessions: 2:00 p.m. to 3:30 
p.m., 4:00 p.m. to 5:30 p.m. and 6:00 p.m. to 7:30 p.m. I actually have secured rooms for 
that. I'll post the – I'll write them next time. I didn't bring it with me, neither the rooms 
nor the location of the rooms.  

Anyway, I'll post it on the website and make the announcement next time. I'll say a little 
bit more detail about the exam. So when you're signing up there, it's just so we can have a 
sense of how many people are going to be in which slot. You're not signing your life 
away or anything, but I'm figuring that between one of those slots, from 2:00 p.m. to 3:30 
p.m., from 4:00 p.m. to 5:30 p.m. and from 6:00 p.m. to 7:30 p.m., should be able to 
cover most everybody.  

I heard a few – from a few people who have problems, but most everybody seems to be 
okay. So please, as that circulates, sign up, so we get an idea who's going to be where, 
when. Any questions about that or any other general administrative issues on anybody's 
mind? No?  

Okay. All right, so, today, we have a few more miracles to uncover about distributions, 
but soon – and it's all interesting, and it's all useful, but soon we'll have to make our peace 
with generalities. There's a lot more detail and a lot more derivations that are given in 
detail in the notes, and so I will refer you to that for further reading. I'm not really gonna 
say too much more than what I say today, because we really do have to move on.  

Again, we should not – you should not feel encumbered to derive everything. You should 
be, I think, satisfied, I hope, with the idea that – to look for the derivations, to try to 
understand some of them, and just get a general idea how the framework works, because 
I think it really is very satisfying.  

In the past, when we've done this in class 261, many people who have seen these ideas 
before and worked with delta functions in various contexts in different classes have 
appreciated the opportunity to at least see what the more general context is and to see 
how the arguments work even if not – even if they don't understand all the details and 
haven't gone through all the derivations and details.  

So really it's mostly – what we've been doing is to give you an idea of how the general 
framework works, and some degree of confidence that there is a firm foundation for a lot 
of these things, even without all the details. But you should feel free to use – as I said 
before, when you were first starting this, it's not that the stuff we've done before was 
wrong, it's not that the formulas that we used were incorrect or the applications really not 
well founded, so as we go forward, we'll call on those ideas and call on those formulas 
really without – say, without fear of recrimination.  



But I think it's – I hope you found it satisfying, intellectually, certainly to see how some 
of these ideas play out, because it really is quite striking and it's really quite, I think, quite 
a remarkable accomplishment to get it all in such a beautiful form.  

And then just a few more things that I wanna pick up today, but there's only so much that 
I think we're willing to subject each other to, all right?  

So the first thing I wanna talk about, or maybe one of the final topics in the general lore 
of how distributions work, is the remarkable fact that, as general as they are, one other 
operation from calculus carries over to them, and that is the idea of a derivative. So it's 
possible to define the derivative of a distribution and, in fact, although I won't do it, 
higher order derivates. That is – derivatives turn – different – excuse me, distributions 
turn out to be infinitely differentiable in a natural sense.  

So the derivative of a distribution. This actually turns out to be a very important operation 
on distributions, and one that's of widespread use. So how would we define – so if t is a 
given distribution, how to define its derivative, t prime?  

All right, when – any time you ask yourself a question like that, if I want a carry over 
operation from functions to distributions, the question is how to do it. Remember, I have 
to tell you – it's always the case, you give me a test function, I have to tell you how t 
prime operates on that test function. That's always the case.  

So I have to say – have to define what the pairing is. T prime paired with the test function 
phi. And it is always the case, or at least almost always the case, that the way you 
approach this question is to ask yourself, what would happen if t prime were an actual 
function and the pair were given by integration?  

All right, as a guide to answering this question, that's what you say to yourself, and then 
what you hope is to see something general enough to suggest a general definition. So if t 
prime were given by a function, that is if t and t prime were given by a function, and the 
pairing is integration, we would have t prime paired with phi, I would write, say, is the 
integral for minus infinity to infinity of t prime of x, phi of x, d x. All right?  

And you look at an expression like this and you say to yourself, that is just crying out for 
integration by parts, because you wanna somehow – well, one thing at a time. So t prime 
paired with phi, if t is given by a function then it would be given by – the pair would be 
given by integration integral from minus infinity to infinity t prime of x phi of x d x, and 
that is equal to – well if I integrate by parts, t of x, phi of x, evaluated between minus 
infinity to infinity, minus the integral for minus infinity to infinity of – I put – I take the 
derivate off of t and I put onto phi. Phi prime of x d x.  

All right, now – that's just straight integration by parts. Now you use the properties of test 
functions, in whatever particular context you're working and, in the case of Schwartz 
functions or in the case of functions which are zero outside a fixed set, phi tends to zero 
at plus or minus infinity.  



So this term is – and t you're assuming is regular enough so everything here makes sense, 
so that this term – the boundary terms are gone. Equals zero, because phi at plus or minus 
infinity is equal to zero. So what remains is just the second integral, so the integral – 
minus the integral from minus infinity to infinity of t of x, t prime of x, d x, which you 
should recognize is itself a pairing that is minus t paired with phi prime. All right?  

So once again, we start off by saying, if t comes from a function then the pairing of t 
prime and phi is given by an integral, and that integral, in turn, is – can be written in 
terms of the pairing as minus t paired with phi prime.  

So you say to yourself, okay, if that's how it turns out when t is given by a function, then 
I – then take that as the general definition, all right? That is, the right hand side, this side 
makes sense, even if the intermediate steps didn't make sense, all right? Because if phi is 
a test function then, for any decent class of test functions, phi prime will also be a test 
function and t can operate on that. All right?  

So turn this into a definition. Into a definition. That is, you define t prime by the pairing t 
prime paired with phi is minus t paired with phi prime. All right? The left hand side is 
something new, the right hand side is something old. The left hand side is defining t 
prime. How do I define a distribution? I have to tell you how it operates on a test 
function.  

T prime operating on a test function phi is minus t operating on the test function phi 
prime, period. The only thing that may look like a flaw – a blemish on this definition is 
the minus sign, that pesky minus sign out there, but that's the way it is. It comes in. You 
have to accept it.  

All right now. For a clean definition, let me give you an example. A very nice example, 
something that you have probably seen before. I'll do it over here. Let's take a function 
that has no business having a derivative, so to speak, that is, the unit step function, a 
function that comes up all the time in applications. U of x is, say one the Heaviside – a 
unit step function also sometimes is called a Heaviside function. One for x – x derivative 
in zero, zero for x lesser or equal to zero or maybe sometimes people define it to be a half 
of zero, and again, there are religious issues here involved and I will get into it.  

But you know what the graph looks like. It takes a jump at the origin. What is its 
derivative? U prime of x. Now that defines, actually, a perfectly good distribution. It is a 
function. It's not a continuous function, but it defines a distribution. Defines, determines, 
induces, whatever words you want to use, defines a distribution since the pairing of u 
with any rapidly decreasing function phi certainly makes sense.  

The integral for minus infinity to infinity of u of x, phi of x. Phi x makes sense because u 
just – well, we'll pair that one further step. It's the integral from zero to infinity of phi of 
x, d x, and that integral makes sense if phi is a nice enough function. The integral exists.  



All right, so again, while phi is not – while u itself is a not a particularly great function, it 
has a discontinuity – it has a jump discontinuity, it does define a distribution, and 
therefore it has a derivative, because all distributions have derivatives.  

So u prime exists as a distribution. Now you have probably learned, in fact, I wouldn't 
doubt, you probably learned that u prime is a very well known distribution. It's the delta 
distribution. U prime is equal to delta. And you probably learned that because you 
probably said, well really now, u is equal – u is a constant on two pieces. It's sort of a 
piecewise constant function, it's equal to zero on the left of the origin, it's equal to one at 
the right of the origin, so u prime, if it had a derivative, would be identically zero here 
and identically zero here because the function is just a constant and it takes an infinite 
jump. The slope is infinite. When you go on in this direction, it goes up, and the delta 
function is zero, except at one point where it's infinite, and so u prime must be delta.  

Now, of course, there's that thing about the integral of minus infinity to infinity if delta x 
is equal to one. I don't know exactly how to make sense of that, but that really can't be 
important. Will it? No, not necessarily. It's because u prime is equal to zero here and u 
prime is equal to zero here and u prime is infinite there, so it must be the delta function.  

You probably said something like that, right? So many words. So many words to make 
that derivation, to make that justification. Why so many words? The definition is right 
there. Let's see how it works. Who needs words? Nothing to it. Nothing to it.  

How about – let's do another example. Let's do another example. Let's do the Signum 
function. That's an arrow, that's implies. How about the Signum function? Signum of x is 
equal to, say, one when – again, the definitions are – may be varied. One when x is 
derivative in zero, zero, say, of x is equal to zero and minus one of x is less than zero. All 
right?  

So the graph of that, again, it takes a jump or it takes a double jump at the origin. All 
right, the plot looks something like this. It's minus one down here, then it takes a jump up 
to the origin and then it goes out to be plus one. Not everybody defines it at the origin to 
be this way. It doesn't matter.  

And you probably learned what the derivative of this is. You probably learned something 
like, the signum of x prime or signum prime is two delta. And why have you learned 
that? Because you say, well signum is constant over here and so its derivative is zero, and 
it's constant over here so its derivative is zero, so its derivative is zero everywhere except 
at the origin, where it takes a jump at the origin, but it takes sort of a double jump, you 
know? Because it jumps all the way from minus one to plus one, and that's a jump of two. 
So the derivative has to be really twice infinity or two delta. That's why.  

And maybe the integral for minus infinity to infinity, this thing should be, I don't know, 
two, for some reason, because it's gotta work out that way, because somebody told me 
what this formula is and that's the way it is.  



So many words. All right? So many words to justify that formula. We don't need those 
words. Although I can’t quite bring myself to the – this is a tribute to Marcel Marceau, all 
right? I can't do that either. All right, how do you do signum prime paired with phi? By 
definition, it's minus the signum function paired with phi prime, all right? So that is – 
that's a pairing done by integration, so that is minus the integral for minus infinity to 
infinity of signum of x times phi prime of x d x. Now the signum function is either plus 
one or minus one, it doesn't matter what happens at the origin because integration – 
nothing matters if you're just changing the value of the point. That is, if you change the 
value to a point it doesn't affect the integral.  

So this is minus – the integral for minus infinity to zero, signum of x is minus one so it's 
minus one u prime of x d x plus the integral from zero to infinity, where the signum is 
plus one, so that's plus the integral from zero to infinity of plus one q prime of x d x. All 
right?  

So if I carry out those integral – integral of phi prime is phi evaluated between minus 
infinity and zero, so it's minus the whole, so integral phi prime of x is phi of zero minus 
one. So it's minus one times this. So it's minus phi of zero minus phi of minus infinity 
plus phi of infinity, it doesn't matter, minus infinity, right? Plus – where am I here – plus 
phi prime phi of infinity minus phi of zero.  

But again, phi of infinity is zero, phi of minus infinity is equal to zero, it's minus a minus 
phi of zero. Minus phi of zero. It is two phi of zero, if you sort out all the minus signs. 
But two phi of zero is just twice the delta function paired with phi. It's two delta paired 
with phi.  

So where do we start, where do we finish? We started with u prime paired with phi – or, 
excuse me, signum prime paired with phi is two delta paired with phi. What is the 
conclusion? The conclusion is that signum prime is equal to two delta. Isn't that nice? No 
muss, no fuss. Airtight. Airtight.  

Now these are used – these formulas are used, actually, a fair amount. Let me give you 
some applications to Fourier transforms. To find you some Fourier transforms that it 
would be very difficult to find otherwise. There are ways. There are always ways. There 
are arguments, there are limiting cases, all sorts of stuff like that, but it can also be done 
this way with very little muss, very little fuss.  

So let's find the Fourier transform of the signum function and the Fourier transform of the 
unit step function. For that, I need the derivative theorem, actually, for distributions and 
Fourier transforms, and I'm gonna state that, but not derive it. This is one of those cases 
where the formula looks the same as it does in the classical case. The derivation is a little 
bit more involved, and for that I'm gonna have to refer you to the notes.  

So the derivative theorem for – derivative theorem for distributions, for Fourier 
transforms of distributions, says this. It says the Fourier transform of t prime is equal to – 
I wanna make sure I have my – I wanna get my minus signs right here – is equal to two pi 



i s times the Fourier transform of t. Turns multiplication into – turns differentiation into 
multiplication.  

Somebody wanna check, make sure I got the – there not be a minus sign in there? I'm a 
little worried, there should be a minus sign in there, but I'll check that out. Let me put that 
formula up there and if I have to correct it later on, I'll correct it. And the other formula is 
the Fourier transform of t prime is equal to the Fourier transform of minus two pi i t times 
t.  

All right now, again, t is a distribution, t prime is a distribution, so t prime has a Fourier 
transform. This says – this tells you how to find the Fourier transform of t prime, and 
how do you do this? Well the Fourier transform of t prime has to act on a test function. 
You use the definition of the Fourier transform, you use the definition of the derivative, 
and out pops this formula, all right?  

It's not hard. It takes a little bit of work, but it's not terribly hard, and it's the same for – 
the reason I'm not gonna derive it is because it's the same formula that we have in the 
classical case. The classical case was a Fourier derivative – Fourier transform of the 
derivative was two pi i s times the Fourier transform of the original function, and we had 
this formula also, okay?  

Now how do you use it? As an application, we can find the Fourier transform of the 
signum function. So use this to find the Fourier transform of the signum function. Why? 
How? Well signum prime is two delta, that's what I'm just erasing, signum prime is two 
delta. So, on the one hand, the Fourier transform of the derivative of the signum function 
is the Fourier transform of two delta, which is two. Two times the Fourier transform of 
delta. The Fourier tansform of delta is one, all right?  

On the other hand – yeah, I think there's no minus sign in there. It's okay. On the other 
hand, the Fourier transform of signum prime is two pi i s times the Fourier transform of 
signum, okay? So two pi i – so put these together. Two pi i s times the Fourier transform 
of signum is equal to the Fourier transform of signum prime which is equal to two, and 
thus the Fourier transform of the signum function is given quite nicely – is one over – I'll 
put an s in here although, again, things should not let a point – I'll say a few more words 
about this. Fourier transform of signum is two over two pi i s. That's one over pi i s. All 
right?  

That's the correct formula. The Fourier transform of the signum function is one over pi i 
s, derived very quickly. Now, in fact, actually, there are a number of extra things you 
have to say here because there are several operations that I've done here on Fourier 
transforms that I haven't completely defined, and I'm not gonna do it, so, again, this is 
one of those cases where, for more details, I'm gonna have to refer you to the notes.  

The formula is correct and the derivation is correct. Justifying – there are several steps in 
the derivation that actually have to be justified, so you need more – you need more of an 
argument, all right? And all I should say is see the notes, all right?  



For one thing, this is a singularity. The function one over pi i s or one over s has a 
singularity. Does that really define a distribution? Can you really pair that with a smooth 
function by integration and so on? And that actually requires a special argument, a 
special definition for the pairing, called the so-called principal value distribution, so I'm 
not gonna talk about that but that's discussed in more detail in the notes.  

The formula is correct and the derivation is, as I say, is also correct, when the proper 
details are supplied, none of which is hard but there are little – there are some subtleties 
that are involved, so I'm not gonna go through that. But, nevertheless, that's – this is a 
formula that you often see, and you see this formula classically. I mean this formula was 
derived, in some way, by some limiting process, but it follows directly once all the 
machinery of distributions and Fourier transforms and derivatives are in place.  

How about the unit step function? There are several ways of getting that also. If you get 
the Fourier transform of the unit step function – remember, the unit step looks like this. It 
takes a jump up from zero up to one. That's u of x. The easiest way of doing that is to 
express that directly in terms of the signum function.  

That is, u of x is one half one plus the signum of x. When x is negative, the signum of x is 
minus one, so one plus minus one is zero so use zero to the left of the origin. Nevermind 
what happens at the origin. Who cares what happens at the origin? Although this would 
assign it the value of one half of the origin which, again, is sort of a common convention, 
and when signum is – when x is positive, signum of x is one so one plus one, one half of 
that is one. So it takes a – it takes a jump of plus one, all right? That's the quickest way of 
– I mean that's an easy – a relationship between the two functions, and now that also 
allows us easily to find the Fourier transform, because the Fourier transform of u is then 
one half the Fourier transform of one plus the signum of x, and the Fourier transform of 
one is delta. The Fourier transform of signum we just found.  

So this is one half delta plus one over pi i s, and that's it. Pretty simple, okay? That's also 
a very common occurring formula. These things come up a lot. They come up in terms of 
filters. As a matter of a fact, if you look – well we'll talk a little bit more about that later, 
but if you look back at the section – the chapter on convolution, we talked about highpass 
filters and notch filters and things like that. Delta functions come into that, and if you 
want to know about the transfer function or the impulse response to those, the Fourier 
transforms of these things come in. So these – just these expressions are actually in quite 
common use, and they're very – say, very – they fall out quite easily from this general 
framework, okay?  

It's very nice. It's really nice. All right, the last – about the last thing I wanna do by way 
of just making you aware of the general properties is talk a little bit about multiplication 
and convolution in the context of distributions, and here, again, there actually are a 
number of subtleties which I am not gonna do in public, but refer you to the notes.  

Many operations that you can apply to functions have analogues and carry over to 
distributions, but not all, interestingly, and maybe most interestingly, the one operation 



that really doesn't carry over to convolutions is multiplication. You can multiply two 
functions together, that's no problem, but you can't multiply two distributions, all right?  

So interestingly, the multiplication of functions – it does in some cases, but not in 
general. Multiplication of functions does not carry over to multiplication of distributions. 
So this is the one caveat that I have to issue, and this is where sometimes people can 
make mistakes if they're a little too cavalier in thinking that everything is gonna work out 
just the way it should work out.  

What I mean by this is, if s and t are given distributions, if s and t are distributions, then 
the product is generally not defined. It's okay in some cases, but generally not. Is 
generally not defined. And for reasons which we'll see, actually, this also has to do with 
the fact that convolution is a little bit more complicated also for distributions that it is for 
functions.  

Now there is a special case, so this is just a warning and I'm not gonna explain why – 
where the problems are, although, again, it's discussed in a little bit more detail in the 
notes. There is one case where it is defined, and that's when, say, the distribution comes 
from a function, and that's one way of thinking about it, but that's really the proper way – 
I take that back. The case where it is defined is when you multiply a function times a 
distribution, or rather what I should say is, what – the operation that is defined is 
multiplying a distribution times a function, all right?  

What is defined, in most cases, is f times t where f is a function, and actually this turns 
out to be an important operation and I'll give you a special case of it in just a second, 
which is extremely important, all right?  

Now how is it gonna be defined? How? Well, once again, if you ask yourself, how am I 
gonna define a distribution, the first thing you should say is, what would it be, how it 
would it work if t were actually given by a function itself and the pairing by integration?  

So I have to define, as always, what I mean by f t paired with phi or f t operating on a test 
function. Now this actually is gonna turn out to be quite simple, and actually reminiscent 
of some of the formulas that we had. So, again, if t is given by a function then you'd write 
the pairing f t paired with phi is the integral from minus infinity to infinity t of x, f of x 
times t of x, phi of x, d x, and I just grouped the f with the phi. That is, the integral from 
minus infinity to infinity of t of x times f of x times phi of x which is the same thing as t 
paired with f times phi. The f just moves over, all right?  

Now if that's what happens if the distribution comes from a function, then you say to 
yourself, so that was – that must be the definition in general. That gives me a clue as to 
how to define it in general. But again, there's actually a little caveat here. So in general, 
you define f t by the formula, how does f t operate on the test function phi? By definition 
it's t operating on f times phi, okay?  



Now here's the caveat. The caveat is this has – this works so long as f is such that f times 
phi is again a test function. So if phi is differentiable, then f better be differentiable. If phi 
is rapidly decreasing, then f better be at least such that f times phi is rapidly decreasing if 
you want that class. So that's the one caveat here is that you may not be able to multiply 
by arbitrary functions, because this expression may not make sense.  

The expression on the right hand – on this side here, makes sense only if f phi is 
something to which – on which t can operate, so it has to be a test function, so f times phi 
has to have the properties that define the class. So this makes sense.  

This makes sense only if f times phi is, again, a test function. So, again, that's just a 
caveat. It's not going to be an issue for us, but it's something you have to – one of these 
little flags you have to put up when you're applying some of these ideas, all right?  

Now, we actually implicitly used this. We implicitly used the operation of multiplying 
and distribution times a function when I wrote down the derivative formulas, all right? So 
we used this, and it's used in the derivation when we wrote that the Fourier transform of t 
prime is two pi i s times the Fourier transform of t.  

When I say we used this, what I mean is the right hand side makes sense because it 
makes sense to multiply a distribution times a function. The function, in this case, is two 
pi i s. The distribution is the Fourier transform of t. So that is – the expression itself 
makes sense, and I didn't say this at the time, but I knew this was coming, because I didn't 
wanna make a big deal out of it at the time, but the fact is that you – the first, if you're 
giving the sort of proper logical sequence of developments here, the way it's done in the 
notes, the first thing you have to define is this operation, operating – multiplying a 
function times a distribution, and then you can talk about the derivative theorem and a lot 
of other things, because this expression then makes sense. Okay?  

And likewise, actually, the second derivative formula also made sense, provided you give 
that definition, because there we said the Fourier transform of t prime is the Fourier 
transform of minus two pi i t times t, all right? That was the second derivative formula, 
and that also makes sense because this expression makes sense. It makes sense to 
multiply t times the function minus two pi i t. All right?  

Once you have that defined, then you can talk about its Fourier transform and so on. All 
right, now I'm actually less interested in this general property of defining a function times 
a Fourier transform – times a distribution than what happens in the special case of the 
delta function, because that's particularly interesting and particularly important for 
applications.  

So I'm gonna give a special case of this, is multiplying a delta function times a function. 
It's f of x f times delta, all right? What is f times delta? Well f times delta paired with phi, 
by definition is – f times delta paired with phi, by definition, is delta paired with f times 
phi. That's the definition of how a function times a distribution pairs with a test function, 
but delta paired with f times phi is, by definition of a delta function of a delta distribution, 



this is, by definition, f of zero times phi of zero. It's the product f times phi evaluated at 
zero.  

And now, again, you have to realize – you have to look at this and you have to reverse 
what you said. You have to realize that this is the same as f of zero times delta paired 
with phi. F of zero times delta is just a number times delta, so that makes sense. There's 
no special definitions required there. F of zero times phi of zero is the same thing as the 
pairing of f of zero times delta paired with phi. Where do we start, where do we finish?  

We started with f delta paired with phi is the same thing as f of zero times delta paired 
with phi. What is the conclusion? The conclusion is that f times delta is f of zero times 
delta, and a little bit more generally – and I will – a little more generally, f times delta a, 
the shifted delta function, is, as you might imagine, f of a times delta sub a, okay?  

It pulls out the value, in the case when you multiply by the ordinary delta function at 
concentrated zero, it pulled out the value at zero. If you multiply a function times the 
delta function concentrated at a – see, I use that terminology. I mean there's – there's 
nothing wrong with it. Concentrated here, concentrated there. F times delta of a is f of a 
times delta a. This is called the sampling property of the delta function, or the sampling 
property of delta, and it's very important. We're gonna make a lot of use of this.  

This is the sampling property – sampling property of delta, and you've probably seen this 
too, all right? You probably saw this in the context of concentration, actually. You 
probably saw this in the context of a bunch of functions shrinking down, concentrating at 
a point and multiplying by a function, what happens and so on, but it's very easy and very 
directly – can be derived very directly from the definitions that we have, all right? So 
we'll make a lot of use of this.  

As a matter of a fact, I think for us to say to sample – again, and you're also probably 
familiar with the idea of sampling, a topic that we're gonna take up next which is actually 
my favorite topic in the course. For us to sample means to multiply by a delta function, 
all right? And to use this property. That's what it means to take samples. That's the 
mathematical meaning of taking samples is multiplying by deltas.  

All right, finally – where are we here? Is convolution. The other big operation that we've 
talked about that is so naturally related to Fourier transforms and, again, here there is a 
special caveat. Here it doesn't quite carry over quite as nicely as one might hope, or at 
least not in complete generality. So again, if s and t are distributions, how to define their 
convolution, s convolved with t, all right?  

And the sad fact is it's not always defined. There are restrictions. Okay so it's not always 
defined. That is to say, to give a definition it's necessary to know that it – to state what it 
should be and to guarantee that the convolution exists, it's necessary to impose some 
extra conditions on the distributions, and I'm not gonna do that because it's a little bit 
technical, it's a little bit complicated and it's not really so – quite so crucial for us, all 
right?  



You need extra restrictions – you need some restrictions on s and t, and, again, the 
definition is given in the book. You can do the definition in terms of a pairing. When 
everything is defined, you can approach the problem the same way you approached all 
these problems. If I'm gonna define it, how shall I define it? Well if it comes from a 
function, what would the definition be if everything here came from a function?  

You write down the integral, you do a little bit of manipulating with the integral and a 
definition emerges, but as you see – in the course of that discussion, you see that it 
doesn't always work without some extra assumptions. You can do it. You can define s 
convolved with t via a pairing, but you need extra conditions, as I said. Extra conditions.  

All right, now the good news is that there are many cases when it works without further 
comment, and, again, I'm not gonna make a reproduction onto this. So it's many cases 
when it's okay, when all is well, and one of the most important examples is when you 
convolve – well I'd say two distributions when one of the distributions comes from a 
function or just – or a little bit – or to say it a little bit differently, when you convolve a 
function with a distribution, that makes sense.  

So e g f convolved with s, often, or f convolved with t, often makes sense – most often 
makes sense when f is a function, all right? I'm sorry for being so – a little bit vague 
about this, but the fact is that if I went – if I – I'm perfectly capable of actually giving you 
the detailed definition here, but it requires a little bit of extra setup and it's really not 
worth it, but realize, when I say f convolved with t makes sense, not as an integral, all 
right?  

F can – everything here is – things are here – things are defined here more generally, so 
you can't define f convolved with t as a simple integral of f of x times t of x minus y d u x 
or whatever it is. You have to define it in terms of a pairing, and setting that up actually 
requires extra work, all right? So that's what I'm not telling you. All I'm saying is that 
there is an operation on – called convolution that mimics the classical operation of 
convolution even though the definition has to be given more generally, and that it doesn't 
make sense for two arbitrary distributions, it doesn't even make sense for an arbitrary 
function and a distribution, but it makes sense often enough for a function and a 
distribution that you can work with it, and, furthermore, the convolution theorem holds. 
Okay? And the convolution theorem holds.  

That is to say, the Fourier transform of the convolution f convolved with t is the Fourier 
transform f times the Fourier transform of t, okay? Now, again, see the problem – and 
this is actually – this is related to the problem we had – I mentioned before, about the 
problem of – about defining multiplication. You want to the convolution theorem to hold 
– if you want the convolution theorem to hold for our distributions, then you'd want to be 
to multiply distributions, but you can't always multiply distributions, all right?  

So that's – the problem here is the same. The problem with defining convolution is the 
same for two arbitrary distributions, is the same as the problem of defining multiplication 
for two arbitrary distributions. It just doesn't quite work, all right? Because you wanna 



have this formula, and this formula should, by all rights and by all sort of formal 
derivations, work, but it doesn't always work because the definition of convolution as a 
pairing doesn't always work and the product of two distributions doesn't always work, all 
right?  

But it does work, most often, in these cases, because everything here is defined. As it 
turns out, the left hand side is defined, f convolved with t. Also, the right hand side is 
defined because it's a function times a distribution, and a function times a distribution 
makes sense. The product of two distributions may not make sense, but the product of a 
function times a distribution does make sense, all right?  

So there's no – the most I can say here is there's no inconsistency. We haven't discovered 
that long awaited for contradiction in all of mathematics, and the world is not gonna 
crumble, all right? So everything here is consistent and everything here makes sense, and 
what I'm not telling you is the details about when it's true and when you can be – when 
you can apply it. So suffice it to say, for us it's not gonna be an issue and I will never do 
anything false – knowingly false, at least.  

The same formulas that we used before, the same ideas, work again. In particular, the 
convolution theorem works. Now there is a special case of this that's most important for 
us, and that's when, again, you're convolving with a delta function. Again, I apologize for 
not giving more details here, but it just – my feeling is that there's only so much you can 
take, and ultimately it's not gonna do us – not gonna be so helpful to us.  

We'll be able to apply the formulas, we'll be able to apply the reasoning, without really 
worrying about it so much. So a special case, special case, when t is equal to delta, is 
particularly important, and what you find is that if you convolve a function with a delta 
function, you get the function back. That's an extremely important formula.  

But the delta function serves, in some sense, as the identity for convolution. If you think 
of convolution as a kind of multiplication, then delta serves as the identity element for 
convolution in the sense that if you convolve a function with delta, nothing happens.  

Now this is not hard to derive, actually, once all the terms are properly defined. That is, 
and you probably saw – you probably said a lot of words, at some point in your life, or 
somebody said a lot of words to you, to give this argument, to give this – to justify this 
formula, but, in fact, you can give, as I say, sort of a wordless derivation that follows 
quite easily from the definitions provided you give all the definitions first, and that's what 
I haven't done. But one – but the – it's completely routine to show that this property holds 
once you have set up the mechanism for it, once you've set up the superstructure for it, 
and as a slight extension of this, more generally, if I convolve with a shifted delta 
function, I get back a shifted version of the function.  

So let me write it like this although, again, I shouldn't be writing things at points, to be 
strictly correct, I think. Nobody's gonna strike me dead if I do this. If I convolve f with a 
shifted delta function, I get a shifted version of f. All right?  



These are both very important – well this property is just a generalization of this property. 
The sampling property of the delta function, the convolution property of the delta 
function, are extremely important and we're gonna make constant use of them, constant 
use of them. So if all of this work on distributions went toward just getting those two 
identities, it would be worth it, somehow, because to have those at our disposal is – we'll 
find just constant applications of that, okay?  

I'll give you one nice sort of generalization. One case where convolving two convolutions 
does make sense is this. It's not a special case of those formulas but it is a case where the 
convolution of two distributions makes sense, and that is you can convolve delta with 
itself. Delta with itself. And let me state the generally formula, that is – it's quite 
attractive. Delta a – a shifted delta function, delta function concentrated a, convolved 
with a delta function concentrated in b, is the delta function concentrated at a plus b.  

So, again, I'm not gonna prove that. The derivation of that is given in the notes, all right? 
But, again, that's the sort of thing that comes up, actually, often enough that it's worth 
knowing. Take the delta function at a, convolved with the delta function of b is the same 
thing as the delta function a plus b. Makes sense, in some sense, in terms of – or at least 
it's consistent with the formula – with this formula, because if I shift it by a and then shift 
it by b, that's the same thing as shifting by a plus b.  

So note f convolved with delta a convolved with delta b is like f of x minus a convolved 
with delta b is like f of x minus a minus b. I didn’t put equal signs in there because of 
where are the xs and so on, but you get the derivation. You get the sense. And that's the 
same thing as f convolved with delta a plus b is then f of x minus a plus b, that is to say, f 
of x minus a minus b, so at least it's consistent.  

That's one thing, I think, that you should – again, to sort of – as you build up a set of 
internal checks of your understanding of the material, even if you don't know the 
derivations it's often a good idea to be able to sort of cross check it in cases where you 
can verify the formula makes sense, all right? So this is an example of – although it's not 
a derivation of the formula. It's sort of a consequence of the formula, and it gives you 
some indication that everything is consistent here.  

Why should delta a convolve with delta sub b be delta sub a plus b? Well at least it makes 
sense if I consider that convolving a function with a shifted delta function shifts the 
function. Again, it's sort of an internal check of consistency – cross check of consistency, 
and it's a nice formula.  

All right. We have one more thing today. One more property of the delta function, and 
then next time we're gonna use it, all right? Next time we're gonna use the delta function 
and some of the properties that we've derived for – properties of distributions and a study 
of diffraction phenomena in optics. It works – you see how the Fourier transform comes 
into that in really quite a nice, striking way.  



But let me do one more property today, and here I'm gonna be just absolutely shameless 
in my derivation, and I don't know how to fit this in other than just to do it, because we're 
gonna need this formula, all right? And that is the so-called scaling property of the delta 
function. Of delta. And that is – you wanna consider what is – let me put it this way, delta 
of a times x. Not delta shifted to a, but if I scale the independent variable.  

Now the problem with writing something like that down, and I almost gag on it when I 
write it down, is if I've been making all this point about delta doesn't define – delta is not 
defined at points. You can't look at delta of x, delta of a times x, delta of anything like 
that. Delta is an operation on functions, so at first blush, if I write something like this 
down, I have violated all of my precepts. I feel cheap and dirty. Love it! Right.  

Now, in fact you can define this because it makes sense to define a scaling operator on 
distributions. So I'm not gonna do that again and that's done in more detail in the notes. 
So it is defined by defining the scaling operation, the scaling operator, on distributions, 
and that's not so hard. That can be done. So it makes sense, actually, in a more general 
context, to consider delta of a times x.  

But now, if you think about what you – how you used to think about the delta function, I 
mean, delta is already concentrated at the origin. If you multiply it by a does that – I 
mean, can it be any more concentrated or what could that possibly mean?  

Well, again, I'm gonna be shameless here in thinking about how I should – when I say 
what is delta of a x, what I want is a formula for delta of a x in terms of delta, actually. So 
I'm looking – I wanna look at delta of a x paired with the function phi of x, and I'm gonna 
write that down in terms of integration although, again, it's against all my principles, but 
I'm gonna do it anyway. So I'm gonna write this the way you used to write this. Delta of a 
x times phi of x d x, and I consider this as pulling out the value at the origin, all right?  

Now this can all be justified, even these steps can be justified, without writing integrals in 
terms of the scaling operation, but just follow along with me here. All right, this is how 
you used to derive this. You used to say that – I'll make a change of variable. U is equal 
to a times x, and let me assume that a is greater than zero here so I don't have any trouble 
switching to limitless integration.  

If I let u equals a times x, then d is equal to a times d x and the integral becomes, if x 
goes from minus infinity to infinity, then if – the integral in terms of u, u also goes from 
minus infinity to infinity if a is positive, and this becomes delta of u times phi of x is u 
over a d u, and d u is d x over – is – d x is one over a times d u, so it's one over a times d 
u. Sorry.  

The one over a comes out of the integral, so this is one over a times the integral for minus 
infinity to infinity of delta of u phi of u over a d u, and now that's the ordinary, so to 
speak, property of the delta function. If I paired delta – if I want it like this, one over a 
delta paired with phi of u over a, that still pulls out the value at the origin. Phi is scaled 
but delta doesn't know that. Delta just pulls out the value at the origin, so this is one over 



a phi of zero. Again, delta doesn't care. Delta never cares, but phi is scaled to the origin. 
It just pulls out the value of the origin. So one of a of phi, phi is zero, so that is one over a 
delta paired with phi. F of a is positive, so we get – where do we start, where do we 
finish?  

Delta of a x paired with phi of x was one over a times delta paired with phi, so the 
conclusion is that delta of a x is equal to one over a times delta of x, if I write the 
variables here and if I feel so shameless about it. F of a is positive. If a is negative, you 
get a very similar result, and let me just write down the final version. You get a similar 
argument if a is negative, and you get the scaling formula for the delta function, and then 
we gotta go.  

That is delta of a x is equal to one over absolute value of a delta of x. So this is not the 
scaling theorem like in the Fourier transform because the variable over here isn't also 
scaled. It's only scaled out front, all right? It's only scaled out front. And, again, I'm 
writing this – I'm breaking the rules in the way I'm writing this, but all I'm saying is that it 
can be justified if you actually look at the scaling operation, apply the distributions, and 
then the derivation is really pretty much as we gave it, all right?  

This is the cheap and dirty way of doing it. It's okay in this – in that it led us to this 
formula and we're gonna use – we're gonna make actually quite a bit of use out of that 
formula, all right? As a matter of a fact, you'll start seeing this as of, already, next time, 
okay? So we're gonna leave the happy world of distributions now, and we're gonna start 
seeing how they're applied, all right? See you then.  

[End of Audio]  
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