
TheFourierTransformAndItsApplications-Lecture15  

Instructor (Brad Osgood):They took me by surprise again. What do you know, I think 
we’re on the air. Where is everybody today? I mean, it’s Friday, I understand that, but 
like no one’s out there. Not that – excuse me, I didn’t mean to say no one’s out there, but 
it looks a little thin, the population.  

Okay, while people are drifting in, let me call your attention to the important information 
up on the board. This is information for the exam for next week.  

So the midterm exam is October 31st, Halloween, sorry, and there are three sessions, 
from 2:00 p.m. to 3:30 p.m., from 4:00 p.m. to 5:30 p.m., and from 6:00 p.m. to 7:30 
p.m., and they are – we have the locations for those now, so from 2:00 p.m. to 3:30 p.m., 
that is in building 380, room 380 W. Building 380 is the Math Corner. That’s the front 
right hand corner of the quad if you are looking at the quad from the oval, all right? So 
it’s in the front of the quad. 380 W is in the basement. That seats about 50 people, 
something like that. Shouldn’t be a problem. So both the afternoon sessions, from 2:00 
p.m. to 3:30 p.m. and 4:00 p.m. to 5:30 p.m. are there, and then the session from 6:00 
p.m. to 7:30 p.m. is here, in Skilling.  

As far as the material goes for the exam, it goes up through deltas. You should know – 
have the properties of delta functions and generalized Fourier transforms. I’m not gonna 
go hot and heavy on the theory of distributions or anything like that, but you should be 
comfortable and familiar with the basic properties of delta functions, as I say, and the 
idea of the generalized Fourier transform, at least to the extent that you can use it for 
some common functions like the step function and the unit step function and the signum 
function, things like that. Those sorts of things are fair game.  

What I won’t put on the exam is the next topic that we’re gonna really turn to, not today 
but shortly, on sampling theory. So that’ll be coming up, so we won’t have that on the 
exam.  

I will provide for you – and again, as I said last time, the hope and the plan for the exam 
is to have it more conceptually based. That is to say, you can’t avoid computations 
completely, naturally, but what I don’t want is I don’t wanna – I’m gonna try not to write 
questions that involve a lot of details, calculations, in the sense that you get caught in a 
loop of doing lots of integrations by parts or something like that.  

That’s not the point. The point is not to see how well you can integrate. The point is to 
see how well you can understand the Fourier transform.  

Now again, having said that, it’s also true that you can’t avoid computation completely, 
so I wanna try to make a balance. We will provide for you, and it is already posted, has 
been for a while, the formula sheet. That’s a formula sheet for the entire course, so we’ll 
– I’ll make copies of that and bring it to the exam. That has all sorts of helpful, useful 
formulas on it.  



You can bring your – it’s open notes, open book on this, so you can bring that with you. 
As I say, things get a little – things get sometimes ridiculous, where students used to 
bring stacks of like signals and systems books to the exam, and it was just ridiculous, but 
if you want to, you can do that I suppose, like Shawn’s Outline Series of Signals and 
Systems, but hey, whatever makes you happy.  

So the other thing I was thinking of doing – so that’s question about – that’s the 
information about the exam. Any questions on that, on what’s expected or what – how 
we’re gonna manage it? I haven’t heard from anybody. There’s one person who’s gonna 
be away on a – at a conference, and a couple other people who have some conflicts, but, 
by and large, having those different times seems to suit everybody all right.  

We will have class on Wednesday, however. It’s relentless. Relentless. Relentless, but 
not heartless. I’m thinking of – what do you think of having the next problem set due – 
there’s a problem set that’s out there now, and I was thinking of having that due on 
Friday instead of Wednesday. Yeah? Can you endorse that idea? All right. Okay. So I’ll 
post all this information on the web, of course, but – so we’ll have the current problem 
set, what is that? Problem set five or four?  

Student:Five.  

Instructor (Brad Osgood):Five, okay. So we’ll have problem set five due on Friday, 
next Friday, instead of due next Wednesday. All right? Yeah?  

Student:Does that cover –  

Instructor (Brad Osgood):That has some midterm material on it, yeah, it had – because 
it had some stuff on deltas and had some stuff on generalized Fourier transforms, all 
right? Sorry, I just can’t – I can’t match it exactly, but I don’t think there’s anything on 
there that you couldn’t sort of understand – I mean, there are enough worked examples 
and things like that in the notes, so I don’t – I really don’t think it should be a problem.  

I will have the next problem set out, also, by the – I mean there will be another problem 
set that will be due and I’ll have it posted over the weekend or by Monday, all right?  

Okay, so I’ll – again, I’ll put all this information up on the web to make it permanent, and 
send everybody an email, all right? Anything else on anybody’s mind?  

All right, we are going to do, today, an interesting application of the Fourier transform. It 
will involve a little bit of deltas, and some properties of delta, and actually it will involve 
a physical interpretation of delta, which I think is actually quite interesting, but it’s – 
regardless of that, regardless of the particular ways that delta enters it, but it’s interesting 
itself, because it’s a nice application of the Fourier transform. It’s the kind of thing you’ll 
see in other classes, depending on the direction you go in your further work.  



That is, I wanna talk about the Fourier transform and diffraction. Now diffraction refers 
to a phenomenon of light, and diffraction refers – for our purposes, it refers – it is 
analyzed and understood in terms of the wave theory of light, so we’re not gonna get into 
the raging battle between the wavists and the particalists. It’s – diffraction for us has to 
do with interfere – is – I think, pretty much, I consider like identical to interference 
phenomenon associated with light.  

So diffraction is one term for it, but it’s pretty much equal to interference patterns that 
light makes passing through an aperture of light through apertures. This is not the only 
way that diffraction can be talked about, but it’s the way we’re gonna talk about it. 
Through apertures, through holes. All right?  

So there are a couple things that enter into this. I’ll show you a picture in just a second. 
You have seen pictures of diffraction patterns, I’m sure, before, but I will show you a 
picture just so we all know what we’re talking about, but I wanna talk about the 
distinctions, what we’re gonna do and what we’re not gonna do.  

So it involves light from a distant source, typically from a distant source, and we’ll see 
how that enters into it, the fact that it’s distant enters it – how the fact that it’s distant 
enters into it. All right?  

It impinges on a plane, which is usually called the source plane. I’ll look for other 
reasons, I’ll – again, I’ll come back to that in a second, where – on which a number of 
holes are cut, and instead of calling them holes it sounds more scientific if you call them 
apertures.  

So you have a plane with apertures that the light passes through. The rest of the plane is 
opaque – part of the plane is opaque and then you have holes that light passes through, 
and it bends around those holes, and it creates certain characteristic patterns on a plane 
that is some distance from this, called the image plane. So at some distance, you have an 
image plane, all right? And you see diffraction patterns.  

Now I’ll show you a picture in just a second, but right here is where I wanna make a 
distinction between the different types of diffraction that one studies. We’re gonna make 
a number of simplifying assumptions.  

We’re gonna assume – well, first of all, we’re gonna do everything in the context of the 
wave theory of light so, for us, a light is gonna be an oscillating, electromagnetic wave, 
and really we’re only gonna talk about the electric field part of it, so I am making a 
certain number of assumptions, but are accurate enough to give you good and helpful 
understanding – a good and helpful understand, and good and helpful formulas.  

So we’ll work with – we’ll assume light is an oscillating EM field, although we’re really 
only gonna talk about the electric field, and we also assume that it’s monochromatic, that 
there’s only one frequency of light that shining, that’s being diffracted. That’ll simplify 
writing things as well. And we’ll make a couple other assumptions.  



The other main assumption that you make in diffraction is – has to do with this statement 
here. At some distance, you have an image plane upon which the light is incident, all 
right? There the distinction is between so called near-field and far-field diffraction. So the 
distance of the image plane determines two kinds of diffraction.  

One is called far – one is called near-field, which means relative to the wave – and it’s 
usually relative to the wavelength, let me just say in a second. Near-field, which means 
it’s close in, that’s called Frenel diffraction. Frenel. I think that’s right. Diffraction.  

And the other is far-field, so called far-field, which is Fraunhoffer diffraction. I can only 
hope I’m spelling those right.  

And, usually, when you talk about near-field or far-field, you talk about distances 
measured relative to the wavelength. It is far away relative to the wavelength of the light 
or it is close relative to the wavelength of the light, and the other that comes in are the 
size of the apertures relative to the wavelength.  

So you measure distances near or far, typically relative to the wavelength. Distances and 
the size of the aperture relative to the wavelength. I’ll make comments about this. This is 
– we are not giving, by any means, an exhaustive treatment, all right? This is just an 
example of how the Fourier transform comes in in an important and interesting 
application.  

We have a whole course, actually, called Fourier Optics, that does these things in, of 
course, much greater detail, and goes much farther with it, but I thought you’d be – I 
thought you’d be interested to see this application, because it’s a very pretty application 
and it’s nice to see some of the ideas come in, and you’ll see them again, as I say. If you 
go in – Stanford has been a leading light in light for years and, in particular, Joe 
Goodman, who’s an emeritus professor now, wrote a – was a very important figure in the 
theory of Fourier Optics, and wrote a number of very influential textbooks as well, and of 
course a lot of research papers, and a lot of the – the course that sort of exists now in 
Fourier Optics is based, to a large extent, on a lot of Joe’s work.  

Let me show you a picture so you know what I’m talking about. You have seen – you 
have seen diffraction patterns, probably, in physics classes or whatever, but the picture 
looks something like this, if I can. Can I show this? I’m just gonna show this one shot. I 
think there’s a picture of this also in the notes. Looks like that. Amazing, isn’t it? There 
we go. You can dim this a little bit, so I can – so I actually get the full effect. Can we dim 
the lights? And we – there we go. All right. It’s just showing up a little bit. So this is – 
what you’re seeing is the image plane. You’re seeing the pattern of the image plane. The 
source is some distance away. It shines through, in this case, I think it’s just a square 
aperture, a square slit, that’s showing the pattern, and the things that’s – was remarkable 
about diffraction patterns that really shocked people, was the bands of light and dark. 
That’s the characteristic property.  



What you’re really seeing there is the intensity. You’re seeing the magnitude of the 
electric field that is representing the light, all right? Actually, you’re – yeah. And that’s 
what instruments measure. They measure the intensity, or the magnitude, of the electric 
field. And what was so surprising to people, when they first started observing these 
diffraction patterns, and it goes way back into the history of physics, is the intermixing of 
light and dark bands, because how can light plus light make dark?  

I mean that – why should – how could there be darkness, when all you’re doing is shining 
light? How could that be? Surely this is not God’s will. And it was – it was a subject of 
heated debates, and again – certainly between people who have advocated the particular 
theory of light, people advocated the wave theory of light.  

The wave theory of light initially provided a much better explanation of these diffraction 
patterns, and that was one of the reasons why it was in ascendancy for so long, because 
this was a phenomenon that was considered – was not only considered important, was 
important to understand it that it could be analyzed by using the wave theory of light.  

So you have – anybody, I’m just curious, are there – anybody ever work with these sort 
of diffraction patterns? There are all sorts of reasons to do it. I mean they use it for 
physical measurement of wavelength of light and things like that, or they – and they 
sometimes just have experiments. Yeah, how did you –  

Student:[Inaudible].  

Instructor (Brad Osgood):Yeah.  

Student:The dark parts were to calculate how thick the wafer was, to calculate how hot it 
was, if we knew its initial temperature and things.  

Instructor (Brad Osgood):Yeah? That’s interesting. Anybody else? I’m just kind of 
curious. Even in Physics labs or something like that, when you were undergraduates, 
where you did diffraction patterns, diffraction experiments? It’s kind of cool. It really is 
kind of cool.  

Okay. All right. You can show that you can – you can pull up the screen, thanks. We’re 
done. Thank you. All right.  

So let me give you the setup, in a little bit more detail. And, again, what we’re gonna talk 
about is Fraunhoffer diffraction, although the initial setup doesn’t matter. You’ll see 
exactly where this comes in. It’s a certain approximation that shows you how you can 
approximate one quantity in terms of another quantity if the distance is large. You’ll see.  

But let me give you the basic setup. So, again, you have a source of light, however it’s 
defined or however it’s defined, and it is a great distance from what’s – from the aperture 
plane. So the aperture plane is something over here. This is the aperture plane. And these 
holes – it is considered to be opaque except where there are holes. So the holes are the 



apertures. All right? And the fact that you consider the source very far away has the 
practical implication that, by the time it reaches the aperture plane, it does so – it’s 
basically a plain wave coming in, and what that means is that you can assume that the 
aperture plane is essentially – not essentially, you can assume it’s a so called wave front 
for the wave, which means that every point here on the plane has the same phase, all 
right?  

So the fact that the source – so that’s the first sort of simplifying assumption. A distant 
source means, practically, that the aperture plane is a wave front. That is, the light is 
coming in as a plane wave, and again, practically what that means is that everything here 
is the same phase, which means you can ignore the phase, okay? It’s a wave front.  

So the wave has the same phase at all points of the aperture plane. All these are realistic 
and reasonable assumptions, all right? I just wanna spell them out, which means, for all 
practical purposes, you ignore the phase, you can suppose the phases – you can suppose 
everything sort of starts from zero at the aperture plane, all right?  

And furthermore, we’re gonna represent the electric field – now this is the second sort of 
simplifying assumption, but we’re gonna represent the light by a time oscillating electric 
field, and we’re gonna use complex exponentials for that.  

So you represent the light as, say, e times – e is for the electric field, for the magnitude, 
times e to the two pi i new t. So e is the strength of the field, and this is the light on the – 
this is the light on the – not at the source, but the light on the aperture plane, all right? So 
on the plane. Aperture, my writing’s even worse, plane, as e to the pi i new t, so e is the 
strength of the field and new is the frequency. So this is where the other assumption 
comes in that I’m working with monochromatic light, so light of a single frequency. 
Frequency. So again, it’s monochromatic.  

All these assumptions can be, to a greater or lesser extent, dropped in more careful and 
more thorough treatments, but we’re simplifying things just to get to the main punchline, 
which you’ll see, which is pretty interesting.  

And we’re also gonna assume that the field strength is constant on this – on the plane, all 
right? So we’ll assume that e, the strength of the field, is constant. So we assume e is 
constant, say, e naught on the aperture plane.  

Okay. Now some distance away, which I can’t represent too well on the blackboard, is 
the image plane, over here. So light starts from the source, hits the aperture plane, and 
then gets diffracted by the apertures and winds up on the image plane over here. And the 
question that we wanna address is, what is the electric field – just think of this in terms of 
electric field. What is the electric field at a point on the image plane, okay? P. What is the 
electric field at a point p on the image plane? All right? Why it passes through the slits, it 
gets the p from different paths, and the question is what is the – how do they all add up? 
Okay.  



So the light gets to p. The light, that is to say the wave, i.e. the wave, gets to p along 
different paths, because it is bent when it passes through the – or it seems to be bent when 
it passes through the apertures, along different paths. How do they add up? How do the 
results add up? How does it all add up? I want you to put it that way.  

All right. Now, classically, the way to address this problem is what’s called Huygens’ 
Principle. It goes way back, because it goes back to Huygens’, and I don’t know how it 
was initially enunciated, but the way it’s – the way I’ll talk about it, and again, without 
trying to be terribly precise here, to analyze this you approach this via Huygens’ 
Principle. Huygens’. This is a challenge.  

Huygens’ Principle, which says that every point in the aperture, every point of a wave 
front, can be itself regarded as a new source, okay? Each point of a wave front, and by 
assumption, the aperture plane is a wave front, all right? So – and you have all these little 
– you imagine that this is made up of a bunch of little points, and each point there on the 
wave front – each point in the aperture can be – each point on a wave front can be 
regarded as a new source, all right?  

You see what happens as a result of that. You see what happens over on the image plane 
as a result of light coming from a point here, regarded as a new source, and then you add 
them all up. You add up – that is to say, you integrate all these – the effects of all these 
sources.  

Now Huygens’ Principle has been criticized, and it’s certainly not the modern view, but 
it’s still applied, because it produces results that are intuitive and accurate enough. It’s 
interesting, and I am by no means an expert on this – it’s interesting to really read 
different treatments of this – older treatments of it, more modern treatments of it and so 
on, to see how Huygens’ Principle has faired, to see how the whole approach to 
diffraction has faired, and so on, but this is the way that it was sort of classically 
analyzed, and it’s certainly the way we’re gonna do it. I’m not gonna say anything more 
than this, but you’ll see how I’m gonna put it to use.  

As a matter of a fact, I think I gave a reference in the notes to a book by Melvin 
Schwartz, called Principles of Electrodynamics or something like that. I can’t remember. 
It’s in the notes. And he actually has a very interesting treatment of all these things. He 
tries to take a relativistic approach right from the beginning, so it’s a very mathematical 
book and it tries to – it tries to put things in a certain context, and he has sort of scathing 
criticisms of Huygens’ Principle and so on, but he’s not above using it occasionally.  

So here’s how we’re gonna apply this. So once again, here is – so forget about the source. 
The source is infinitely far away. Everything now takes place between the aperture plane 
and the image plane, all right? So I wanna introduce coordinates on the aperture plane. 
As a matter of a fact, let me just focus on one aperture. So here’s, say, the origin of the 
aperture plane, and here is a point x on the aperture plane, and here – and I take a very – 
imagine I take a very thin slice, so this may be part of a bigger aperture. Let me do it like 
this. But I take a very thin slice, say of width d x.  



All right, now this is a sideways view of this. We’re essentially going to turn this into a 
one dimensional problem. If you want, you can consider the plane – the aperture plane 
coming out like this, and I’m just gonna – I’m gonna take a aperture of dimension one in 
this direction and dimension d x in this direction, all right? So it essentially reduces this 
to a one dimensional problem. That’s another simplification, but it’s – again, it’s – 
they’re reasonable simplifications, depending on the dimensions of the actual physical 
problem.  

All right, and so here’s p over here, so light comes out of x, or out of this little slice, and 
reaches p, all right? The field here – the field at x is roughly – well the field – the field – 
let me say the field associated with the small slice is about – I’ll even put the – let me 
write it up here. The strength of the field in the slice of size d x at x is about e naught the 
strength times e to the two pi i new t times d x. So the field strength is roughly – the field 
strength is constant on the plane, so it’s e naught d x of it in the particular little slice, and 
then I multiply it by the – it’s time varying, so it’s e to the two pi i new t, okay?  

Now – and so I’m assuming I have zero phase on the aperture plane. Okay, now what 
happens when it reaches the image plane? There’s a decrease in the magnitude of e by 
one over the distance, but that’s not the main effect, all right?  

The main change in going from – that is, the main effect, really, maybe I should say, the 
main effect in going from x to p, over a certain distance, is the change in phase. And what 
we have to – yeah?  

Student:Is the t up there – is that supposed to be an x or is that t for something else?  

Instructor (Brad Osgood):T is time, because it’s a time varying field.  

Student:Okay.  

Instructor (Brad Osgood):All right, so like, it’s an oscillating electric field, okay? So t 
is time. It’s actually gonna come out. That’s actually not gonna turn out to be an 
important thing, but that’s – you represent the field that way. I should have said, by the 
way, I’m sorry, as per usual, in this case, you represent real quantities by complex 
exponential, so the actual electric field would be the real part of that, but – as is common 
in this case. You usually sometimes call this the analytic version of the signal or the 
analytic version of the field when you represent it by a complex exponential. The actual 
field would be, say, the real part of that, but we’re sort of using complex quantities. I can 
do it without thinking about it. We’re used to representing real quantities by complex 
quantities.  

Now – and if it reaches p from all sorts of different paths, then what you want to take in 
account – take into account, is the phase change that is associated with the different 
paths.  



So say this is a distance r, say it travels a distance r, all right? So what is the phase change 
in traveling a distance r. R from x to p. Well how many cycles does it go through? Think 
in terms of – measure this in terms of wavelengths. If it goes through one wavelength, 
then it goes through one cycle. If it goes through two wavelengths, it goes through two 
cycles. If it goes a distance r, r, the wave goes through r over lambda cycles, where 
lambda here is the wavelength.  

You can – so again, wavelength. It goes through – if r is equal to lambda, then it goes 
through one cycle. One wavelength goes through one cycle. If it goes through two 
wavelengths, it goes through two cycles, and so on. If it goes through half a wavelength, 
it goes through half a cycle. In general, if it goes through distance r, then the number of 
cycles it goes through is r compared to the wavelength. R over the wavelength. R over 
lambda. You can even work that out with formulas if you want, but that’s intuitively 
what’s going on here.  

Okay, so what’s the phase change? So the phase change – so the phase change is two pi r 
over lambda, all right? And then – and so the field or the – I should maybe say field – let 
me write it down, then I’ll say something about a field, at p due to the field at x is – let 
me write it like this. D e is – a little bit of change in the field – I’m gonna – the 
differential of the field is e naught times e to the – it’s still oscillating at the same rate. 
That’s not changing. It’s still the same frequency, so it’s e to the two pi i new t – I’m 
gonna need more space here, I can tell – is e naught e to the two pi i new t is – it’s still 
monochromatic. What’s happened here is the phase change. E to the minus two pi i r over 
lambda. If I represent the phase change also that way, as a complex exponential, times d 
x. That’s the key expression. That’s the key expression.  

There’s been a drop off – drop off in the magnitude of the field, that’s true, but that pales 
in effect in comparison to the change in the phase. Okay.  

So what is the total field? Is the integral of this expression. So it’s the integral over all the 
apertures. This is the field at p, fell from all the different sources. So it gets the p from all 
different source – from all different paths. E naught times e to the two pi i new t, e to the 
minus two pi i r over lambda d x. So I’m integrating over the aperture plane. I’m 
integrating with respect to x. X is a variable that describes the location on the aperture 
plane. So I could just say, aperture – I’m saying integrating over the aperture, I should 
say I’m really thinking about integrating over the aperture plane, but the only time the – 
you get a non-zero contribution is when – because the field – you can regard the field as 
being a zero other than at the apertures, because the – other than the – other than the 
apertures, the plane is opaque. The aperture plane is opaque.  

All right, so I can pull out these constants here, and it’s really – this is the part that 
depends on x, because r depends on x, all right? On x. So that’s where the dependence is 
coming in in the integration. Not here. Not in the time variable. All right. So as a matter 
of fact, I can pull that out, and I can more or less ignore it in the rest of the discussion.  



So I can write this as e equals e naught. That’s a constant. I assume that’s a constant – 
times e to the two pi i new t times the integral over the apertures of e to the minus two pi i 
r over lambda d x. All right.  

Now I should also say that what you observe – what you see with your eyes or what you 
measure with instruments is the magnitude of e. So, in particular, the time varying part of 
that goes away because the time varying part of that, in the – under the assumptions we 
have, monochromatic and so on, is just a complex exponential which has magnitude one. 
So you see – you measure, measure, the magnitude of e.  

So the quantity of interest here really is the integral, not the stuff out in front of it, okay? 
Is this integral over the apertures of e to the minus two pi i r over lambda d x. Now this is 
not a useful expression so far, it’s too complicated. Here’s where the approximation 
comes in. So this is not useful. I mean, maybe there are times when you can write it out 
more carefully and try to evaluate the integral, but generally, sort of as a principle, as a 
way to understand the phenomenon, it’s not so useful – that is, you need an additional 
assumption to make it a useful expression, and that’s where this Fraunhoffer 
approximation comes in.  

And so now we bring in the so called Fraunhoffer approximation, and here’s what that 
means. So let me, again, draw the picture over here. Here’s the aperture plane over here, 
here’s x, here’s the origin of the aperture plane, here’s the image plane, here’s p, that is 
what – that’s what we calculated. We calculated the field at p due to all the ways that 
light reaches it from all possible points on the aperture plane. Let’s call this distance r 
naught. So that’s the distance from zero to p. That’s a fixed distance. Here’s r, all right? 
And I wanna be sure I write this right, get this right. Here is theta. Then this distance here 
– I’m sorry for being careful. I’m looking at my notes carefully here, but I don’t wanna 
screw anything up. That’s x sine theta. That little length in there is x sine theta.  

We’re gonna assume that r, this distance, is much greater than this distance, than x. 
That’s the Fraunhoffer approximation. That’s the Fraunhoffer assumption. You’re gonna 
assume that r is much greater than x. By that assumption, this little bit is such that r minus 
– if I take r naught minus x sine theta, that’s approximately r. That is, the operational 
effect of this assumption is that r naught minus x sine theta is approximately r for all the 
different values of x on the aperture, so there’s actually several assumptions here. The 
apertures shouldn’t be too big, they shouldn’t be too far away, but at any rate, the 
distance of the image plane should be very much farther than whatever x is, wherever x is 
varying on the aperture plane. So way far away. And under that assumption, r naught 
minus x sine theta is approximately – so the fixed distance from zero to p – remember, 
we’re calculating the electric field just at a particular point in the image plane, at a point p 
in the image plane, from all the different contributions, and at that point, r naught minus x 
sine theta is approximately r. That’s the expression that we plug into the integral.  

So you plug this into the integral, giving the field at p, and what do you get? You get – I 
don’t know if I’m erasing it here, but I’ll write it out in just a second. Forgetting about the 
constants out front, you get the integral over the apertures of e to the minus two pi i r over 



lambda, so it’s one over lambda times – and r is approximately r naught, which is fixed, 
minus x sine theta. So it’s r naught minus x sine theta d x. D x. Right. Okay?  

Split this up – again, I’m forgetting about the constants out front, because that’s not so – 
that’s not important. It’s the integral, this integral, that’s important, and even in this 
integral now, we can pull out another constant that’s gonna be of absolute value one, so it 
won’t contribute to the magnitude. So it’s the integral over the apertures again of e to the 
minus two pi i r naught over lambda, so that doesn’t depend on x, times e to the minus 
two pi i x sine theta – excuse me, plus two pi i x sine theta over lambda d x. I haven’t 
done anything except plug that in.  

Now pull this out, because that doesn’t depend on x again. R naught is the fixed distance 
from zero to p, and we’re calculating everything – we’re calculating the strength of the 
field at p. This is equal to the integral over the apertures – oops, I forgot to pull up the 
cosile. E to the minus two pi i r naught over lambda times the integral over the apertures 
of e to the plus two pi i x sine theta over lambda d x. Okay.  

Now, it is common, in the biz, to introduce another variable, an auxiliary variable, that 
replaces sine theta but by just another name. So introduce p equals sine theta over 
lambda. One always talk about the – one always talks about diffraction through an angle, 
and the angle is theta here, but this is the variable that you introduce, sine theta over 
lambda, so that the integral becomes – and forget about the constant out front again. The 
constant out front has absolute value one. You only measure the magnitude, you only see 
the magnitude, so forget about that constant. Let me just concentrate on the integral.  

So it becomes the integral – I say equals, becomes the integral over the apertures of e to 
the two pi i x p v x. Okay. Almost there. Now, now, now, now, let’s introduce the 
aperture function, so to speak. So something like a of x is one if x is in an aperture, and 
zero otherwise, okay? You’re only integrating over the apertures. That’s the only place 
where the field is non-zero, all right? Then write – then I could write this integral a little 
bit differently. I can imagine integrating over the entire aperture plane, that is to say, from 
x point – from minus infinity to infinity of a of x times this, because a of x is only one 
when I’m in an aperture, and it’s zero when I’m not in aperture. So I can write the 
integral as the integral for minus infinity to infinity of e to the two pi i x p a of x d x, 
okay?  

And now what do we recognize? This is, of course, nothing other than the inverse Fourier 
transform of the aperture function at p. The dual variable here, the variable in the Fourier 
transform, the form of – the two variables in the Fourier transform are x and p. P is sine 
theta over lambda, so p has to do with the geometry of the situation, but as far as the – as 
far as writing the formula goes, if you recognize this is a Fourier transform, the variables 
are called x and p, and this is the inverse Fourier transform at a of p.  

Now, I have to make a couple of comments here, so I take a deep breath. You know, I 
said once that people had different conventions about what they called the Fourier 
transform, where they put the two pis and sometimes either where they put the plus and 



where they put the minus? You remember I said that? And different fields, say, have 
different conventions? Well, in physics, it’s more common to define this as the Fourier 
transform, and the integral with the minus sign is the inverse Fourier transform, and so, if 
you were in physics and somebody wrote down this formula, they wouldn’t write, this is 
the inverse Fourier transform of the aperture function, they would write, it’s the Fourier 
transform of the aperture function, and as far as I know, this may be the reason, in 
physics, why they use that particular convention for the Fourier transform. I don’t know 
if that’s true or not, but it is a reason for it.  

So if you would – if I would have defined the Fourier transform differently, if I would 
have defined the Fourier transform with a plus sign here instead of a minus sign, then I 
would have had, maybe, the more elegant result saying that the strength of the field at p, 
the value of the field at p, is proportional to the Fourier transform.  

Now in the notes, actually, I fudged this. I wrote things a little bit differently, so I wound 
up with a Fourier transform, but that’s really not true. So what I gave you here is – it’s 
only a question of differing between the plus sign and the minus sign, so I haven’t had 
the, somehow, nerve to go back and change the way I wrote it in the notes because I 
really want it to come out in terms of Fourier transform, but I had to be honest. So this is 
our result.  

Now it’s pretty – this is a wonderful result. This is a wonderful, intuitive result. It took us 
a while to get here, but what it says is that, under the Fraunhoffer approximation, so for 
far-field diffraction, the strength of the field at the image plane is the Fourier – think of it 
just the Fourier transform is the Fourier transform of the aperture function, all right?  

You have an aperture plane with a bunch of slits cut into it, and you have a diffraction 
pattern. What do you see? You see a bunch of bands of white and black. You see light 
and dark. What are those bands? Analytically, they are given by the magnitude of the 
Fourier transform of the aperture function. That’s the takeaway headline. For under the – 
for far-field diffraction, the magnitude, which is what you see, or the – maybe let me put 
it this way. The intensity of the light, because that’s what you’re seeing, is the magnitude 
of the Fourier transform of the aperture function.  

That’s the summary. That’s the headline. And that’s a very valuable thing to know if you 
go into this area. If you don’t go into this area, who cares, but if you go into this area, or 
if you want to have a conversation about it, this is very important, and I was just talking 
with a friend of mine, Marty Fejer, who’s in applied physics, just the other day, and we 
were talking about what I was doing in the class, and I was saying that I was gonna do 
this, and he was very pleased to hear that, because what he finds is that students today, 
when they’re confronted with a diffraction problem, will try to solve things numerically, 
they’ll set up a MATLAB program and they’ll do all sorts of computation, but what he 
really wants them to be able to say is this sentence, at least as a starting point to get some 
intuition for what the field should look like, think about what the apertures will look like. 
You have all this experience taking Fourier transforms.  



That’ll tell you – that’ll give you a good sense of what the – what you should be seeing 
on the image plane. I mean, you can do more detailed computations, numerical 
approximations and so on, but starting with this as the principle of what the field should 
look like, what the intensity – what the light should look like that you see, is given by the 
Fourier transform of the aperture function. It’s an extremely nice results.  

So let’s do some examples of this. Let’s do single slit diffraction, the most basic 
diffraction experiment. A single slit. What is a slit? A slit of width, say, a, is given by a – 
and let’s say just center it at the origin, so this is at the origin, then the aperture function 
is described by the rectangle function, pi sub a of x. That’s a function which is one from 
minus a over two to a over two, and it’s zero otherwise, so the aperture is pi sub a of x. 
That’s the function that describes a single slit.  

So what do you see on the image plane? Sorry?  

Student:Is that one minus?  

Instructor (Brad Osgood):No, it’s one – the rectangle function is one on the aperture 
and zero off the aperture, okay? So pi is one when x is between minus a over two and a 
over two, and it’s zero outside that.  

So what is the intensity of the light? So the light – the intensity of the light is the Fourier 
transform, and this is the inverse Fourier transform. This amounts to the same thing. 
Intensity of the light on the image plane is – what is the Fourier transform of this? Is – 
right down here, is a sink – let me write it down in terms of variables. A sine theta over 
lambda, writing p equals sine theta over – over lambda.  

You see – well, excuse me. I’m sorry. The Fourier transform is given by this. The 
intensity is the square of that. Fourier transform is that, so the intensity you see – 
essentially the magnitude of this, all right? So you see the square of this. You see the 
magnitude, so absolute value of this. So why do you see light so – why do you see bands 
of light and dark? Because that’s what the sink function is like. The sink function is big in 
some places and small in some other places, it even has zeros. Now the zeros are the 
places where it’s dark. You take the absolute value of this thing to actually see the 
magnitude, so you’re always seeing either some light or black, all right? But you’re 
seeing – it decays. It’s bright in the middle, then it has all these sort of little variable 
bands of light and dark separated by – separated by black, separated by zero intensity, 
and that’s because it’s that Fourier transform. It’s given by the Fourier transform of the 
rectangle function. Ain’t that cool? I think it’s cool.  

Now let me take another example. Let’s tie in – I said I wanted to bring in delta functions 
here, so let me do that now, then I won’t say too much more today. We’re gonna do this 
again next – we’re gonna take this up again next time, a little bit even more generally, 
and we’re gonna talk about crystallography, and we’ll talk about sort of one dimensional 
crystals. We’ll do higher dimensions a little later in the course, where I’ll bring the delta 
function in even more definitely.  



Suppose I have a point source, all right? Suppose the aperture is a point source, like a 
pinhole, but smaller than a pinhole. A point. Then what’s a good – what’s a reasonable 
approximation of the aperture function? Delta. Then a of x is delta of x.  

Now, before I write down the formula, before I write down the formula, if you have a 
point source on an image plane – on the aperture plane, and you put an image plane far 
away from it, what do you expect the illumination to be on the image plane?  

Student:Circles.  

Instructor (Brad Osgood):Pardon me?  

Student:Circles?  

Instructor (Brad Osgood):No. A circle would be a real – I mean, what you get on the 
image plane of circles would be a real circular aperture, but this is a point aperture.  

Student:Constant.  

Instructor (Brad Osgood):Constant, and the image plane is far away. You would expect 
–  

Student:Constant.  

Instructor (Brad Osgood):Constant. You would expect a constant illumination. You 
would expect the illumination on the image plane – if the image plane is far away, it 
would just be uniformly illuminated. Uniformly eliminated. Eliminated, did I say? 
Uniformly illuminated. That is a physical interpretation of the fact that the Fourier 
transform of the delta function is one.  

This is a physical interpretation of the Fourier transform of the delta function or the 
inverse Fourier transform of the delta function, it amounts to the same thing, is one, 
because the intensity of the light you see on the image plane is the magnitude of the 
Fourier transform of the aperture function. The aperture function is given by a delta 
function. It’s a point source, and its Fourier transform is one. You expect uniform 
illumination on the image plane. Ain’t that cool? I think that’s cool. I think that’s cool.  

I’ll do one more example. I’ll do it over here. The famous – one of the things that really 
got people freaked out was the so called double slit experiment of Young, and I won’t 
talk about the experiment. I won’t talk about the experiment or what the results were, but 
that was a famous early experiment in light, so Young’s double slits. You can look this 
up. And, of course, talking about diffraction, light diffracting through double – through 
two slits, or talking about particles going through two slits, it’s been a famous experiment 
in physics forever.  



So the situation might be something like this. Might be where I have two slits that are 
modeled by two rectangle functions, all right? Say, a distance – say the distance between 
them is – I’m gonna have my – I’m gonna stick with my notes here. So say the distance 
between them is b, and they’re each of width a. So it’s given by – the aperture function 
would be given by the sum of two rectangle functions is pi sub a of x minus b over two pi 
sub a plus pi sub a x plus b over two.  

So the distance is b. The distance between them – say this is at height plus b over two, 
this is at – this is centered at plus b over two, this is centered at minus b over two, so it’s 
easy to write down the aperture function. It’s just the sum of two rectangle functions. It’s 
one – they don’t overlap. It’s one when you’re in either aperture, and it is zero outside it, 
okay? And you’re either in one aperture or the other aperture or outside it. And what is 
the Fourier transform? What do you get? And I think I have a picture of this. I’m sorry I 
didn’t check. I know I have at least a graph of this thing in the notes. I don’t think I have 
a picture of the actual diffraction experiment, but you can find it. You can track it down.  

So the Fourier transform of this – we know how to do this. This is the module – this a 
modulated version of the – or it’s a shifted version of the – it’s the sum of two shifts of 
the rectangle function, and we know how to find that with – via the modulation theorem. 
In the notes, I talk about how to do this by using the delta function, actually, or you can to 
it this – well, I’ll just write down the result, because we gotta go.  

So you get – and I’ll just – a sink a times p, so p is again sine theta over lambda times 
cosine of two cosine pi b p. So, again, here p is equal to sine theta of lambda. Theta is the 
angle that you are diffracting through at p, okay? Theta makes at p. And that – you 
should recognize this. This cosine factor comes in because of the modulation, because 
they’re – because of the shift plus and minus, via plus b over two and minus b over two, 
and the sink comes in because that’s the Fourier transform of the rectangle function. The 
stretch rectangle function.  

In the notes, I mentioned – I wanted to bring – actually use this as an application of the 
delta function, because I wanted to write this is as a convolution of two shifted deltas, but 
I’ll do that next time or I’ll talk a little bit more generally about this next time. I just 
wanted to give this result too, because this is another famous experiment and famous 
formula in physics, what the diffraction pattern for the double slit experiment is. So look 
that up, I’m sure you can google this, and you’ll get pictures that correspond just to this 
sort of function.  

So it’s a physical – I should have said, actually, this is a physical interpretation of the 
Fourier transform of the delta function is the constant function one. The single slit, or the 
sort of double slits, are physical interpretations, physical manifestations, of the sink 
function. You actually see them coming up in diffraction experiments. It’s cool. All right, 
that’ll be it for today. Then on Monday we’re gonna take this a step further, talk about 
crystallography, and that will actually lead us into a discussion of sampling. You’ll see. 
Thank you very much.  
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