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Instructor (Brad Osgood):And we’re on. I love it how they take me by surprise.  

All right. Once again, let me call your attention to the midterm information. I mentioned 
this on Friday; I also posted it up on the website and sent an email to the entire class, so 
the exam is on this Wednesday, Halloween. Boo. There are three sessions: 2:00 to 3:00 
and 4:00 to 5:30 are both in the same location, it’s Building 380, that’s the math corner 
down in the basement 380W, and then from 6:00 to 7:00 it’s Skilling, that’s here. Okay?  

I will bring copies of the exam, of course, and the bluebooks and also the formula sheet, 
all right; the same formula sheet that’s been posted on the Web for a long time so I’ll 
bring copies of that. It is open books, open notes, you can bring whatever you want but 
don’t get ridiculous, as I said.  

It’s gonna cover stuff on up through sort of delta functions, properties of delta functions, 
generalized Fourier transforms, so it won’t talk about diffraction, it won’t talk about 
sampling, which is gonna be our next topic. And I think that’s about it on the midterm; 
any questions about that, any issues that I have to know about for the midterm exam? It’s 
a 90-minute exam. And again, the idea is that I hope it’s gonna be sort of more 
conceptual than computational, although I say you can’t rub away all computations, 
obviously. So anything else?  

Also, on – so we’ll have class on Wednesday. It’s relentless. Relentless. As I also 
mentioned, the homework, the current homework assignment is not due till Friday. The 
magnanimous Os has given you a couple of days so that’ll be on Friday. And the current 
– the new homework assignment however, because it’s relentless, is already posted up on 
the web, on sampling.  

Yeah?  

Student:Can we come to any of the sessions?  

Instructor (Brad Osgood):Yeah, but only one.  

Student:Okay.  

Instructor (Brad Osgood):I ask people to sign up just so I can get an idea about the size 
of the different sessions. That was not a contract, it’s not written in stone, so if you want 
to change your mind that’s fine. But as I say, you can only take the exam once. Once, 
that’s the only deal. Okay? But any of the sessions should be okay. I mean, you know, 
within some limits, I guess. I don't even if the entire – I think the entire class could fit – 
so if everybody shows up at 6:00, I suppose everybody’ll fit in here but it might be a little 
tight.  

Yeah? There’s another question.  



Student:Does the material on the midterm cover the stuff that’s in the homework?  

Instructor (Brad Osgood):Sorry? It doesn’t – well so the stuff that’s in the current 
homework? Only to the extent, I guess there’s some generalized Fourier transforms, like 
you have to know the Fourier transform of the, you know, unit step function and signal 
function, and there were a couple of questions along those lines but nothing much sort of 
outside of that. Okay?  

All right? Okay. All right, let’s move on.  

I want to talk a little bit more about diffraction actually. And as a way of actually making 
a transition to our next topic, this may seem a little odd way – our next topic is sampling 
an interpolation. And going from diffraction to sampling interpolation may seem like a 
little odd of way going but it’s – there’s an interesting connection here that I want to 
exploit. The topic itself that I – the general areas of diffraction, and in particular what I 
want to talk about today, is interesting in itself and it does make actually for a nice link, 
so I want to talk about the problem of crystallography.  

We’re gonna actually return to this when we have higher dimensional, when we talk 
about higher-dimensional Fourier transforms. So today, I’m only gonna talk about the 
one-dimensional case, which of course is not realistic but it has some essential ideas that 
you find in the higher-dimensional case. And as I say, it makes a nice transition to the 
next topic that we’re gonna be talking about.  

Let me remind you about the headline from last time. So headline from last time, when 
we talked about diffraction and the Fourier transform, is that diffraction patterns are 
given by or determined by the Fourier transform of the apertures that cause the 
diffraction. Of course, this simplifies things but that’s – if you’re looking for a quick 
summary of what our chief conclusion was last time, this is it. Diffraction patterns are 
determined by the Fourier transform of the apertures or the aperture function.  

We had approximation; we talked about far-field diffraction, all the rest of that jazz, 
never mind. That was all important, of course, but this is the main thing to be carried 
away with it, and that’s what I’m gonna be using today also.  

Now here is the setup for what was troubling people, what was puzzling people when x-
ray crystallography, x-ray diffraction was first invented or first brought to bear on certain 
set of important problems. So the setup that I want to talk about it as follows: x-rays were 
discovered in 1895 by Roentgen, of course, Roentgen, R-O-E-N-T-G-E-N, or some 
approximation of that spelling. All right?  

Matter of fact, I remember actually in 1995 everybody was celebrating the 100th 
anniversary of x-rays, a very exciting time. And the question was what are they? Are they 
waves? I mean their fundamental nature was not understand, so what are they, or what 
were they. Are they waves, for example? It was a new phenomenon. If so, then certain 



considerations led them to conclude that the wavelengths should be about ten the minus 
eighth centimeters. All right?  

If so, and the wavelength, which was too small to measure precisely, wavelength should 
be around ten to the minus eighth centimeters. All right? So that’s too small to measure 
by other means – by the means that we’re used to measuring different sorts of visible 
light, say, other sorts of waves which were diffraction gratings, too small to measure. Let 
me just say too small to measure, period, with any of the standard techniques, okay, for 
example with diffraction gratings.  

On the other hand, or a different set of – a different line of questioning was crystals; 2.) 
Crystals. Been around for a long time and observed for a long time. What are they? In 
particular, it was clear from people – to people who were cutting them open, chiseling 
them around and making small crystals out of big crystals, that somehow the microscopic 
structure ought to be determined by the microscopic structure by the atomic structure. 
And so, the conjecture was that crystals were crystals because there was a regular 
periodic array of the atoms that made them up.  

So microscopic structures should somehow be determined by the atomic structure, and 
the conjecture was the atomic structure should be a lead of some type. That is the atoms 
were arrayed on some – in some regular pattern. Atoms arrayed on a lattice. How to test 
that, experimentally?  

All right, so there were famous experiments, series of experiments done in 1912 by Max 
von Laue, in 1912. All right, so he purposed to study the physical – the nature of crystals 
by using x-rays to conduct diffraction experiments, so study the atomic structure of 
crystals via diffraction experiments with x-rays. All right? So he had a number of 
hypotheses then. He had, first of all, a hypothesis that x-rays were waves. And to assume 
that they’re waves means that they will exhibit diffraction. They’ll exhibit the 
characteristic physical phenomena that are associated with waves: reflection, refraction, 
and, in this case, diffraction.  

So he had – the hypotheses were 1.) X-rays are waves, some kind of waves of 
undetermined origin so will diffract. Now, the diffraction pattern depends on the size of 
the aperture relative to the wavelength. All right? So he had a second hypothesis that 
crystals would serve as an appropriate diffraction grating. That is to say, crystals are 
periodic, have a periodic atomic structure, maybe I should say lattice atomic structure, 
and the spacing of the – the spacing on the lattice, so the spacing of the atoms is 
comparable to the wavelength of the x-rays. The spacing of the atoms is comparable to 
the wavelength of the x-rays.  

All right? So that was the setup for his experiments. And I’m gonna do a one-dimensional 
version of this. I want to do – talk about the mathematics that comes up and how the 
Fourier transform comes in, in a one-dimensional version also. Of course, everything 
here is three-dimensional. Crystals are three dimensions, things are much more 



complicated. The pictures that you get, the setup is much more complicated, but you can 
see some of the essential points if we already look at the one-dimensional picture.  

Now before I go on any further, since I am out of my depth here, has anybody ever done 
any experiments like this, anybody familiar with x-ray diffraction experiments or x-ray 
crystallography, anybody in materials or anything out there? I have a lot of buddies who 
are material scientists, so I’m always afraid of one of them is gonna show up when I talk 
about this one day.  

All right. Well you will, if you – so it’s really it’s a, by now of course a very standard 
experimental procedure, and quite refined and quite sophisticated. But this how it looked 
at the beginning, and there’s a very important connection here with a Fourier transform, 
and a very fundamental fact that you have to know about the math in order to interpret 
the answers that you get, in order to interpret the results of your experiment. And that’s 
really, what I want to get to.  

So let’s look at the one-dimensional version of this. I’ll tell what you want to – I want to 
show what you want to measure, I want to say what you want to measure, and how you 
go about measuring it. Or again, what I really want to is how the math shows you an 
important physical property of the – physical result of the experiments.  

All right, so I think of a one-dimensional crystal as an array of atoms along a line, as 
evenly spaced, let me just say, along a line, like so. And let’s say the spacing is P. I’ll get 
out of the way in just a second here. P. All right? So they’re – the atoms are spaced P 
units apart, whatever the distance is. And there’s effectively an infinite number of atoms 
because it is. All right? So it’s effectively an infinite line. That’s actually very important 
in the math, an infinite array.  

Okay, now what you want to study – and the atoms are all identical. All right? What you 
want to study is, again for reasons, which I don't know, all right, but those who do the 
experiments understand this, so you want to study the so-called the electron density 
distribution for the entire crystal. You want to study the electron density distribution for 
the crystal. Now because the crystal consists of identical atoms arrayed, the idea is there’s 
an electron density distribution for the individual atom and then that’s replicated for the 
entire crystal. Or, as we would say given the work we’ve done, it’s a periodized version 
of that.  

That is, so the electron density distribution for the crystal is then a periodized version of 
the electron density for a single atom. All right? So let’s say rho of X is the density, the 
electron density around a single atom. Density for an atom, all right? Then if you 
periodize it, the way we always periodize functions by summing up shifts, and write 
down a formula for that.  

So again, here’s the crystal with the atoms spaced P apart. Here’s whatever it looks like. 
Imagine this a description somehow of the density, let’s call it rho of X, so that describes 
the density of a given atom, and then that’s replicated for the entire crystal, or periodized 



for the entire crystal like that. So let’s call that rho, the density for the crystal, and that’s 
the periodized version of the individual one. So let’s say rho, so P of X indicating that 
spacing P apart, is the sum from K equals minus infinity to infinity of rho of X minus K 
times P.  

Okay? That’s the standard formula for periodizing a function to get a function of period 
P. That’s what the period should be, as dictated by the physical spacing of the atoms, P. 
Okay?  

Okay, according to our headline from last time, the diffraction pattern should be the 
Fourier transform of this, or should be determined by the Fourier transform of this. The 
diffraction pattern, which is what you want to see, a matter of fact it’s what you do see 
when you make the experiment.  

So you shine x-rays through the crystal, a bunch of spots or whatever, I shouldn’t say a 
bunch of spots because you don’t know what’s gonna happen, but a bunch of spots show 
up on the x-ray film. And the pattern of the spots, the way the spots are arrayed, should 
be determined somehow by the Fourier transform. Diffraction pattern determined by the 
Fourier transform of rho, so I want to find that. Find this or find this in a – determine it in 
an effective enough way this is gonna allow you to interpret the results of the experiment.  

Okay, now to do that, I’m gonna write the periodization – I’m gonna do something new 
with the periodization that we haven’t done before. We didn’t do when we were first – 
when we first studied it, but we have new techniques that are available to us now that 
allow us to carry the analysis a little bit further, a little bit differently than we did before.  

So I’m gonna write the periodized version as a convolution. OP of X at a convolution, 
and I’m gonna invoke the convolution theorem. Now you remember I can shift a 
function, it’s a sum – but what is the periodization? The periodization is now, as it always 
was, a sum of shifted versions of the function. You have a single function, and you shift it 
and you add them all up. I can shift a function by convolving with a shifted delta 
function, so that is rho of X minus KP is rho of X convolved with delta of X minus KP.  

And you notice I am now happy to write variables in my delta functions, if you don’t like 
it, tough. All right? I made a big deal out of the fact that deltas aren’t functions of points, 
they’re functions of functionals – they’re functionals and so on, but I feel no hesitancy in 
writing that. Okay?  

That’s the shifted version. You shift the function rho by convolving with the shifted delta 
function; that’s a basic property of delta functions. All right, so the periodized version is 
the convolution of the fixed function rho with a sum of delta functions. That is rho of X, 
rho P of X I’m calling it, that’s the sum minus infinity to infinity a rho of X minus KP. 
That’s the sum, K equals minus infinity to infinity of rho of X, the fixed function 
convolved with the shifted delta function, X minus KP.  



Or if I want to write, if I want to bring the – the rho is fixed here, doesn’t depend on K, so 
I could bring that outside the sum. That is I write this as rho of X convolved with this big 
sum of delta, it’s shifted delta, K equals minus infinity to infinity delta of X minus KP.  

Okay now this object is gonna be an object of great interest and object of our study, so let 
me actually introduce right now a term for it, a notation for it, so I can work with it a little 
bit more. Everybody with me, all right? I haven’t done anything really differently than 
I’ve done before. I’ve taken just a slightly different point of view toward the old 
process/procedure of periodizing a given function.  

So I want to use the notation – here, let me write it down and then I’ll pronounce it for 
you. This is called the Shaw function or Shaw distribution, really, of spacing P. All right? 
That’s the Cyrillic letter, not drawn very well, or it’s my version of a Cyrillic letter, 
Shaw. And as far as I know, actually this notion was introduced and popularized by 
Bracewell. I don't know the history of it but is now pretty standard. All right?  

And the reason why that particular symbol is chosen, or reason why Bracewell if indeed 
it is due to Bracewell, reason why he chose that letter was it was supposed to be 
reminiscent of the picture associated with this. That is, if you would draw the picture 
associated with the sum of shifted delta functions, you would have bunch of arrows 
spaced P apart. So zero P, two P, minus P, minus two P, and so on, infinitely many of 
them. And three of them sticking up, make a Shaw. I’m not making this up. Okay? That’s 
the pictorial representation of the Shaw distribution.  

All right, now what is the Fourier transform of this periodized electron density 
distribution? Why use the convolution theorem? Okay? So I write rho of P of X then is 
rho of X convolved with the Shaw function with spacing P of X. And if I’m interested in 
the Fourier transform because I want to understand the diffraction grating, I want to apply 
the convolution theorem. So Fourier transform of rhos of P of X is the Fourier transform 
of the convolution which is the Fourier transform of rho, let me just write it like this 
without the variable. It’s the Fourier transform of rho, I’ll get it, times the Fourier 
transform of Shaw.  

So the problem becomes how do you find the Fourier transform of Shaw? All right. This 
is a fixed function, depending on the nature of the crystal. All right? This is something – 
depend of the crystals just depends on where we have the spacing. I don't have anything – 
I don't have any atoms in there, it just indicates that I put a delta function at each point on 
the line, spaced P apart, and the general crystal is defined by this convolution.  

To find the diffraction pattern, I want to find the Fourier transform of the fixed function, 
which is gonna be the same for every atom, for each individual atom rather, and then 
times the Fourier transform of the Shaw function. So the question is: What is that? Ah, 
there’s a P here. So what is, that’s the question. All right now let me say a couple things 
about that. It’s not obvious. It’s not obvious and it’s remarkable, actually, what happens. 
And we can analyze it very easily and rigorously with all that we’ve developed.  



So first of all, does it even make sense to consider something like that? Well yes. A given 
delta function is, of course, a distribution, it’s the simplest distribution, it’s the evaluation 
distribution, but I’m considering a huge sum here. Does the sum really make sense? I 
mean does an infinite sum of delta functions make sense. That’s the first thing I should 
comment on is that the Shaw function makes sense. Shaw function of spacing P makes 
sense as a distribution.  

Matter of fact let me specialize here, excuse me, to take the case P equals one, so the 
atoms are spaced one apart, then I’ll do the general case in just second. So let me take the 
case, take P equals one, and again I’ll pass to the general case quite easily after I do this 
case. So and I’ll draw out the subscripts. So let me just write Shaw of X is sum from K 
equals minus infinity to infinity of delta X minus K. All right, so the deltas are space on 
apart. At every integer, you put a delta.  

Then this thing makes sense as a distribution. Now again, why? I tell you I have a 
distribution. What that means is you give me a test function, I have to tell you how this 
operates on a test function. Well it operates by evaluation. In this case, I add up all the 
values. That is the Shaw function operating on a test function phi, that’s the sum of 
shifted deltas operating on phi, that is just the sum from K equals minus infinity to 
infinity of phi evaluated at the points to which the delta – where the delta function is 
shifted. Okay? I won’t – I skipped a couple steps here but that’s what the result is and 
you can fill that in.  

Now why does this make sense? Well if phi is a test function, and phi is rapidly 
decreasing, then it’s gonna be going down fast enough, way fast enough, so that this sum 
will converge. All right? Because the sum converges, the pairing makes sense. All right? 
So the sum converges so all is well, all right?  

So if this thing makes sense as a distribution, then so does this Fourier transform so this 
also make sense. All right? In fact, I can say this. In fact, I can say that the Fourier 
transform of the Shaw function operating on phi is, by definition, the Shaw function 
operating on the Fourier transform of phi, classical Fourier transform, and I know what 
the Shaw function operating on the Fourier transform – operating on anything is, it’s just 
the value of the thing at – the sum of the values at the integer points.  

So this is the sum from K equals minus infinity to infinity of the Fourier transform of phi 
operating on K, evaluated to K. So the Shaw function, again, operating on phi is the sum 
of deltas operating on phi. Each delta operating on phi pulls out the value of phi at the 
place where the delta function is centered, phi of K, and I add them all up. All right?  

The definition of the generalized Fourier transform is the Fourier transform of whatever 
distribution is operating on phi is the distribution operating on the Fourier transform of 
phi. So it’s the Shaw function, again, operating on the Fourier transform of phi. This is 
the sum of shifted deltas. Each delta operates on this thing to evaluate at the place where 
the delta is shifted, so Fourier transform at K, and then you add them all up. So it’s that 
result. Okay? But there is more to say.  



Now you could just look at the formula for the Shaw function and try to write it down as 
formula for the Fourier transform because you know the Fourier transform the individual 
delta functions. All right? You could write down the Fourier transform of the Shaw is the 
sum from K equals minus infinity to infinity, the Fourier transform of these delta 
functions. And I know the Fourier transform of a shifted delta function is just the 
complex exponential. That was one of our basic, one of the first formulas we derived 
when we were talking about generalized Fourier transforms.  

So I could write down this is equal to the sum from K equal minus infinity to infinity of E 
to the minus two pi IKS. And you would be right to write that down. That’s okay. All 
right? But it misses – that’s correct, but it misses the point. This series is hard to consider, 
actually. This series, again, doesn’t converge as a classical series. I’m adding up – you 
think about it, I’m adding a bunch of sines and cosines here. I’m adding a bunch of 
complex exponentials. The coefficients in front are all one. There’s no way that this 
series converges classically but it does make sense as a distribution. All right?  

It doesn’t converge classically, all right, but it’s okay as a distribution and the formula’s 
right. But okay as a distribution and it’s okay to say that the Fourier transform of the 
Shaw function is this sum of exponentials. It’s okay but it misses the point. But you’re 
missing something. But you’re missing something, all right? What you are missing 
actually is the deepest fact known about the integers, missing.  

To make this – to see the magic, and there really is some magic here, you bring in the so-
called Poisson summation formula. Okay? You need the Poisson summation formula. It 
is, as I say, one of my good friends who’s a number theorist, analytic number theorist, 
refers to this as the deepest fact known about the integers. Once the Riemann hypothesis 
is proved, that’ll be the deepest fact known about the integers, but until that happens this 
is pretty deep. And it’s also not so hard to prove.  

All right, it says the following. It says if phi is a rapidly function, there are other classes 
for which this applies but this will be sufficient for our purposes, then if I add up the 
values of phi at all the integer points, that’s the same as adding up the values of the 
Fourier transform phi at all the integer points. Fourier transform of phi. Now this is an 
amazing, unexpected, not intuitive result. The individual – I should call these K, sorry. 
Sorry, sorry, sorry. All right?  

The individual value, the value – I mean what, who cares about the integers, right? I 
mean, you know, why would the value of the function at an integer come in and why 
would the value of the Fourier transform at an integer come in? And the value of the 
function at a given integer has nothing to do, really nothing to do with the value of the 
Fourier transform at a given integer. I mean there’s no relation there. You can write down 
the formula for the interval and so on but there’s no – you shouldn’t expect any sort of 
special relationship with how big phi is at five versus how big the Fourier transform is at 
5, or 10 or 6 or 17 or anything else. All right?  



But the sum, so this is a case where it’s the limiting behavior and adding them all up, the 
sum of the values of the function phi at all the integer points is the same as the sum of the 
values of Fourier transform at all the integer points. Okay? Now I’m gonna prove that for 
you.  

It is an amazing fact and remarkable fact and I’d say the deepest fact known about the 
integers. And in fact, if you took an undergraduate signals and systems class, you 
probably know this fact but you didn’t know you knew this fact. Or, as I think I said in 
the book, the deepest fact about the integers is well known to every electrical engineer, 
and every material scientist for that matter, they just don’t know they know it.  

All right. So I’m gonna give a prove of the Poisson summation formula. How am I gonna 
do that? All right I’m gonna periodize proof. I think it’s the first time I’ve actually 
written that word on the board but I think it deserves it. All right, so I’m gonna periodize 
phi. So phi is, again, little phi is a given rapidly decreasing function, periodized phi to 
have period one. All right, so what is that? That is phi of – I call it capital phi of X is the 
sum from K equals minus infinity to infinity of phi of X minus K.  

That’s the periodization, never mind bringing in the delta functions or anything like that, 
just think of the old days where we just wrote down that formula. And that periodizes 
little phi to have period one. Now everything is smooth here, everything is legit because 
phi is rapidly decreasing, the series converges, converges uniformly, it’s continuous, it’s 
everything you would want. Don’t worry about it, don’t ask me about it, don’t get me any 
trouble. All right? Good.  

Now capital phi being such a nice function has a Fourier series: expand phi, capital phi 
that is, in the Fourier series. All right? Good. All right phi, phi of X is sum K equals 
minus infinity to infinity. Phi hat K E to the two pi IKX. Boom, got it, great. All right? 
That’s the Fourier series.  

I can see what you’re saying. I finally got a math teacher who speaks English and he’s 
putting on an accent. All right.  

Now what deal is this? All right now you showed in the homework problem that there 
was a relationship between the Fourier coefficients of the periodized function and the 
Fourier transform of the original function that you periodized. All right. You showed – 
we know that the Fourier coefficient, the Nth of the K Fourier coefficient, of capital phi 
to periodized function is the Fourier transform of the function you were periodizing, also 
evaluated at K. That was a homework problem.  

And so let me just plug that information in now. All right? And so phi of X, its Fourier 
series, K equals minus infinity to infinity, it’s the Fourier transform of the function you 
were periodizing times E to the two pi IKX. All right? That’s on the one hand. That’s the 
Fourier series for capital phi. On the other hand, phi was given actually as the 
periodization of little phi, so that’s the sum from K equals infinity to infinity of phi of X 
minus K. Right?  



I have two expressions for the same thing. This comes up a lot in this course, two 
expressions for the – if you have two expressions for the same thing you’ve got a lot of 
power over them, and the simplest thing to do here is just to evaluate at zero. Evaluate at 
X equals zero. All right?  

On the one hand, phi of zero, if I use the Fourier series expression, if I plug in X equals 
zero here I’m just adding up a bunch of ones times the Fourier transform. Phi of zero is 
the sum from K equals minus infinity to infinity of F of phi K. On the other hand, phi of 
zero, if I use the other expression, K equals minus infinity to infinity is phi of zero minus 
K, so phi of minus K.  

Well if I sum from – write this expression a little bit more neatly. If I sum from minus to 
infinity to infinity, summing over – summing taking sum from minus infinity to infinity, 
phi of minus K is the same thing as summing K equals minus infinity to infinity of phi of 
K. All right? Where do we start? Where do we finish? What did I do? What did I do? 
What did I do? I evaluated the same expression at two different – at the value zero; I get 
two different expressions for the same thing. That is to say, I have proved my Poisson 
summation formula.  

So the sum of the Fourier coefficient, Fourier transform – excuse me, value of the Fourier 
transform, is the same thing as the sum of the values of the function at the integer points. 
That deserves a couple of exclamation points, at least two. Okay? Wonderful. Wonderful.  

Now let’s use this to find the Fourier transform of the Shaw function. Let’s go back to 
that. That’s what I wanted to get. All right? So back to the Fourier transform of the Shaw 
function. What did we find? We found that the Fourier transform of the Shaw function 
evaluated at phi was equal to the Shaw function evaluated at the Fourier – or paired with 
the Fourier transform of phi. And again, that’s the sum from K equals minus infinity to 
infinity, the value of the Fourier transform of phi at the integer points.  

But now I invoke the Poisson summation formula. This is so exciting. This is equal to the 
sum from K equals minus infinity to infinity of phi of K. But now remember, that this in 
turn is just the Shaw function itself evaluated or paired with phi. Where do we start? 
Where do we finish? The Fourier transform of the Shaw function paired with phi is the 
same as the Shaw function paired with phi. What is the conclusion?  

The conclusion is the Fourier transform of the Shaw function is the Shaw function, three 
exclamation points, although maybe I should put two because it’s entirely equivalent to 
the Poisson summation formula. Entirely equivalent, okay?  

This is something that most, that many electrical engineers know. All right? This is 
equivalent to the Poisson summation formula. This is equivalent to the deepest fact about 
the integers that is known. All right? And every electrical engineer who takes a 
sophomore level course on signals and systems probably knows this, although they may 
not know that they know it. So again, it’s a little surprising here, right? It’s very 
surprising. Here’s the pictorially. I mean here’s the original Shaw function spaced of – 



delta function spacing of the integers: minus one, two, minus two. That’s the Shaw 
function, all right?  

I take the Fourier transform I get the same thing. It’s a bunch of deltas again. Not just the 
sum of complex exponentials or rather it is a sum of – it is an infinite sum of complex 
exponentials, but that’s infinite sum of complex exponentials, as a distribution, is actually 
the sum of deltas again. So let me put it horizontally. Take the Fourier transform I get the 
same thing: zero, one, minus one, two, same thing. Okay, all right, very important fact, 
extremely important.  

Now let’s do the Shaw function with spacing P. That is gonna follow from scaling 
properties of the delta function. All right. Now let’s do the Fourier transform of the Shaw 
function spacing P. So remember the Shaw function with spacing P of X is this sum: sum 
from K equals minus infinity to infinity delta X minus KP, all right, same idea just 
different spacing.  

Okay, so let me work with the individual delta, show you what happens here. So look at 
delta of X minus KP. What I’m gonna do is factor a P out of this thing, all right? So I’ll 
write this as delta of P times X over P minus K. Now you remember what happens is the 
scaling – an important scaling property of a delta function, this is – do I have this right. 
This is then one over P times the delta function at X over P minus K. Okay? Okay, did I 
get that right? Yes.  

All right, so in other words, the Shaw function with spacing P at X is the same thing as 
the sum of these shifted delta functions. So it’s the same thing as one over P times the 
sum from K equals minus infinity to infinity – well, it’s the Shaw function with spacing 
one evaluated at X over P. All right, make sure you – I skipped a couple of steps there.  

Shaw function with spacing P, that’s the sum of these shifted delta functions. That’s the 
same thing as one over P times the delta – so it’ll be a sum of a bunch of delta functions 
with spacing one apart but not evaluated at X, evaluated at X over P. Okay? So it’s one 
over P Shaw function with spacing X over P. Do I have that right again? I think so.  

So now if I take the Fourier transform of a Shaw function with spacing P, that’s the same 
thing as one over P, the Fourier transform of the Shaw function at X over P. It’s like a 
scaled version of the Shaw function. Okay? All right so that is one over P – the – and I’ll 
use the scaling theorem. The Fourier transform of X – the Fourier transform of this, right, 
is gonna be one over P. The scaling factor comes out with a reciprocal, so it’s one over 
one over P, so it’s times P times the Fourier transform of the Shaw function evaluated at 
the reciprocal of the scaling factor, so it’ll be P times X. Okay?  

The Fourier transform of the Shaw function itself is the Shaw function. When there’s no 
spacing in there, when everything is spaced one apart, this is the Shaw function then at 
PX. All right, one more step; we are almost there.  



What is the Shaw function at PX? That will be the sum from K equals minus infinity to 
infinity delta of PX minus K. So I’m gonna use the same scaling property of the delta 
function. That is, I write this as delta PX minus K, I factor out the P. That is, I write this 
as sum K equals minus infinity to infinity delta of P times X minus K over P. Okay? And 
pull that P out of the delta function. I pull that P out of the delta function. I get one over P 
sum from K equals minus infinity to infinity of the Shaw function at X minus K over P. 
Okay?  

That’s just using the scaling property of the delta function because it’s delta P times 
something here, so it’s one over P times the delta of the something. So it’s one over P 
times – and I’m adding them all up. One over P times – oops, delta, delta, delta, delta. All 
right. All right? That is the Shaw function of spacing one over P. Right? These points are 
spaced one over P apart. In other words, this is one over P times the Shaw function with 
spacing one over P evaluated at X.  

All right once again, where do we start, where do we finish? If you follow manipulations, 
what we showed was a very attractive formula. Thus, the Fourier transform of the Shaw 
function with spacing P is one over P times the Shaw function with spacing one over P. 
That is another very important formula; it gets two exclamation points itself and a couple 
underlines. Works for P equals one. For P equals one it reduces the case we had before. 
All right?  

This is another wonderful illustration of the reciprocal relationship between the domain 
and the Fourier transform domain, the original domain and the original Fourier transform 
domain. If the spacing in the original domain is P, then the spacing in the Fourier 
transform domain is one over P. And they’re also scaled; the height is also scaled by one 
over P.  

So again, here’s the Shaw function in the original domain, say, with spacing zero, P, 
minus P, two P, minus two P, and so on, going on to infinity. I take the Fourier – this is 
Shaw P. I take the Fourier transform and the spacing is one over P apart: zero, one over 
P, minus one over P, two over P, minus two over P, and so on. And the height is also 
scaled by one over P. Okay, extremely important.  

Let’s get back to our crystal, all right? Now let’s get back to the crystal. All right? All of 
this was to help us get our Nobel Prize. There’s a lot at stake. And so back to the crystal, 
the spacing of the atom, the electron density distribution is described by rhos of P of X is 
rho of X convolved with the Shaw function with spacing P. All right? That is the 
periodized version of the electron density distribution for the crystal. All right? The 
atoms are spaced P apart.  

Now you do your diffraction experiment, all right? You shine your x-rays through this 
crystal. Hold your breath, good; get an exposure on the film. What you see on your film 
is, essentially, the Fourier transform. All right? You see the Fourier transform of this. So 
that’s the Fourier transform of rho convolved with Shaw sub P. And what is that? That’s 



the product of the Fourier transform of rho and the Fourier transform of the Shaw 
function with spacing P.  

The Shaw function with spacing phi has a Fourier transform spaced one over P. That’s 
the Fourier transform of rho times one over P the Shaw function at one over P, one over 
P. All right, let’s write this out one more step. Okay? Let me write it – let me write this 
out with the variables in there.  

Because this also involves the sampling property of the Shaw function – of the delta 
function, so this is F of rho of X times the Shaw function. So this is sum K equals minus 
infinity to infinity, there’s one over P out in front of the whole thing, delta X minus K 
over P. All right? Now remember what happens if you multiply a function times the delta 
function. All right? That’s one over P sum, I’ll bring it inside I won’t skip a step, minus 
infinity to infinity, the Fourier transform of rho of X times delta X minus K over P.  

Multiply the sampling for the – yeah. The sampling property of the delta function is if I 
multiply a function times delta that evaluates the function at K over P times the delta. 
That is, this is equal to the sum from minus infinity to infinity, the Fourier transform of 
rho, one over P times the whole thing, evaluated at K over P times the delta function X 
minus K over P.  

All right, we’re almost done. What do you see in your – so this is what you see in your 
diffraction experiment. All right? You see this, now what are you really seeing in your 
diffraction experiment?  

You are seeing a bunch of spots. Imagine these things – and these are impulses at spaced 
– at points K over P, zero, one over P, two over P, three over P, and so on, minus one 
over P, minus two over P. They have this intensity also scaled by one over P. So you are 
seeing in your picture, you see a bunch of spots of intensity, the value of – density value 
evaluated there and then spaced at one over P part, zero, one over P, two over P, minus 
one over P, minus two over P, and so on. Okay.  

You had to know this if you want to claim your Nobel Prize. Why? Because you might 
think that you do a diffraction experiment, the spacing of the spots is proportional to the 
spacing of the atoms. All right, the atoms are spaced P apart. You think you do an 
experiment, all right, the spacing, what I – I see a bunch of spots. That must be 
proportional to the spacing. But it’s not. It’s proportional to the reciprocal of the spacing, 
all right?  

Nature is taking a Fourier transform for you. And what you see, is you see a bunch of 
spots spaced on one over P apart, so you make this measurement. And then you say that’s 
the reciprocal of the spacing in the atom, in the crystal. That’s the reciprocal of the 
spacing in the crystal. All right? You have to know your math. If you don’t know your 
math, kiss your Nobel Prize goodbye. Okay?  



All right, that’s it for today. Wasn’t that exciting? And on Wednesday, we’re gonna make 
a different use of this and talk about sampling an interpolation. Okay, thank you very 
much.  

[End of Audio]  
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