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Instructor (Brad Osgood):We’re on the air. Pay attention. You should – I think the 
exams will be back sometime today. I’ll send out a note when everything is all sorted out. 
I don’t really know how things are gonna turn out yet. I graded my part over the 
weekend. I graded the first part problem and people did actually quite well on that. I think 
Rajib is working on it now, and at some point – anyway, I’ll send you a note out when 
everything’s all set for you guys to pick up. All right? I am going to do a little demo on 
aliasing today that I didn’t want you to miss. Unfortunately, I loaned my strobe light to 
somebody, and I can’t find it. I can’t remember who I lent it to, so I can’t give you a 
demonstration of the spinning fan, which is the classic demonstration of aliasing. If I can 
get my strobe light back, then maybe we’ll have a chance to do that a little bit later. So 
I’m gonna give you a demonstration, a slight demonstration, a brief demonstration on 
what happens when you under sample music, that is when you turn analog music into 
digital music that we’re all so used to these days, and when you do it the wrong way, or 
you do not do it accurately enough. So how would you – how rapidly do you have to 
sample a piece of music in order to be able to interpolate it, in order to be able to 
reconstruct it digitally? Well, for that we need – sampling. We need to know something 
about human hearing. That is how high a note you can hear, and that’s roughly about 20 – 
the bandwidth of – or rather – gonna start that again. You can hear roughly up to 20,000 
hertz. That is on the high end. You can hear – dogs go up much higher of course. You can 
hear up to roughly a note with a pitch 20,000 hertz. That’s way beyond anything you’d 
really hear musically of course, way beyond where music goes, but that’s roughly the 
range of the human hearing from about 20 hertz to about 20,000 hertz.  

So according to the way we do things then, the bandwidth or the spectrum of – a slice of 
spectrum of music would go roughly up to say 20,000 hertz and then down to minus 
20,000, so the frequency would be – and beyond that it’s essentially zero. At least as far 
as you’re concerned it’s zero. You can’t hear anything. So if that’s a picture of the 
spectrum of a slice of music, then it’s between minus 20,000 and 20,000, so the way we 
write things, that would be P over 2. The bandwidth is 20,000, so P is about 40,000, 
which means that if you wanna sample and reconstruct music, you should do it roughly at 
a rate of 40,000 hertz. That is to say you should sample every 40,000th of a second. So 
this should be the sampling rate for music, roughly 40,000 times per second, or sampled 
at a rate of one over 40,000 per second in order to be able to have confidence that you are 
sampling rapidly enough so that your reconstruction based on the sync function is gonna 
interpolate the actual music. Now in fact, as people probably know, they sample at a rate 
– for CDs, for example, they sample at a rate higher than that. Do you know what it is off 
the top of your head? 44.1 or something like that? Is that right? Somewhere around there? 
In fact, the sampling rate for CDs is whatever it is. I think it’s 44.1 kilohertz. And also, as 
far as I know, and some of you may know the history of this better than I do, this is – it’s 
gotta be something bigger than 40,000, all right? But as far as I know, the precise number 
comes from just the equipment that they were using when they were making the 
transition from analog to digital. I think the way the tapes – I’m sorry, do you know?  

Student:[Inaudible].  



Instructor (Brad Osgood):Is that right? Oh, really? The story that I had heard – I 
tracked this down [inaudible], but I haven’t looked at it really carefully was that 
everything was set up for analog recording, of course. And the way the machines were set 
up, it was just most natural to sample at that rate somehow. They got the best – they got 
the most accurate – most reliable sampling if they did it roughly at that rate, but it was 
not – that number comes out of practical considerations, not out of any sort of theoretical 
inspiration. Anyway, that’s how fast you should sample, okay? So here is a well-known 
piece – and if you sample at less than that rate, then you’re not gonna get an accurate 
reproduction of the music. So here is Gershwin’s Rhapsody in Blue sampled at a high 
enough rate, sampled at 44.1 kilohertz. It has a famous clarinet gliss at the beginning. 
Everybody remember? Everybody heard this? Okay. All right, now – so then – isn’t that 
nice? Nice way to start the day. So then what we did was sample this at a low rate, I think 
around 16 hertz – 16 kilohertz. All right? Not 16 hertz, 16,000. Roughly a little less than 
half of that. Now remember what that means in terms of the picture. For me, as I said 
many times, the sampling theorem is identical with the proof of the sampling theorem, so 
I always try to imagine what things look like in the frequency domain, in the spectrum. 
So that means if the real spectrum goes to that range, you are cutting of like here. So that 
means you’re cutting off a bunch of high frequencies, so to speak. And what does the 
proof of the sampling theorem say? The proof of the sampling theorem says to periodize 
this thing by a Shaw function that has spacing that is too narrow and then cut off.  

So if you just take the first shift, if you shift thing over by the corresponding Shaw 
function, then you’re doing this. You’re getting like that. And then shifting it over the 
other way, you’re doing that, so when the two signals add, when this adds with its shifted 
version, you’re getting something that looks like that. And then you cut off – [inaudible] 
I’m not doing this right. And you cut off like that, so you’re getting some signal – the 
frequency of the signal that you’re reconstructing, instead of the original spectrum, looks 
something like that. And they talk about low frequencies being aliased as high 
frequencies, and high frequencies being aliased as low frequencies. What they mean by 
that is the lower part of the spectrum here is getting shifted over, and is getting added in 
as if it were part of the high frequency. So that means the lower frequencies are being 
aliased as high frequencies because you’re shifting things inadequately to shift this 
spectrum off itself. So you’re reproducing a signal based on this picture of the frequency 
instead of this picture of the frequency, and here is what you get. [Inaudible] lower parts 
are not as affected by [inaudible] distortion is more [inaudible]. You get the idea. The 
distortion really is more on the high end of things because it’s the high end of things 
where the overlap’s occurring. You’re cutting it off by not enough. You’re shifting things 
over. You’re adding up. And there’s more mistake that’s made in the higher part of the 
spectrum than the lower part of the spectrum. This part of the spectrum is pretty much 
unchanged. It’s the higher part of the spectrum that’s getting messed up by an inadequate 
shifting or too low a sampling rate.  

And there are all sorts of experiments and tricks you can do with this. Aliasing should not 
always be thought of as the enemy, by the way. There are times when you wanna alias on 
purpose. As a matter of fact, there’s a problem I believe on the problem set on the basis 
for the so-called sampling oscilloscope where you try to sample – if you have a very fast 



signal to sample, that’s faster than – the frequencies are higher than an ordinary 
oscilloscope can actually handle, then there are ways of aliasing effectively to get a 
picture of the signal at a lower – by sampling at a lower rate. So it’s not that aliasing is 
always the enemy necessarily, but it’s something that certainly has to be understood. 
Then again, as far as I’m concerned, understanding aliasing is understanding the proof of 
the sampling theorem, which is what we’ve been talking about. Okay. The other famous 
example with aliasing is one you had a problem on also, and if I can find my strobe light, 
we’ll do it sometime because it is sort of fun to do where you freeze a fan going – or you 
freeze a rotating object that’s rotating periodically. It’s described by a periodic signal. If 
you sample it inappropriately, say at too low a rate once again, you can freeze it. You’ve 
probably seen demos like that. It’s very impressive. Okay. And then what I’d really like 
to do – I have done this before – is do some other examples of sampling and actually 
spectrum analyzing with a real, honest to god spectrum analyzer, bring my trombone in, 
bring some other musical instruments in, so you see how they look in the frequency 
domain. You can also do a bunch of interesting demos on that. We’ll see if we have the 
time for that. Any questions about that? Anything on anybody’s mind? Okay. So today, it 
is welcome to the modern world. Today, we’re gonna make the transition from the 
continuous to the discrete, from the analog to the digital, the modern world. I want to 
introduce – you’ve actually been using it in – any time you’ve used MATLAB with a 
Fourier transform you’ve been using it, but now we’re gonna really talk about why it 
works, and how it works, and where it comes from. I wanna introduce the DFT, the 
discrete Fourier transform. The DFT – that is to say we’re not saying farewell to the 
continuous and the analog world, but we are now having a meeting between the two, the 
old world and the new world. So we wanna move from the continuous and the analog to 
the discrete and the digital. So we’re moving from the continuous and analog to the 
digital and discrete, to the discrete and digital.  

Now like so much else in this course, there are choices to make. Some people would say 
this is not a transition at all. You should never have been in a continuous world in the 
first place, you Neanderthal you. The modern is digital, the modern world is discrete, and 
you should always understand things in terms of exactly those sorts of operation. That’s a 
defensible choice, and there are courses actually on digital signal processing where you 
don’t really talk so much about the continuous case, but everything is discrete and digital 
right from the beginning, and all the formulas go that way, all the demonstrations go that 
way, all the theorems go that way, and so on. So that’s defensible. I don’t like it, and I 
don’t think it’s ultimately that – I think you miss a number of things by doing it that way, 
and I don’t think it always simplifies things, but nevertheless, that’s a defensible choice. 
For us however, we wanna make a transition from the continuous to the discrete, or from 
the analog to the digital. And in doing so, I wanna leverage I hope on all the hard won 
skill and intuition that we built up on the continuous Fourier transform. We spent a lot of 
time and before this class, I’m sure you spent a certain amount of time also on just 
developing those ideas, understanding analog signals. And what I wanna convince you of 
is that a lot of that skill that you’ve build up, and a lot of the intuition that you built up 
carries over. So much so that even there’s a similarity in the formulas. Even the formal 
aspects of the subject are similar enough in the discrete case that you can carry over what 
you learned then to what you’re gonna learn now. That’s the other reason for doing it this 



way is so we can use all that we have learned so far in the continuous and analog case to 
understand, and help us analyze, and help us work with the discrete and the digital case. 
So that’s the choice that we made, but it is a choice. It’s not necessarily the only way of 
doing things, by no means. So here’s how we’re gonna proceed. Here’s the plan. It comes 
really in three parts. One – so I have – you’re starting off with continuous signals, so FFT 
is a continuous signal as usual. There’s a continuous signal. When I say that, I’m not 
meaning it in a formal mathematical sense. I’m thinking of it as a function of a 
continuous variable T, and that’s what’s gonna get replaced by a discrete. F is gonna get 
replaced by a discrete function. All right? Think of this as the analog case.  

So the first step is I wanna find a reasonable discrete approximation to FFT. Secondly, I 
wanna find a reasonable discrete approximation to its Fourier transform. All right? I 
know how to take the Fourier transform and make a continuous signal. The question is 
can I discretize that in a reasonable way that’s providing a reasonable approximation. 
And the third, which really combines the first two steps immediately when you see how 
the development goes, is to find a reasonable way from passing from one to the other, 
from the discrete approximation of F to the discrete approximation of the Fourier 
transform that is the most natural thing to do in this case. That is it approximates the 
passing from the continuous case, the continuous function of the continuous Fourier 
transform. So find a reasonable way of passing from the discrete form of F to the discrete 
form of the Fourier transform that mimics – I won’t write the rest of the sentence down – 
that mimics the way you pass from the form of F to the signal to its Fourier transform, the 
continuous version of that. Okay? And again, I wanna make this look as much like the 
continuous case as possible. There are different ways of making this argument also. 
There are different choices for how you can execute this. We’re actually gonna base this 
on the sampling theorem, misapplied a little bit or – yeah, misapplied is probably the 
right word. So we’re gonna base this – that is to say, I’m gonna base the reasonableness, 
the test of reasonableness, on sampling. So base this on misuse of the sampling theorem.  

Well, the sampling theorem let me say – rather than saying based on a misuse of the 
sampling theorem, I’m not gonna write down the sync interpolation. I’ll say I’m gonna 
base it on the misuse of sampling. Here’s what I have in mind. Okay? I’m gonna make 
some assumptions that I know are wrong right from the outset. I’m gonna assume – but 
play along – assume first of all that F of T is limited – it’s a time limit signal to zero less 
than or equal to T, less than or equal to L. Okay. And I’m gonna also assume that the 
Fourier transform of F is limited to zero less than or equal to S, less than or equal to 2B, 
so B is the bandwidth, and I’m writing B for bandwidth instead of P. Now both of those 
assumptions cannot hold together. So you can’t have both together, but play along. This 
can’t happen. This cannot be because the signal cannot be both time limited and band 
limited. That’s one thing. The other thing here is that I’m writing the Fourier transform as 
if it’s only on the interval from zero to 2B. Sorry, you can’t see it very well here. So F of 
S is limited by zero less than or equal to S, less than or equal to 2B. All right? Now we 
know the Fourier – that’s what I just wrote there. The Fourier transform is symmetric. 
You talk about frequencies going from minus B to plus B. The only reason I’m saying 
from zero to – as between zero and 2B is because of the indexing of the discrete variable 
that’s gonna go along with this. You’ll see what I mean. All right? So we’re saying this – 



it’s purely a formal statement just to make the notation a little bit easier in a minute – 
saying this to make indexing of the discrete variable easier. All right. You’ll see. So just 
play along.  

All right, now – so I have a sample that’s limited in time and limited in frequency. We 
know that can’t happen, but let’s play along. And what would the sampling theorem tell 
us? If I wanted to reconstruct F, how many samples would I need? Or rather what should 
the sampling rate be? Well, the sampling rate to consider myself getting a reasonable 
approximation of F from its samples is dictated by the properties of F in the frequency 
domain, that is to say the bandwidth of it. So to get a reasonable discrete approximation 
of F by sampling, I take samples spaced one over 2B apart. That is the sampling rate 
should be 2B, and so the samples should be one over 2B apart in the time domain. Okay? 
So in the time domain, here’s zero, 2B, and the sample should be spaced one over 2B 
apart. So let’s say there are N of them. Let’s say take N samples. All right? Oh sorry. 
This is the time domain, so the length of the interval is L. In the time domain, the 
function is limited from zero to L. I take the sample space, one over 2B apart, so I should 
have N over 2B is equal to L. That is if I take N samples, and the relationship between N 
and the number of samples that I take, the spacing, and the length of the interval that 
they’re supposed to fill up is that, and it’s equal to 2B times L if I take N samples. Okay? 
And let’s call the samples say T [inaudible] the sample points, T not zero, T1 is equal to 
one over 2B. T2 is equal to two over 2B. And then I go all the way up to [inaudible] N 
minus one over 2B. Okay? Those are my sample points. There are N of them indexed 
from zero to N minus one. So what is the sampled form of F? For us, the sample formed 
of F [inaudible] function is always multiplying a function by given – by delta function 
with that spacing. Take F of T times the sum from say K equals zero to N minus one of 
delta, T minus TK. That’s what we always mean by sampling. All right? So again, the 
TKs are zero, one over 2B, two over 2B, all the way to N minus one over 2B, so the sum 
goes from zero to N minus one. So this is sum F of TK delta T minus TK, zero up to N 
minus one. That’s a sample. We’ll just call that F sample.  

That’s still a function of a continuous variable, but it’s recording what we think of as a 
reasonable approximation to F. It’s a reasonable approximation to F in the sense that the 
sampling theorem would tell us that if I base my interpolation on those values, I should 
be able to reconstruct it exactly. That’s why it’s reasonable. And as those points weren’t 
just chosen arbitrarily, those points were chosen with that spacing because that’s what the 
sampling theorem would tell us to do. Okay, now the sampled version of F is still a 
function of a continuous variable. I can take its Fourier transform. All right? That’s not so 
hard. The Fourier transform of F sample is also a function of the continuous frequency 
variable S, and that’s just the sum from K equals zero to N minus one of F of TK times 
the Fourier transform of the delta function which E to the minus – shift the delta function 
– E to the minus 2p I S T K. Okay? All right, so where are we here? I’ve got what I think 
is a reasonable approximation to the continuous function in the time domain. I’ve taken 
this Fourier transform, but the Fourier transform is not yet discretized itself. That’s a 
function of the continuous variable. So I want to sample or discretize the Fourier 
transform of F, the Fourier transform of the sample function. Okay? How do I do that? 
Well, think of the sampling theorem. What would the sampling theorem say again viewed 



somehow going from the frequency domain back to the time domain? That is think of this 
as a function that I wanna sample. How rapidly should I sample – never mind that it’s the 
Fourier transform of something. How rapidly should I sample this thing so the sampling 
theorem will tell me I’m getting a reasonable discrete approximation of it? That is I’m 
getting enough sample points so that if I wanted to interpolate it, I’d be getting the 
function back again.  

How to sample this in the frequency domain so you get a reasonable approximation, let’s 
say – so you get a reasonable let’s say discrete version if I start using that sort of 
terminology. All right. So in the frequency domain the signal is limited to zero to 2B. All 
right? How rapidly to sample in that domain is dictated to us by what happens in the 
other domain where the signal is limited to zero L. How far apart should the sample 
points be spaced in the frequency domain in order that I get a reasonable approximation if 
I take samples of those points? It was either an answer or a cell phone ringing. One over 
L, all right? In the time domain, remember the signal is limited to one over L. All right. 
In the frequency domain, it’s limited to one over 2B. How fast the sample in one domain 
is dictated by the properties of the function in the other domain. All right? So the answers 
will go back and forth here between the function and its Fourier transform, but you 
should be able to say one or the other in either – I mean talk about one in terms of the 
other in either direction. So once again, let me say it. To think about how fast a sample a 
signal in this domain should have to do with what its properties are in the other domain. 
So I’m not speaking so much in terms of time and frequency here. I’m speaking in terms 
of the one domain and the other domain. The other domain, the function is limited to zero 
to L, so in this domain the sample should be taken one over L apart. All right? That’s 
what the sampling theorem would tell us to do if we were applying the sampling theorem 
in this direction.  

If you take samples spaced one over L apart, spaced one over L, okay – and that’s 
supposed to cover an interval of length 2B. Okay? How many sample points would I take 
in the frequency domain? So again, if I have M sample points in the frequency domain, 
then I have M times – so M points say – then I have M times one over L is equal to 2B. 
That is M is equal to 2B L. Oh, but that’s N, all right? The number of sample points in 
the time domain. That is to say – I shouldn’t say N. Suppose M points, then M is equal to 
N. That is to say I take the same number of sample points from the time domain as in the 
frequency domain. So again you – that’s what I meant by saying again here. So again in 
the frequency domain, you again take N sample points. What are they? Then they are 
space one over L apart, and sample points spaced one over L apart, so they are like S zero 
is equal to zero, S1 is equal to one over L, S2 is equal to two over L, and so on going on 
to SN minus one is N minus one over L. Okay? Again, one feels by an appeal to the 
sampling theorem that if you are sampling the function often enough at those points here, 
you’re getting a reasonable enough approximation in the sense the sampling theorem 
would tell you you could reconstruct the function exactly from those sample points. 
Never mind that all this is being misapplied. Play along. All right? Okay. So what is the 
sampled version of the Fourier transform of the sampled function? What is the sample 
form of the Fourier transform of the sample version of F? Well, how do I sample a 
function? I multiply it by the corresponding delta function. So this would be the Fourier 



transform of the sample function, F sampled, times the sum of the corresponding delta 
function I’ve gotta call – what did I call it over there? I called it K in that sum. Let me 
call it something else, M. M equals zero to N minus one. Again, I have N points delta S 
minus S K where these are the S Ks, those are sample points. Okay. That’s the sampled 
version of the Fourier transform. What is that? Let’s write it down. I’m erasing this, but 
I’m gonna write it again. Oh, there it is. Okay, so the Fourier transform of F sampled 
once again at S is this sum: sum from K equals zero up to – K equals zero up to N minus 
one of F of T K, E to the minus 2 p I S T K. All right? So I multiply that by the 
corresponding delta function – sum of delta functions rather. So this K equals zero up to 
N minus one, N minus one of F of T K, E to the minus 2 p I S T K times the sum of 
deltas M equals zero up to N minus one. I’m calling M, right? Just to be consistent here. 
Yeah. Delta S minus S K gives me what? Gives me these terms times these terms, so it 
gives me the sum over K and L going from – K and M going from zero up to N minus 
one. F of T K, that’s a constant. I get an exponential function, a complex exponential 
function times the delta function. We know what that does. That pulls out the value of the 
exponential at the point where the delta function is shifted and then times the 
corresponding delta function. So F of T K, either the minus 2 p I S M T K times delta S 
minus S K. Cool. Okay? Cool, cool, cool. Pardon me?  

Student:[Inaudible].  

Instructor (Brad Osgood):S, S M. Now it’s cool. Is it cool?  

Student:[Inaudible].  

Instructor (Brad Osgood):Are we cool? Okay. All right. So what are the sampled values 
of the Fourier transform? It is there before us, actually. All right. I wanna repeat again 
how we got to this point. We got to this point by misapplying the sampling theorem that 
has led to something that actually turns out to be reasonable and useful. And again, as is 
the tradition here, once you reach this point you sort of cover your tracks and just say, 
“All right. Now I’m gonna turn this into a definition.”  

How do we get to this point? We said we wanted to choose sample points of F that we 
thought were gonna be reasonable – sample points of the function little F in the time 
domain that we thought were gonna be reasonable – provide a reasonable approximation 
of F. We take the Fourier transform of that. That gives us a signal. That gives us a 
continuous signal, function of a continuous variable in the frequency domain.  

Then I wanna sample that, and you say to yourself, “How do I sample that?” Well, you 
sample that according to what the properties are in the other domain. That says I take 
sample values one over L apart, and I sample according to that criteria. And then the 
sample version of the Fourier transform of the sampled function is this. I’m gonna say 
that one more time to make sure I’ve said it right. The sample version of the Fourier 
transform of the sampled function looks like this.  



So what are the sampled values of the Fourier transform of the sampled function are – let 
me call them – let me just use a different notation, [inaudible] call it capital F – are F of S 
zero, say that’s the sum from K equals zero to N minus one. If M is fixed at zero here, the 
first entry, the zeroth entry is F of T K E to the minus 2 p I S is not – S zero times T K. F 
of S1 is the sum from K equals zero up to N minus one of F of T K, E to the minus 2 p I 
S1 T K, and so on. I get N sample values of the Fourier transform, and so on down to F of 
S M minus one is the sum from K equals zero up to N minus one of F of T K, E to the 
minus 2 p I S N minus one T K. All right? That’s the discrete approximation to the 
Fourier transform of the discrete version of F – discrete approximation to the Fourier 
transformation of the discrete approximation of F. All right. I approximate F by taking N 
samples in the time domain. I approximate the Fourier transform N values in the 
frequency domain according to this rule, according to this formula. All right. Let me take 
stock here because we are actually – we are there almost. So again F – F of T is 
approximated by – or discretized by [inaudible] better here – F is discretized to F of T not 
F of T N minus one, and the Fourier transform of F of S is discretized to F of capital F S 
not F S N minus one where the formula relating capital F to little F to the sampled – to 
the values here, to the values here, are the formula that I just have. F of – capital F of S M 
is equal to the sum from K equals zero to N minus one of F of T K, E to the minus 2 p I S 
M T K.  

Okay. Now there’s one more step in actually defining the Fourier transform as people 
usually think of the Fourier transform. This is still – a continuous side of things is still in 
sight. All right? We start off by looking at continuous functions and try to approximate it. 
You still see the continuous variables here. You still see the continuous picture. All right? 
And in fact, that’s most often where the Fourier transform comes up when you’re actually 
gonna apply it. There’s usually some continuous process working in the background that 
you are approximating discretely. That’s where it comes from. But the definition of the 
discrete Fourier transform as it’s usually given is purely in terms of discrete data and 
discrete signals. So the final step in defining the DFT is to sort of eliminate the 
continuous completely, and define – and everything is defined in terms of discrete signals 
and use only discrete signals, or digital signals, however you wanna call it, discrete 
signals. Now how do you do that?  

Well, it’s not hard actually. According to our spacing, according to the way we set this up 
– so in our set up, T K – the Kth value is K over 2B, right? The points are spaced 2B 
apart, one over 2B apart in the time domain. The sample points in the time domain are 
spaced one over 2B apart. It’s zero, one over 2B, two over 2B, three over 2B, and so on 
and so on. Those are the sample points in the time domain. In the frequency domain, the 
sample points S M are M over L. All right? They’re spaced one over L apart, zero over L, 
one over L, two over L, and so on and so on. All right? T K times S M – if I use this how 
they are in relation to the spacing, then it’s K times M over 2B times L, but you 
remember 2 B times L in the way we did the set up is actually the number of sample 
points. 2 B L equals N, the number of the sample points. All right? So in the complex 
exponential – so what do I have in my complex exponential? If I still keep the shadow of 
the continuous variable, I have 2 p I S M T K, but then if I use this, I can write this as E 
to the minus 2 p I K M over 2 B L. That’s K M over N. All right? Only the discrete 



indices K and M now appear in that complex exponential. No more do you see on the 
right hand side where those points – where the K and the M so to speak came from. You 
just see the indices K and M. All right. They came from the Mth index of the continuous 
variable S, the Kth index of the continuous variable K, but there’s a relationship here. 
That is we sampled at a certain rate. T K was K over 2 B. S M was M over L. The 
product is K M over 2 B L and 2 B L is the total number of sample points you take in 
either domain. All right? So the product there is just minus 2 p I K M over N. That’s one 
– that’s sort of the first step in eliminating the continuous variable from the picture. The 
last step in eliminating the continuous picture from the variable is to identify the value of 
the function in this Fourier transform at the sample points with just the index that 
determines that value. So finally, you identify the values of F of T K with the value of a 
discrete signal with a value – say let me call it this: F K of a discrete signal. That is 
discrete signal F is F – I need a nonsum notation for this – F zero up to F N minus one. 
And I’m following the sort of common notation here of using brackets when you talk 
about discrete variable rather than parentheses when you talk about a continuous variable. 
Where these entries here are nothing but the values of the measured signal – of the 
continuous signal at the point T K. F K is equal to F of T K, so you have to be a little 
careful here. I’m trying to make a distinction somehow between the discrete signal 
indexed by K coming from the values of the continuous signal at the sample point T sub 
K, okay? And likewise, in the frequency domain, you replace in your mind or in the 
definition the continuous S K or S M by the index that determines it. So likewise, we 
replace S M by the index M, i.e. F by the discrete signal, capital F, underline – I’m trying 
to use that as an indication that I have a discrete signal – of this n-tuple F zero, capital F, 
N minus one where its value at the Kth index is before what I was calling F of S K. All 
right?  

The right hand side made sense from what I had before. It’s the value of this approximate 
Fourier transform at the Kth sample point. But identify the Kth sample point just with this 
index, and I consider that to be defining a discrete signal, F0, F1, F2, F3, and so on and 
so on. Okay? And if I do that, then all traces of the continuous variable are gone, and I 
now have a transformation from one discrete signal to another discrete signal. If I do this, 
then all traces of a continuous variable are gone, and you have a transformation from one 
discrete signal to another discrete signal. That is to say if you start off with the signal 
little F, discrete signal, which I’m writing like that – if you think of it as an n-tuple, F0 up 
to F N minus one. All right? So just given by N discrete values, indexed here from zero to 
N minus one, then it’s discrete Fourier transform, the DFT of this discrete signal is the 
discrete signal capital F, which is again an n-tuple indexed from zero to N minus one the 
way I’ve indexed things.  

And what is the definition? The definition is F of M is the sum from K equals zero up to 
N minus one of F of K. I’ll write that a little bit nicer. E to the minus 2 p I M K over N. 
Right? All traces of the continuous have disappeared, and some would consider this a 
great step forward. All right? Oftentimes, when you see treatments of the discrete Fourier 
transform, if you just look at a book that’s devoted to the discrete Fourier transform, or 
sometimes even if you look at other books on Fourier analysis and they talk about the 
discrete Fourier transform, they often jump right to this definition. All right? And that’s 



defensible. You can say the Fourier transform is for continuous function – is functions of 
continuous variables, and so on. The discrete Fourier transform is for functions of 
discrete variables. It’s for discrete signals. Here’s the definition of the continuous case. 
Here’s the definition in the discrete case. Don’t bother me. All right? It’s a definition. I 
get to do what I want. But what you often miss in that treatment – [inaudible] it’s a 
choice. And I chose to do it this way because I wanted to make the connection with the 
continuous case because I think actually that in applications, that’s how most often you 
see it. You wanna pass from the continuous to the discrete. You wanna pass from a 
continuous signal to a discrete approximation, and you still want the tools of Fourier 
analysis that you worked so hard to learn in the continuous case to be available to you in 
the discrete case.  

So what you have to do most often in applying this is to say to yourself, “All right. That’s 
the definition. Fine.” That’s what the discrete Fourier transform looks like. I have a 
discrete signal, little F. I have its discrete Fourier transform, capital F. This is how they’re 
related. The indices of capital F, the values of capital F at the discrete points, 0, 1, 2, 3, 
and so on, are related to the values of little F, so on and – according to this formula, 
everything is discrete, but what it comes from is – you have to realize that these are 
coming from values of a continuous signal approximated at a discrete set of points. These 
are values of the approximation of the Fourier transformation, the continuous Fourier 
transform at a discrete set of points. Okay? That is the burden of my remarks. Okay, now 
what we’re gonna do is – like I say, I’m gonna try to make the discrete Fourier transform 
look as much as possible like the continuous Fourier transform. I’m gonna try write the – 
we’re gonna wrap up today. I’m gonna to write the formulas for the discrete Fourier 
transform in a way that look like the formulas for the continuous Fourier transform. I’m 
gonna write the theorems for the discrete Fourier transform to look as much as possible 
like the continuous Fourier transform. The inverse of the discrete Fourier transform to 
look like the inverse of the Fourier transform – there’s a catch there as it turns out. But by 
and large, you can do this quite – you can take this quite far. You can take the analogy 
quite far. Now again, that’s a choice. You can just study this object the way it is. You can 
apply it the way it is to the particular cases that come up. But I think again from my 
experience, you gain much more from trying to make a connection to the continuous case 
than you lose by – you gain much more by doing that than by just taking this as the 
accepted definition and working with it as it is. All right? So that’s gonna be our modus 
operandi. Now there are lots of little points along the way. There are lots of little 
observations of the similarities and the differences. I don’t want to talk about all of them 
because there are – it’s difficult to sort of see the whole picture at once, so I wanna try to 
do this at a level where you can see the whole argument go. So be sure to read through 
these sections carefully. Before you come to class, you should always do this naturally. 
Just so there’s some small points – I won’t always talk about this or always talk about 
that, but I wanna assume you’ll have some familiarity with how some of the calculations 
go. I’m gonna do a certain number of them so you can see how the techniques go, and so 
you can see how the formulas come about, but there are a number of sort of little points 
along the way that have to do with the discrete, and then the continuous, and so on that I 
don’t always wanna emphasize. So I’m asking you to sort of keep up with that as we go 
ahead and develop some of the properties of this. All right? So next time, we’re gonna 



start to unwind this a little bit, and see how it works, and see how it works analogous to 
the continuous case. Thank you.  

[End of Audio]  
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