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Abstract: First part of this paper deals with tests on the stability of statistical models.
The problem is formulated in terms of testing the null hypothesis H against the alternative
hypothesis A. The null hypothesis H claims that the model remains the same during the
whole observational period, usually it means that the parameters of the model do not
change. The alternative hypothesis A claims that, at an unknown time point, the model
changes, which means that some of the parameters of the model are subject to a change.
In case we reject the null hypothesis H, i.e. when we decide that there is a change in the
model, we concentrate on a number of questions that arise:
• when has the model changed;
• is there just one change or are there more changes;
• what is the total number of changes etc.
The time moment when the model has changed is usually called change point. Aside

testing for a change, our interest is to estimate change point(s) in different models. The
least squares, M-, R- and MOSUM estimators are introduced and studied. Of course, we
also estimate other parameters of the model(s), show approximations to the distributions of
the change point estimators and show that the estimators of the change points are usually
closely related to some of the test statistics treated in the first part.

Three types of confidence intervals are developed, one based on the limit distribution of
the (point) estimators of m and two based on the bootstrap methods. All three methods
are suitable for local changes while only the bootstrap constructions apply also to fixed
changes.

The test statistics described below are typically certain functionals of partial sums
of independent, identically distributed variables and their distribution is very complex.
Therefore, we present selected limit results that form the basis for establishing the limit
distribution of considered test statistics, functionals of partial sums and change point

estimators.

Several Matlab codes, that implement selected methods described below and include

detailed description and links to the previous sections, are presented to illustrate the

possibilities of the studied methods. Complete Matlab codes are available from the authors

on request.
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Part I. Testing

1. Introduction

In the scope of mathematical statistics the decision whether observed series
remained stationary or whether a change of a specific kind occurred is usually
based on hypotheses testing. The null hypothesis claims that the process is
stationary while the alternative hypothesis claims that the process is non-
stationary and the stationarity was violated in a specific way.

We start with the simplest situation that arises if we assume that a certain
characteristic (e.g. that of a manufacturing process) varies around a certain
constant µ0 given by the production design. We suppose that at the beginning
the process is in control. However, it can happen that due to a failure of
the production device, e.g., the observed characteristic suddenly starts to
vary around another out-of control constant µ1 6= µ0. The same sudden
failure may cause a change of the variance as well, but it is also possible that
the variance remains the same. Moreover, sometimes we can even suppose,
because of our long experience with the production process, that the variance
σ 2 is known.

In this simple case, with starting value µ0 and variance σ 2 known both,
one can standardize the observations to obtain the standardized variables
Yi, i = 1, . . . , n, which have at the beginning a zero mean and a unit variance,
and to test the following null hypothesis H against the alternative A, i.e.,

H : Yi = ei, i = 1, . . . , n, (I.1)

A : ∃m ∈ {0, . . . , n− 1} such that

Yi = ei, i = 1, . . . ,m,

Yi = µ+ ei, i = m + 1, . . . , n,

where µ 6= 0 and ei are independent identically distributed (iid) random
variables (errors). The quantity m is called change point.

2. Methods for deriving test statistics

The decision rule for rejecting the null hypothesisH is based on test statistics.
Two basic methods may be applied to derive them, namely, the maximum
likelihood method and the pseudo-Bayes method. We demonstrate on the test-
ing problem (I.1) how both these approaches can be applied. For simplicity
we suppose that ei are independent and distributed according to the stan-
dard normal distribution N

(
0, 1
)

with the density φ(x) and the distribution
function Φ(x).
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2.1. Likelihood ratio method
♣ Let us suppose for a moment that the change point m is known and put

m = k. If µ 6= 0, the log-likelihood ratio for testing H against A is

Λk = sup
µ

log

∏n
i=1 fA

(
Yi
)

∏n
i=1 fH

(
Yi
) = sup

µ
log

∏k
i=1 φ

(
Yi
)∏n

i=k+1 φ
(
Yi − µ

)
∏n
i=1 φ

(
Yi
)

= sup
µ

{
−1

2

n∑

i=k+1

(
Yi − µ

)2
+

1

2

n∑

i=k+1

Y 2
i

}
=

1

2(n− k)

(
n∑

i=k+1

Yi

)2

.

The null hypothesis H is rejected when Λk > Cα, which can be equivalently
expressed as ∣∣∣∣∣

1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣ >
√

2Cα,

where Cα is a constant chosen so as to correspond to the fixed significance
level α. In other words, the log-likelihood ratio is a function of the average
of the second part of the series of observations

{
Yi
}

.
To simplify the notation, we put

Yk =
1

k

k∑

i=1

Yi and Y
o

k =
1

n− k
n∑

i=k+1

Yi . (I.2)

Notice, that Y
o

k is the least squares estimator of the unknown constant µ and√
n− k Y o

k has a standard normal distribution N(0, 1).

• For the one-sided alternative with µ > 0, we obtain the test statistic

1√
n− k

n∑

i=k+1

Yi,

while for the two-sided alternative with µ 6= 0, we apply its absolute value∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣ .

♣When the change point m is unknown (so that both µ and m are unknown),
we have to take the supremum of the log-likelihood ratio with respect to both
of them, i.e.,
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max
0≤k≤n−1

sup
µ

log

∏k
i=1 φ

(
Yi
)∏n

i=k+1 φ
(
Yi − µ

)
∏n
i=1 φ

(
Yi
)

= max
0≤k≤n−1

1

2(n− k)

(
n∑

i=k+1

Yi

)2

,

and the test statistics usually applied for the case with the unknown change
point m are of the form

max
0≤k≤n−1

{
1√
n− k

n∑

i=k+1

Yi

}
, (I.3)

and

max
0≤k≤n−1

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
· (I.4)

These statistics belong to the so-called maximum-type statistics.

• If we consider the two-sided alternative with µ 6= 0, the null hypothesis H
is rejected if for a suitably chosen constant C1α

max
0≤k≤n−1

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
> C1α,

where C1α is a constant chosen so as to correspond to the fixed significance
level α. This rule is reasonable because it rejects H if for at least one k, 0 ≤
k ≤ n− 1, ∣∣∣∣∣

1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣ > C1α .

• Similarly, for the one-sided alternative with µ > 0, the null hypothesis is
rejected if

max
0≤k≤n−1

{
1√
n− k

n∑

i=k+1

Yi

}
> C2α ,

where C2α is again an appropriately chosen constant.

2.2. Pseudo-Bayesian method
The method is based on the assumption that the unknown change point m
and unknown magnitude of shift µ are random variables such that the prior
distribution of m is uniform, i.e. P (m = i) = 1/n, i = 0, . . . , n − 1, and µ
is distributed according to N

(
0, γ2

)
. Since the density of Y1, . . . , Yn given

µ = µ and m = k is normal, i.e.,

f
(
y1, . . . , yn | µ = µ,m = k

)
=

k∏

i=1

φ
(
yi
) n∏

i=k+1

φ
(
yi − µ

)
,

the unconditional density can be expressed as
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f
�
y1, . . . , yn � =

n�
k=1

1

n

� ∞
−∞

k�
i=1

φ
�
yi � n�

i=k+1

φ
�
yi − µ � 1

γ
√

2π
exp � − µ2/2γ2 � dµ =

=
n�
i=1

φ
�
yi ��� n�

k=1

1

n

� ∞
−∞

1

γ
√

2π
exp 	 −1

2
� −2µ

n�
i=k+1

yi + (n− k)µ2 +
µ2

γ2 
�� dµ 

and the corresponding likelihood ratio has the form

Λ̃ =
fA
(
Y1, . . . , Yn

)

fH
(
Y1, . . . , Yn

)

=
n∑

k=1

1

n

√
1

1 + (n− k)γ2
exp

{
γ2

2
(
1 + (n− k)γ

)2
(∑n

i=k+1
Yi
)2
}
·

• Letting γ → 0 and applying Taylor expansion, the likelihood ratio Λ̃ is, for
the two-sided alternative, equivalent to the test statistic

n∑

k=1

1

n

(
1√
n

n∑

i=k+1

Yi

)2

. (I.5)

The obtained statistic belongs to the so called sum-type test statistics. For
details see Gardner (1969).

• For the one-sided alternative with µ > 0 (µ is assumed to follow a 50%
truncated normal distribution) we may analogously derive the sum-type test
statistic

n∑

k=1

1

n

(
1√
n

n∑

i=k+1

Yi

)
. (I.6)

For details see Chernoff and Zacks (1964) and Kander and Zacks (1966).

2.3. Critical values
For the decision about rejection of the null hypothesis H we need to know
critical values of the suggested test statistics. It means to know their distri-
butions under H .

• Let us start with the test statistic

max
0≤k≤n−1

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
· (I.7)

Assuming that
{
Yi
}

are iid with the standard normal distribution N(0, 1),
then all statistics

1√
n− k

n∑

i=k+1

Yi, k = 0, . . . , n− 1, (I.8)

have a N(0, 1) distribution. If m is known and equal to k, one would reject
H at the significance level α if
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∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣ > u1−α/2,

where u1−α/2 is the 100(1− α/2)% quantile of N(0, 1). Clearly, the statistic
(I.7) is a stochastically larger variable than any of the absolute values of
statistics (I.8), i.e., ∀x ∈ R1 and 0 ≤ k ≤ n− 1

P

(
max

0≤k≤n−1

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
> x

)
≥ P

(∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣ > x

)
.

Therefore, the 100α%-quantile of the distribution of statistic (I.7) is larger
than u1−α/2. Analyzing the same data set, we reject the null hypothesis in
the case when the change point is known much more often than in the case
of an unknown change point.

• To find the exact distribution of (I.4) means to find the distribution of
the maximum of absolute values of standardized normal variables that are
(unfortunately) correlated. The correlation coefficients are

corr

(
1√
n− k

n∑

i=k+1

Yi,
1√
n− l

n∑

i=l+1

Yi

)
=

√
n− l
n− k

, k ≤ l.

Theoretically, it should not be a problem to find the distribution of (I.4).
However, in practice the distribution is so complex, that its quantiles (desired
critical values) may be computed only for small values of n, see Hawkins
(1977).

• Sometimes, the approximate critical values may be quite satisfactory for
practical use. To find approximate critical values we can use a very simple
idea by applying the Bonferroni inequality as follows:

P � max
0≤k≤n−1

	�





1√
n− k

n�
i=k+1

Yi 




 � > C 
 = P � n−1�
k=0

	�





1√
n − k

n�
i=k+1

Yi 




 > C ��

≤
n−1�
k=0

P 	 





1√
n− k

n�
i=k+1

Yi 




 > C � = nP � 





1√
n

n�
i=1

Yi 




 > C 
 .
Hence, the 100

(
1 − α/(2n)

)
%-quantile of the standard normal distribution

N(0, 1) may serve as an upper estimate of the critical value at the significance
level α for the problem (I.1) applying the test statistic (I.4). The approximate
critical values obtained in this way are good enough for small samples (for
small values of n), but they are too conservative for n large.

• Therefore, for n large, the asymptotic behavior of the studied test statistic
(I.4) is of interest. It can be proved, applying the law of iterated logarithm,
that
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max
0≤k≤n−1

{∣∣∣∣
1√
n− k

∑n

i=k+1
Yi

∣∣∣∣
}
−→∞ almost surely as n→∞.

It follows that the limit distribution of (I.4) does not exist and that critical
values increase to infinity as n→∞. The problem is caused by the behavior
of the sequence

{
(n − k)−1/2

∑n
i=k+1 Yi, i = 1, . . . , n − 1

}
near to its end.

Here the averages, whose departures from zero are studied, are calculated
only for “a small” number of observations and it can happen, with a large
probability, that at least one of them attains a rather large value.

Therefore, some authors suggest to use, instead of the statistics (I.3)
and (I.4), the trimmed maximum-type test statistics

max
0≤k≤b(1−β)nc

{
1√
n− k

∑n

i=k+1
Yi

}
(I.9)

and

max
0≤k≤b(1−β)nc

{∣∣∣∣
1√
n− k

∑n

i=k+1
Yi

∣∣∣∣
}

, (I.10)

where β is a small positive constant less than one and bxc denotes the integer
part of x. The advantage of the statistics (I.9) and (I.10) is that they are
bounded in probability. The trimming off a 100β% portion of the sample
(upper time points) means that one assumes that the change did not occur
during this time period. Notice that, typically, β ∈ [0.01, 0.1]. The decision
“How much to trim off?” depends on the subjective decision of the statisti-
cian and his/her a priori knowledge of the problem. If the statistician decides
to trim off only a very small portion of the time points or no time points (ob-
servations) at all, he/she pays for it by a loss of the power of his/her test as
the critical values depend rather strongly on the value of β.

Tables 1. – 6. below contain critical values for statistics (I.3) – (I.4) and
(I.9) – (I.10) obtained by simulations.

significance level

10% 5% 2.5% 1% 0.5%

over-all 2.297 2.604 2.874 3.192 3.412

β = 0.01 2.269 2.581 2.854 3.177 3.398

β = 0.05 2.190 2.510 2.792 3.118 3.347

β = 0.10 2.119 2.446 2.731 3.068 3.302

Table 1. Simulated critical values of the over-all maximum-type
test statistic (I.3) and the corresponding trimmed maximum-type
test statistic (I.9) for different trimming portions β, n = 100.
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significance level

10% 5% 2.5% 1% 0.5%

over-all 2.603 2.874 3.117 3.410 3.613

β = 0.01 2.581 2.853 3.102 3.395 3.597

β = 0.05 2.510 2.792 3.040 3.344 3.555

β = 0.10 2.447 2.732 2.991 3.299 3.512

Table 2. Simulated critical values of the over-all maximum-type
test statistic (I.4) and the corresponding trimmed maximum-type
test statistic (I.10) for different trimming portions β, n = 100.

significance level

10% 5% 2.5% 1% 0.5%

over-all 2.455 2.754 3.018 3.328 3.542

β = 0.01 2.387 2.696 2.969 3.286 3.508

β = 0.05 2.270 2.589 2.867 3.189 3.418

β = 0.10 2.186 2.515 2.801 3.130 3.363

Table 3. Simulated critical values of the over-all maximum-type
test statistic (I.3) and the corresponding trimmed maximum-type
test statistic (I.9) for different trimming portions β, n = 500.

significance level

10% 5% 2.5% 1% 0.5%

over-all 2.753 3.016 3.255 3.540 3.737

β = 0.01 2.694 2.967 3.211 3.503 3.707

β = 0.05 2.589 2.869 3.117 3.420 3.629

β = 0.10 2.515 2.800 3.055 3.362 3.573

Table 4. Simulated critical values of the over-all maximum-type
test statistic (I.4) and the corresponding trimmed maximum-type
test statistic (I.10) for different trimming portions β, n = 500.
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significance level

10% 5% 2.5% 1% 0.5%

over-all 2.510 2.805 3.066 3.373 3.585

β = 0.01 2.416 2.721 2.991 3.311 3.530

β = 0.05 2.289 2.610 2.886 3.214 3.442

β = 0.10 2.205 2.533 2.817 3.149 3.373

Table 5. Simulated critical values of the over-all maximum-type
test statistic (I.3) and the corresponding trimmed maximum-type
test statistic (I.9) for different trimming portions β, n = 1 000.

significance level

10% 5% 2.5% 1% 0.5%

over-all 2.804 3.066 3.301 3.586 3.785

β = 0.01 2.723 2.994 3.238 3.531 3.735

β = 0.05 2.609 2.887 3.142 3.446 3.651

β = 0.10 2.531 2.815 3.071 3.374 3.590

Table 6. Simulated critical values of the over-all maximum-type
test statistic (I.4) and the corresponding trimmed maximum-type
test statistic (I.10) for different trimming portions β, n = 1 000.

• For large n, the approximate critical values can be calculated from the
asymptotic behavior of the probabilities under H , because we have ∀x ∈ R1:

P

(
max

0≤k≤n−1

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
>
x+ bn
an

)
≈ 1− exp

{
−e−x

}
, (I.11)

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
log π,

and

P

(
max

0≤k≤b(1−β)nc

{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}
> x

)
≈ 2
(
1− Φ(x)

)
+ xφ(x) log

1

β
·

(I.12)
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The approximation (I.11) was derived by Darling and Erdős (1956).
Both formulas (I.11) and (I.12) were derived from the approximation of

the maximum of the sequence{∣∣∣∣∣
1√
n− k

n∑

i=k+1

Yi

∣∣∣∣∣

}

by the maximum of the random process
{∣∣W (1− t)

∣∣
√

1− t

}
,

where
{
W (t), t ≥ 0

}
denotes the Wiener process, see Part III Sections 11

and 12.
Notice that the distribution of

max
0≤t≤1−β

|W (1− t) |√
1− t is the same as the distribution of max

β≤t≤1

|W (t) |√
t
·

The approximation (I.12), as well as the approximations of the same type
stated later on, are derived for x large and therefore they can be useful for
finding critical values. For small x their validity fails.

The critical values obtained from (I.11) are not very good because they
are too conservative. The approximation (I.12) gives more accurate critical
values but the choice of β affects them significantly. The critical values
obtained from (I.12) get better as β gets larger.

• For the one-sided alternatives with µ > 0, the approximations (I.11) and
(I.12) have to be adapted as follows, i.e., ∀x ∈ R1

P

(
max

0≤k≤n−1

{
1√
n− k

n∑

i=k+1

Yi

}
>
x+ bn
an

)
≈ 1− exp

{
−1

2
e−x

}
, (I.13)

and

P

(
max

0≤k≤b(1−β)nc
1√
n− k

n∑

i=k+1

Yi > x

)
≈
(
1−Φ(x)

)
+

1

2
xφ(x) log

1

β
· (I.14)

• Now we come to the sum-type statistics obtained from the pseudo-Bayes
method. For n large, the approximate critical values of (I.5) derived for the
two-sided alternative can be calculated from the convergence

n∑

k=1

1

n

(
1√
n

n∑

i=k+1

Yi

)2

D−→
∫ 1

0

W 2(t) dt =
∞∑

j=1

4

(2j + 1)2π2
χ2
j (1), (I.15)

where
{
χ2
j (1)

}
are independent variables distributed according to the χ2

distribution with one degree of freedom. The distribution of
∫ 1

0
W 2(t) dt was

studied by MacNeill (1978) who obtained the following selected 100(1−α)%
quantiles
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P

(∫ 1

0

W 2(t) dt < x

)
= 1− α,

which can serve as the 100α% critical values presented in the following table

α 0.1 0.05 0.025 0.01

x 1.196 1.656 2.134 2.788

Table 7. 100α% critical values for the sum-type
statistic calculated according to (I.15).

• The calculation of critical values of (I.6) derived for the one-sided alterna-
tives is very simple as the sum-type test statistic

n∑

k=1

1

n

(
1√
n

n∑

i=k+1

Yi

)
=

1

n

1√
n

n∑

k=1

(k − 1)Yk

is normally distributed as

N

(
0,

1

3
− 1

2n
+

1

6n2

)
.

3. Detection of changes in the parameters of a normal
distribution

In this section we will, in more details, concentrate on the detection of changes
in the parameters of a normal distribution. More general situations will be
considered in Section 4.

3.1. Change in mean with unknown starting value
It (very) often happens that, even before the change point, the mean (the
starting value) is unknown. In this case we test the following null hypothesis
H against the alternative A:

H : Yi = µ+ ei, i = 1, . . . , n, (I.16)

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ+ ei, i = 1, . . . ,m,

Yi = µ+ δ + ei, i = m + 1, . . . , n, δ 6= 0.

We suppose again that the variables ei are iid with the normal distribution
N
(
0, σ 2

)
, σ 2 known. Then the maximum-type test statistics have the form

max
1≤k≤n−1

{
1

σ

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
(I.17)

and

max
bβnc≤k≤b(1−β)nc

{
1

σ

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
, (I.18)
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while the sum-type test statistic has the form

1

σ 2

n∑

k=1

1

n

(
1√
n

k∑

i=1

(
Yi − Yn

))2

. (I.19)

Notice that
∑k
i=1

(
Yi − Yn

)
= −∑n

i=k+1

(
Yi − Yn

)
and that we deal with

the partial sums of residuals Sk =
∑k
i=1

(
Yi − Yn

)
under H instead of with

partial sums of observations.

• To find approximate critical values, we may proceed in the same way as in
the case with the known starting value. For n small we can use the Bonferroni
inequality, and for n large we may apply the limit behavior of the studied
probabilities, i.e.,

P

(
max

1≤k≤n−1

{
1

σ

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
>
x+ bn
an

)
≈

≈ 1− exp
{
− 2e−x

}
, x ∈ R1,

(I.20)

P

(
max

bβnc≤k≤b(1−β)nc

{
1

σ

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
> x

)
≈

≈ 2
(
1− Φ(x)

)
+ 2xφ(x) log

1− β
β
·

(I.21)

The formulas (I.20) and (I.21) are derived from the approximation of the
sequence

{
1

σ

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
by the process

{
|B(t) |√
t(1− t)

}
,

see Part III Sections 11 and 12. The approximation (I.20) can be found in
Yao and Davis (1986).

For normally distributed random variables, a better approximation sug-
gested by James et al. (1987) may be used:

P

(
max

bβnc≤k≤b(1−β)nc

{∣∣∣∣∣
1

σ

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
> x

)
≈

≈ 2
(
1− Φ(x)

)
+ 2xφ(x)

∫ x
√

(1−β)/(nβ)

x
√
β/(n(1−β))

1

y
ν
(
y +

x2

n y

)
dy,

(I.22)

where

ν(y) =
2

y2
exp

{
−2

∞∑

n=1

1

n
Φ
(
− 1

2
y
√
n
)}
≈ exp

{
−0.583 y

}
, y > 0. (I.23)

Tables 8. – 11. below contain critical values for statistics (I.17) – (I.18) ob-
tained by simulations when σ is known and equal to one. Tables 8’. – 11’.
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contain asymptotic critical values calculated using (I.20) – (I.21) for compar-
ison purposes.

n (I.17)
(I.18)

β = 0.01 β = 0.05 β = 0.1

50 2.709 2.709 2.639 2.558
100 2.809 2.783 2.703 2.627
200 2.892 2.855 2.763 2.682
300 2.931 2.884 2.780 2.694
500 2.973 2.916 2.804 2.714

Table 8. Simulated 10 % critical values for statistics (I.17)
and (I.18).

(I.20) n = 100 n = 300 n = 500

3.226 3.285 3.310

(I.21) β = 0.01 β = 0.05 β = 0.1

3.082 2.920 2.810

Table 8’. Asymptotic 10 % critical values for statis-
tics (I.20) and (I.21).

n (I.17)
(I.18)

β = 0.01 β = 0.05 β = 0.1

50 2.960 2.960 2.900 2.823
100 3.065 3.040 2.965 2.900
200 3.143 3.110 3.030 2.950
300 3.176 3.135 3.042 2.967
500 3.218 3.169 3.068 2.983

Table 9. Simulated 5 % critical values for statistics (I.17) and
(I.18).
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(I.20) n = 100 n = 300 n = 500

3.637 3.671 3.686

(I.21) β = 0.01 β = 0.05 β = 0.1

3.320 3.173 3.074

Table 9’. Asymptotic 5 % critical values for statistics
(I.20) and (I.21).

n (I.17)
(I.18)

β = 0.01 β = 0.05 β = 0.1

50 3.200 3.200 3.144 3.070
100 3.294 3.275 3.203 3.146
200 3.371 3.340 3.262 3.194
300 3.410 3.370 3.286 3.212
500 3.440 3.397 3.301 3.229

Table 10. Simulated 2.5 % critical values for statistics (I.17)
and (I.18).

(I.20) n = 100 n = 300 n = 500

4.041 4.049 4.056

(I.21) β = 0.01 β = 0.05 β = 0.1

3.541 3.404 3.312

Table 10’. Asymptotic 2.5 % critical values for sta-
tistics (I.20) and (I.21).

n (I.17)
(I.18)

β = 0.01 β = 0.05 β = 0.1

50 3.486 3.486 3.441 3.370
100 3.563 3.546 3.490 3.436
200 3.649 3.623 3.548 3.481
300 3.684 3.649 3.581 3.510
500 3.703 3.664 3.587 3.518

Table 11. Simulated 1 % critical values for statistics (I.17)
and (I.18).
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(I.20) n = 100 n = 300 n = 500

4.570 4.545 4.539

(I.21) β = 0.01 β = 0.05 β = 0.1

3.809 3.684 3.600

Table 11’. Asymptotic 1 % critical values for statis-
tics (I.20) and (I.21).

The approximate critical values for the sum-type test statistic may be
obtained from the convergence

1

σ 2

n∑

k=1

1

n

(
1√
n

k∑

i=1

(
Yi − Yn

)
)2

D−→
∫ 1

0

B2(t) dt =
∞∑

j=1

1

j2π2
χ2
j (1), (I.24)

where
{
B(t), 0 ≤ t ≤ 1

}
is the Brownian bridge and

{
χ2
j (1)

}
are indepen-

dent variables distributed according to the χ2 distribution with one degree
of freedom, see, e.g., Csörgő and Horváth (1997). It follows from Theorem
2.1 of Anderson and Darling (1952), see also Anderson and Darling (1954)
and Kiefer (1960), that ∀x ∈ R1

P

( ∫ 1

0

B2(t) dt > x

)
= (I.25)

1−
√

2

π3/2
√
x

∞∑

j=0

Γ
(
j + 1/2

)

Γ
(
j + 1

)
√

2j +
1

2
exp

{
− (4j + 1)2

16x

}
K1/4

(
(4j + 1)2

16x

)
,

where K1/4(·) denotes a modified Bessel function of the second type (see, e.g.,
function besselk(nu,z) in Matlab or function BesselK in Mathematica).

Now, let us turn to the case when the variance is unknown. In all statistics
(I.17), (I.18) and (I.19) one can replace the unknown σ 2 by its estimate

1

n

n∑

i=1

(
Yi − Yn

)2

(I.26)

and the limit distribution remains the same under H . However, in the case of
the maximum-type test statistics, one gets a more powerful test if one applies
the test statistics

max
1≤k≤n−1

{∣∣∣∣∣
1

sk

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
(I.27)

and

max
bβnc≤k≤b(1−β)nc

{∣∣∣∣∣
1

sk

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
, (I.28)
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where

s2
k =

1

n− 2

(
k∑

i=1

(
Yi − Yk

)2

+
n∑

i=k+1

(
Yi − Y

o

k

)2
)
. (I.29)

It is interesting to realize that
√

n

k(n− k)

k∑

i=1

(
Yi − Yn

)
=

√
k(n− k)

n

(
Yk − Y

o

k

)
,

so that all variables, from which the maximum is taken, are the usual two-
sample t-statistics that are distributed, under H , according to the t-distribu-
tion with n− 2 degrees of freedom. This fact may be used when the critical
values are approximated by the Bonferroni inequality.

Instead of statistic (I.27), we may also use the statistic

max
1≤k≤n−1

{∣∣∣∣∣
1

σ̂n

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
, (I.30)

where

σ̂ 2
n = min

2≤k≤n−2

{
1

n

(
k∑

i=1

(
Yi − Yk

)2

+
n∑

i=k+1

(
Yi − Y

o

k

)2
)}
· (I.31)

The statistics (I.27) and (I.30) are asymptotically the same.
For n large, the approximations (I.20) and (I.21) hold also for the statistics

(I.27) and (I.30). Aside that, for normally distributed random variables Yi
and for large values x, James et al. (1987) suggested to use the approximation

P

(
max

bβnc≤k≤b(1−β)nc

{∣∣∣∣∣
1

sk

√
n

k(n− k)

k∑

i=1

(
Yi − Yn

) ∣∣∣∣∣

}
> x

)
≈

�
2n

π

� 1

x√
n � 1− y2 � n−4

2
dy+

x
√

2√
π � 1− x2

n
� n−4

2

� x 1−β
(n−x2)β

x β

(n−x2)(1−β)

1

y
ν � y+

x2

(n− x2)y
� dy.

Tables 12. – 15. contain critical values obtained by simulations for statistics
(I.27) and (I.28) in the case that σ 2 was not known and was estimated using
(I.29).
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n (I.27)
(I.28)

β = 0.01 β = 0.05 β = 0.1

50 2.857 2.856 2.775 2.683
100 2.891 2.864 2.778 2.694
200 2.934 2.893 2.801 2.715
300 2.961 2.914 2.805 2.718
500 2.993 2.931 2.820 2.728

Table 12. Simulated 10 % critical values for statistics (I.27)
and (I.28).

n (I.27)
(I.28)

β = 0.01 β = 0.05 β = 0.1

50 3.157 3.157 3.079 2.992
100 3.164 3.139 3.061 2.984
200 3.196 3.159 3.071 2.992
300 3.213 3.172 3.076 2.994
500 3.241 3.189 3.088 3.003

Table 13. Simulated 5 % critical values for statistics (I.27)
and (I.28).

n (I.27)
(I.28)

β = 0.01 β = 0.05 β = 0.1

50 3.421 3.421 3.359 3.279
100 3.402 3.383 3.311 3.248
200 3.428 3.391 3.314 3.245
300 3.452 3.409 3.324 3.246
500 3.462 3.420 3.324 3.251

Table 14. Simulated 2.5 % critical values for statistics (I.27)
and (I.28).
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n (I.27)
(I.28)

β = 0.01 β = 0.05 β = 0.1

50 3.747 3.747 3.695 3.625
100 3.696 3.678 3.615 3.558
200 3.719 3.690 3.611 3.558
300 3.737 3.700 3.628 3.555
500 3.735 3.700 3.617 3.547

Table 15. Simulated 1 % critical values for statistics (I.27)
and (I.28).

3.2. Change in variance
We suppose that the observations Y1, . . . , Yn are independent normally dis-
tributed with a known mean µ and unknown variances. Supposing that the
mean remains the same, the problem of the detection of a change in vari-
ance can be formulated as the following testing problem, i.e. we test the null
hypothesis H against the alternative A:

H : Y1 . . . , Yn ∼ N
(
µ, σ 2

)
(I.32)

A : ∃m ∈ {1, . . . , n− 1} such that

Y1, . . . , Ym ∼ N
(
µ, σ 2

1

)
,

Ym+1, . . . , Yn ∼ N
(
µ, σ 2

2

)
,

where σ 2
1 6= σ 2

2 .

It is evident that the variables
{(
Yi − µ

)2
, i = 1, . . . , n

}
follow a gamma

distribution with the shape parameter α = 1/2 and the scale parameter
β = 2σ 2. It means that our problem leads to a special case of the detection
of change in the scale parameter of random variables distributed according
to the gamma law with a known and constant shape parameter.

The maximum-type test statistics obtained by the maximum likelihood
approach have the form

max
1≤k≤n−1

{∣∣Zk
∣∣
}

and max
bβnc≤k≤b(1−β)nc

{∣∣Zk
∣∣
}

, (I.33)

where

Z2
k = n log

(
1

n

∑n

i=1

(
Yi − µ

)2
)
− k log

(
1

k

∑k

i=1

(
Yi − µ

)2
)
−

− (n− k) log

(
1

n− k
∑n

i=k+1

(
Yi − µ

)2
)

= (I.34)

= k log
k

n

∑n
i=1

(
Yi − µ

)2
∑k
i=1

(
Yi − µ

)2 + (n− k) log
n− k
n

∑n
i=1

(
Yi − µ

)2
∑n
i=k+1

(
Yi − µ

)2 ·
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For smaller n, the approximate critical values may be obtained by the
Bonferroni inequality realizing that

P
(
Z2
k < t

)
= P

(
ak
(
t
)
<

∑k
i=1

(
Yi − µ

)2
∑n
i=1

(
Yi − µ

)2 < bk(t)

)
,

where ak(t) and bk(t) are the solutions of the equation

−k log
(
x
n

k

)
− (n− k) log

(
(1− x)

n

n− k

)
= t.

Clearly, the random variable
∑k
i=1

(
Yi − µ

)2/∑n
i=1

(
Yi − µ

)2
is distributed

according to the beta distribution with parameters k/2 and (n− k)/2. This
fact may be used if the approximate critical values are calculated by the
Bonferroni inequality, for details see Worsley (1986).

For n large, the limit behavior of the studied probabilities is the same as
before, i.e.

P

(
max

1≤k≤n−1

{∣∣Zk
∣∣} > x+ bn

an

)
≈ 1− exp

{
− 2e−x

}
, x ∈ R1, (I.35)

and

P

(
max

bβnc≤k≤b(1−β)nc

{∣∣Zk
∣∣} > x

)
≈
(
1− Φ(x)

)
+ 2xφ(x) log

1− β
β
· (I.36)

Notice that (I.35) was derived in Gombay and Horváth (1990).

Denote for a while S2
µ = n−1

∑n
j=1

(
Yj − µ

)2
. Then the sum-type test

statistic has the form

n∑

k=1

1

n

(
1√
n

k∑

i=1

(
Yi − µ

)2 − S2
µ√

2S2
µ

)2

and for large n the critical values may be computed from the approximation

P
( n∑

k=1

1

n

(
1√
n

k∑

i=1

(
Yi − µ

)2 − S2
µ√

2S2
µ

)2

> x

)
≈ P

(∫ 1

0

B2(t) dt > x

)

= P



∞∑

j=1

1

j2π2
χ2
j (1) > x


 (I.37)

For derivation of (I.37) see MacNeill (1974); see also (I.25) and Csörgő and
Horváth (1997).

Let us remark that in case the mean µ is unknown, it can be replaced by
its estimator Yn and the approximations (I.35) – (I.37) are still valid.
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α = 0.10 α = 0.05 α = 0.01

n Simul. Bonf. Simul. Bonf. Simul. Bonf.

20 2.679 2.907 2.953 3.129 3.474 3.596
50 2.816 3.153 3.077 3.357 3.605 3.791

100 2.898 3.332 3.152 3.524 3.657 3.938

Table 16. Critical values for over-all (non-trimmed) maximum-type
statistic (I.33) calculated using simulations and Bonferroni inequality.

3.3. Change in mean and/or variance
Sometimes it can happen that the change may occur either in one parameter
or in both (simultaneously) . Then we test the null hypothesis H against the
alternative A:

H : Y1 . . . , Yn ∼ N
(
µ, σ 2

)
(I.38)

A : ∃m ∈ {2, . . . , n− 2} such that

Y1, . . . , Ym ∼ N
(
µ1, σ

2
1

)
,

Ym+1, . . . , Yn ∼ N
(
µ2, σ

2
2

)
,

where
(
µ1, σ

2
1

)
6=
(
µ2, σ

2
2

)
. The test statistic derived by likelihood ratio

approach has the form

max
1≤k≤n−1

{∣∣ Z̃k
∣∣
}

and max
bβnc≤k≤b(1−β)nc

{∣∣ Z̃k
∣∣
}

, (I.39)

where

Z̃2
k =n log

(
1

n

n∑

i=1

(
Yi − Yn

)2
)
− k log

(
1

k

k∑

i=1

(
Yi − Yk

)2
)

− (n− k) log

(
1

n− k
n∑

i=k+1

(
Yi − Y

o

k

)2
)
.

(I.40)

For n large, the approximate critical values may be computed from the fol-
lowing approximations, i.e.,

P

(
max

1≤k≤n−1

{∣∣ Z̃k
∣∣
}
>
x+ bn,2
an

)
≈ 1− exp

{
− 2e−x

}
, x ∈ R1, (I.41)

where

an =
√

2 log log n and bn,2 = 2 log log n+ log log logn,

and

P

(
max

bβnc≤k≤b(1−β)nc

{∣∣ Z̃k
∣∣
}
> x

)
≈ e−x2/2 + e−x

2/2x2 log
1− β
β
· (I.42)
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The formulas (I.41) and (I.42) follow from the approximation of the se-

quence of
{
Z̃2
k

}
by the process

{(
B2

1(t) + B2
2(t)

)
/
(
t(1 − t)

)}
, see Part III

Sections 11 and 12. The approximation (I.41) is due to Horváth (1993), for
(I.42) see Albin (1990). Unfortunately, we do not know how to derive the
sum-type test statistic in this case.

4. Detection of changes in a location model (general type of
errors)

This section deals with detection of changes in a location model when the
distribution of errors is not necessarily normal. Three basic situations, i.e.
change in location, change in scale and change in location and/or scale are
considered. We concentrate on the maximum-type test statistics.

4.1. Changes in location
We consider the same problem as in 3.1., however we will not assume that
the error terms have a normal distribution. Of course, the situation when ei
are normally distributed represents a special case.

More precisely, we are interested in testing the null hypothesis H against
the alternative A:

H : Yi = µ+ ei, i = 1, . . . , n, (I.43)

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ+ ei, i = 1, . . . ,m,

Yi = µ+ δ + ei, i = m + 1, . . . , n, δ 6= 0,

where µ, δ 6= 0 and m are parameters, e1, . . . , en are iid random variables with
distribution function F , zero mean, nonzero variance σ 2 and with E |ei|2+∆ <
∞ for some ∆ > 0.

If the distribution of the errors is known up to some parameters and
only one parameter is subject to a change, we can apply the likelihood ratio
method

(
see Section 2.1. for the description of the general principle

)
, which

means that we can derive max1≤k<n Λk in such a case. Under quite mild as-
sumptions on the distribution of ei one can use the same approximations to
the distribution of the corresponding test statistic, see Csörgő and Horváth
(1997) for details. Of course, the approximation is usually poorer than in the
case of a normal distribution in Section 3.1..

If our knowledge about the distribution of the error terms ei is poor or their
distribution is too complicated, we can still use the test statistics described in
Section 3

(
see (I.17) – (I.19)

)
with the same approximation to the distribution

of the test statistics. However, the quality of these approximations is (much)
worse than in the case of a normal distribution.

Nevertheless, it can be shown that, under quite mild assumptions, these
tests are consistent, i.e. they are sensitive to the considered alternatives. We
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are not going to prove it, but we demonstrate this on the expectations and
variances of the partial sums

Sj =

j∑

i=1

(
Yi − Yn

)
, j = 1, . . . , n, (I.44)

under both the null hypothesis H and the alternative A.
(
Notice that most

of the tests considered in Section 3 were based on Sj
)
.

EH Sj = 0, 1 ≤ j ≤ n,

EA Sj =




−jδ n−m

n
, 1 ≤ j ≤ m,

−mδ
n− j
n

, m < j ≤ n,

varH Sj = varA Sj = σ 2 j(n− j)
n

, 1 ≤ j ≤ n.
It is seen that the expectation under the null hypothesis H is zero while

the expectation under A is nonzero with the extreme reached for j = m, i.e.

max
1≤j<n

∣∣EASj
∣∣ =

∣∣EASm

∣∣ =
∣∣δ
∣∣ m(n−m)

n
·

We should also remark that by the central limit theorem Sk has approx-
imately

(
for k large

)
normal distribution N(E Sk, var Sk) both under H

and A.
To test H against A, other procedures were also developed. Similarly,

as in the two-sample problem, there are various robust and nonparametric
test procedures. Let us mention M -tests, rank-based R-tests, Kolmogorov-
Smirnov type tests among others.

Noticing that the two-sample problem coincides with our problem if k is
known, we can develop M - and R- test procedures, as well as Kolmogorov-
Smirnov type tests for our problem along the lines of the two-sample tests.

4.1.1. M-test procedures
We consider again the testing problem (I.43) assuming that ei have a common
distribution function F that is symmetric around zero, i.e. generally there is
no need to have zero mean and a finite variance.

We remind the definition of M -estimators with the score function ψ,
that is usually assumed to be monotone and skew symmetric, i.e. ψ(x) =
−ψ(x) ∀x ∈ R1. The M -estimator µ̂n,M (ψ) of µ is defined as any solution
of the equation

n∑

i=1

ψ
(
Yi − t

)
= 0.

The basic theory of M -procedures was developed by Huber, for details see
his book Huber (1981), and further studied in a number of papers and books.

The test procedures for the change point problem are based on the partial
sums
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Sk,M
(
ψ
)

=
k∑

i=1

ψ
(
Yi − µ̂n,M

(
ψ
))
, k = 1, . . . , n− 1. (I.45)

The role of the scale plays σ
(
ψ
)

defined by

σ 2(ψ) =

∫ ∞

−∞
ψ2(x) dF (x),

which can be estimated for example by the estimator

σ̂ 2
n,M

(
ψ
)

= (I.46)

= min
2≤k≤n−2

{
1

n

(
k∑

i=1

ψ2
(
Yi − µ̂k,M

(
ψ
))

+
n∑

i=k+1

ψ2
(
Yi − µ̂ok,M (ψ)

))}
,

where µ̂k,M (ψ) and µ̂ok,M
(
ψ
)

are the M -estimators calculated from Y1, . . . , Yk
and Yk+1, . . . , Yn, respectively.

Then, the maximum-type M -test statistic is defined as

max
1≤k<n

{
1

σ̂n,M
(
ψ
)
∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

ψ
(
Yi − µ̂n,M (ψ)

)∣∣∣∣∣

}
· (I.47)

The quantities ψ
(
Yi − µ̂n,M (ψ)

)
, i = 1, . . . , n, play the role of robust resid-

uals. It can be easily checked that for ψ(x) = x, x ∈ R1, statistic (I.47)
reduces to (I.27). Similarly, as in Section 3 we can approximate under cer-
tain assumptions the distribution of (I.47) under the null hypothesis using

P

(
max

1≤k<n

{
1

σ̂n,M
(
ψ
)
∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

ψ
(
Yi − µ̂n,M (ψ)

)∣∣∣∣∣

}
>
x+ bn
an

)
≈

≈ 1− exp{−2e−x}, x ∈ R1, (I.48)

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
log π.

Typical ψ - functions are summarized in Table 17. For detailed discus-
sion concerning the choice of parameters A, B, C and D see, e.g., Huber
(1981), Hampel et al. (1986) or Antoch and Vı́̌sek (1992). Notice that, letting
A, B, C and D → ∞ gives in all four cases ψ(x) = x, i.e. the classical
least squares estimator.

If we choose ψ(x) = −f ′(x)/f(x), x ∈ R1, where f and f ′ are, respec-
tively, density and its derivative, then under some assumptions the resulting
maximum-type test statistic is asymptotically equivalent to that obtained by
the likelihood ratio method.
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% (x) ψ (x)

Fair A2
(
|x|
A − ln

(
1 + |x|

A

))
x

1+|x|/A x ∈ R1

Huber x2

2 x | x | ≤ B
B | x | − B2

2 B sign (x) | x |> B

Tukey C2

6

(
1−

(
1− ( xC )2

)3)
x
(
1− ( xC )2

)2 | x | ≤ C
C2

6 0 | x |> C

Welsh D2

2

(
1− exp

{
− ( xD )2

})
x exp {−( xD )2} x ∈ R1

Table 17. Typical ψ - functions generating M - estimators.

Concerning the choice of the score function ψ, statisticians often use

ψ(x) =

{
x, |x| ≤ K,
K sign(x), |x| ≥ K,

the so-called Huber function, where K is a suitably chosen constant. Letting
K → ∞ one has the classical least squares estimator while, for K → 0 the
so-called L1-norm estimator is attained. Huber’s ψ-function was proposed
as a function leading to the estimators not influenced by outliers as, e.g.,
least squares estimator is. The use of Huber’s ψ-function is wise because the
procedures considered in Section 4.1. are sensitive with respect to outliers
which could be wrongly detected as change points.

We mention here the important case with ψ(x) = sign(x), x ∈ R1, the so
called L1 test procedure. The test statistic is very easy to calculate in this
case. We assume that the distribution of the error terms ei is symmetric
around zero and has the density positive in the neighborhood of zero.

Then the test statistic has the form

max
1≤k<n

√
n

k(n− k)

∣∣∣∣∣
k∑

i=1

sign
(
Yi − µ̃n

)
∣∣∣∣∣ ,

where µ̃n is the sample median based on all observations. This means that
the partial sums are just the differences of the number of the observations Yi
above and below the sample median µ̃n.

4.1.2. R-test procedures
Now we turn to the rank-based test procedures. The test statistics are based
on the simple linear rank statistics

Sk,R =
k∑

i=1

(
an(Ri)− an

)
, k = 1, . . . , n, (I.49)
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where R1, . . . , Rn is the vector of ranks corresponding to the observations
Y1, . . . , Yn, an(1), . . . , an(n) are scores the and an = 1

n

∑n
i=1 an(i).

Here we need the continuity of the distribution function F of the observa-
tions, no other assumption on F is needed. Typical choices of the scores are,
e.g.,

(1) Wilcoxon scores an(i) = i/(n+ 1), i = 1, . . . , n;
(2) van der Waerden scores an(i) = Φ−1

(
i/(n+ 1)

)
, i = 1, . . . , n, etc.

The role of the scale is played by

σ 2
n,R =

1

n− 1

n∑

i=1

(
an(i)− an

)2

, (I.50)

which needs not be estimated, while the role of residuals by
{
an(Ri)−an, i =

1, . . . , n
}

.
The maximum-type R-test statistic is defined as

max
1≤k<n

{
1

σn,R

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
an(Ri)− an

) ∣∣∣∣∣

}
· (I.51)

Similarly, as in the previous section, we can approximate under certain
assumptions the distribution of (I.51) under the null hypothesis using

P

(
max

1≤k<n

{
1

σn,R
(
ψ
)
∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
an(Ri)− an

)∣∣∣∣∣

}
>
x+ bn
an

)
≈

≈ 1− exp{−2e−x}, x ∈ R1, (I.52)

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
log π.

However, this approximation is reasonable only when n is large. Nevertheless,
under the null hypothesis H , the distribution of the R-test statistics does not
depend on F . Therefore, we can get the approximation to the distribution
of the R-test statistics via simulations, i.e., we can simulate the samples for
example from the uniform distribution R(0, 1). The basic advantage is that
these simulated critical values give good approximations even for n small.
One can also use various modifications developed along the lines of Section 3.

Example: One of the most often used rank-based tests is the test with
the Wilcoxon scores. Corresponding (change point) R-test, which is easy to
calculate, behaves reasonably well for a broad spectrum of the distributions
F . Here

σ 2
n,R =

n

12(n+ 1)
≈ 1

12
,

hence the test statistic (I.51) becomes

max
1≤k<n

{√
n

k(n− k)

√
12

n

∣∣∣∣∣
k∑

i=1

(
Ri −

n+ 1

2

) ∣∣∣∣∣

}
·
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Remark: There were developed also U -test statistics and Kolmogorov-Smir-
nov type test statistics for our problem. For more information we refer to
the book Csörgő and Horváth (1997).

4.1.3. MOSUM type test statistics
Now, we introduce two different classes of test statistics for our problem.
They are based on the moving sums (MOSUM) of statistics Sk introduced in
(I.44) and defined as

max
G<k≤n

1√
G

1

σ̂n

∣∣∣Sk − Sk−G
∣∣∣ = max

G<k≤n
1√
G

1

σ̂n

∣∣∣
k∑

i=k−G+1

(
Yi − Yn

)∣∣∣ (I.53)

and

max
G<k≤n−G

1√
2G

1

σ̂n

∣∣∣Sk+G − 2Sk + Sk−G
∣∣∣ = (I.54)

max
G<k≤n−G

1√
2G

1

σ̂n

∣∣∣
k+G∑

i=k+1

Yi −
k∑

i=k−G+1

Yi

∣∣∣,

where σ̂n is any consistent estimator of σ, e.g. that defined by (I.31) and
G/n small. Typically we choose G/n ∼ 0.05 or 0.10.

Notice that (I.53) is the first order difference (the first order derivative) of
Sk’s while (I.54) corresponds to the second order difference (the second order
derivative) of Sk’s.

If n is large and G/n is small (e.g. G/n ∼ 0.1 or 0.05) we can use the
following approximation to the distributions of (I.53) and (I.54) under the
null hypothesis H , i.e.

P

(
max
G<k≤n

{
1√
G

1

σ̂n

∣∣∣Sk − Sk−G
∣∣∣
}
>
x+ bn,G
an,G

)
≈ 1−exp

{
−2e−x

}
, x ∈ R1,

and

P

(
max

G<k≤n−G

{ 1√
2G

1

σ̂n

∣∣∣Sk+G − 2Sk+Sk−G
∣∣∣
}
>
x+ bn,G − log 2

3

an,G

)
≈

≈ 1− exp
{
− 2e−x

}
, x ∈ R1,

where

an,G =

√
2 log

n

G
and bn,G = 2 log

n

G
+

1

2
log log

n

G
− 1

2
logπ.

Large values of these test statistics indicate that at least one change has
occurred. Using the above approximations we get the approximation to the
critical value with level α. Namely, we obtain the critical regions with ap-
proximate level α
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max
G<k≤n

{ 1√
G

1

σ̂n

∣∣∣Sk − Sk−G
∣∣∣
}
>

>
− log log 1√

1−α + 2 log n
G + 1

2 log log n
G − 1

2 logπ
√

2 log n
G

and

max
G<k≤n−G

{ 1√
2G

1

σ̂n

∣∣∣Sk+G − 2Sk + Sk−G
∣∣∣
}
>

>
− log log 1√

1−α + 2 log n
G + 1

2 log log n
G − 1

2 logπ − log 2
3√

2 log n
G

·

To get a simple picture on the sensitivity of the test statistics (I.53) and
(I.54) with respect to alternatives, we present the expectations and variances
of the moving sums both under the null hypothesis H and alternative A:

EH
(
Sj − Sj−G

)
= 0, G < j ≤ n,

EA
(
Sj − Sj−G

)
=





−δGn−m

n
, G < j ≤ m,

δ

(
j −m−Gn−m

n

)
, m < j ≤ m +G,

δ G
m

n
, m +G < j ≤ n.

EH
(
Sj+G − 2Sj + Sj−G

)
= 0, G < j ≤ n−G,

EA(Sj+G − 2Sj + Sj−G) =





0, G < j ≤ m−G,
δ
(
j +G−m

)
, m−G < j ≤ m,

δ
(
m +G− j

)
, m < j ≤ m +G,

0, m +G < j ≤ n−G,

varH
(
Sj − Sj−G

)
= varA

(
Sj − Sj−G

)
= σ 2G(n−G)

n
, G < j ≤ n,

varH
(
Sj+G−2Sj+Sj−G

)
= varA

(
Sj+G−2Sj+Sj−G

)
= 2σ 2G, G < j ≤ n−G.

We see that the expectations under H are zero, while under alternatives the
expectations of Sj − Sj−G are nonzero. Concerning Sj+G − 2Sj + Sj−G,
their expectations

(
under A

)
are nonzero only for j close to the change point

m
(
|j −m| ≤ G

)
. Hence, both test statistics are sensitive with respect to the

considered alternatives. For this particular reason the test statistic (I.54) is
suitable if we expect more changes and it is useful as a diagnostic tool.

♣ Similarly, the MOSUM type M -test statistics can be proposed, just re-
placing in (I.53) and (I.54) Sk and σ̂n by their M -type counterparts Sk,M

(
ψ
)

and σ̂n,M
(
ψ
)

defined by (I.45) and (I.46), i.e., one can use

max
G<k≤n

{
1√
G

1

σ̂n,M
(
ψ
)
∣∣∣Sk,M

(
ψ
)
− Sk−G,M

(
ψ
) ∣∣∣
}

(I.55)



Off – line statistical process control 29

and

max
G<k≤n−G

{
1√
2G

1

σ̂n,M
(
ψ
)
∣∣∣Sk+G,M

(
ψ
)
− 2Sk,M

(
ψ
)

+ Sk−G,M
(
ψ
) ∣∣∣
}
·

(I.56)

♣ The MOSUM R-type statistics can be derived quite analogously. Namely
we use, instead of (I.53) and (I.54), the test statistics

max
G<k≤n

{
1√
G

1

σn,R

∣∣∣Sk,R − Sk−G,R
∣∣∣
}

(I.57)

and

max
G<k≤n−G

{
1√
2G

1

σn,R

∣∣∣Sk+G,R − 2Sk,R + Sk−G,R
∣∣∣
}

, (I.58)

where Sk,R and σ 2
n,R were introduced in (I.49) and (I.50).

4.2. Change in scale
We consider the same problem as in Section 3.2., however, we will not assume
that the error terms have a normal distribution. Supposing that the mean
remains the same, the problem of the detection of a change in variance can be
formulated as the following testing problem, i.e. we test the null hypothesis
H against the alternative A:

H : Yi = µ+ ei, i = 1, . . . , n, (I.59)

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ+ ei, i = 1, . . . ,m,

Yi = µ+ (1 + h)ei, i = m + 1, . . . , n,

where µ 6= 0, h 6= 0,−1 and m are parameters
(
realize that only the scale can

change, not the mean
)
, e1, . . . , en are iid random variables with distribution

function F , zero mean, nonzero variance σ 2 and E e4+∆
i <∞ for some ∆ > 0.

Of course, the situation with ei normally distributed as N
(
0, σ 2

)
is a special

case.
If the distribution of the error terms is known, we can apply the maximum

likelihood principle in order to get a test procedure. Nevertheless, here we
construct another test procedure. Testing H against A means that we are

looking for a change in the expected values of
{(
Yi−µ

)2
, i = 1, . . . , n

}
, and,

since µ is assumed unknown, we replace it by its estimator Yn. In this light
we propose to use tests for H against A based on the partial sums

Sk,sc =
k∑

i=1

(
(
Yi − Yn

)2 − 1

n

∑n

j=1

(
Yj − Yn

)2
)
, k = 1, . . . , n. (I.60)

The differences
(
Yi − Yn

)2 − 1

n

∑n

j=1

(
Yj − Yn

)2
, i = 1, . . . , n,
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play the role of the residuals. The maximum-type test statistics are con-
structed in the same way as in the previous section, i.e. we use the test
statistics

max
1≤k<n





∣∣∣∣∣∣

√
n

k(n− k)

1

σ̂n,sc

k∑

i=1

(
(
Yi − Yn

)2 − 1

n

n∑

j=1

(
Yj − Yn

)2
)∣∣∣∣∣∣





, (I.61)

where σ̂ 2
n,sc is an estimator of var

(
Y1 − µ

)2
, for example

σ̂ 2
n,sc = min

1≤k<n

{
1

n

(
k∑

i=1

[(
Yi − Yk

)2 − 1

k

∑k

j=1

(
Yj − Yk

)2]2
+

+
n∑

i=k+1

[(
Yi − Y o

k

)2 − 1

n− k
∑n

j=k+1

(
Yj − Y o

k

)2]2
)}
·

(I.62)

Under H the distribution of the test statistics (I.61) can be approximated
similarly as in the analogous maximum-type test statistics, i.e. for large n
the critical values may be computed from the approximation

P

(
max

1≤k<n

{∣∣∣∣∣

√
n

k(n− k)

1

σ̂n,sc

k∑

i=1

[(
Yi − Yn

)2 − 1

n

n∑

j=1

(
Yj − Yn

)2]
∣∣∣∣∣

}
>

>
x+ bn
an

)
≈ 1− exp

{
−e−x

}
, x ∈ R1,

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
log π.

♣ Concerning robust and nonparametric test procedures, they can be devel-
oped again along the lines in the previous section. We present here only the
test based on an L1-procedure that is really useful in practice. Concerning
the error terms, we assume that they have symmetric distribution function
F (no need of finiteness of any moment). The test statistic is of the form

max
1≤k<n

√
n

k(n− k)

k∑

i=1

sign
( ∣∣Yi − µ̃n

∣∣− ν̃n
)
,

where µ̃ and ν̃n are sample median based on Y1, . . . , Yn and the sample median
of
∣∣Yi − µ̃n |, i = 1, . . . , n. This is a very simple test statistics. Again the

same approximation to its distribution under H can be used.

Remark: We could also develop MOSUM type and Bayesian test statistic
here. In fact, it suffices to replace the partial sums of residuals Sk and the
scale estimator σ̂ by Sk,sc and σ̂k,sc, respectively. The approximations to the
distribution of these new test statistics are the same as above.
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4.3. Change in location and/or scale
Now we consider the same situation as in the previous section, however, aside
the scale also the mean can change. This can be formulated as the following
testing problem, i.e., we test the null hypothesis H against the alternative A:

H : Yi = µ+ ei, i = 1, . . . , n, (I.63)

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ+ ei, i = 1, . . . ,m,

Yi = µ+ δ + (1 + h)ei, i = m + 1, . . . , n,

where µ, (δ, h) 6= (0, 0), h 6= −1 and m are parameters, e1, . . . , en are iid
random variables with distribution function F , zero mean, nonzero variance
σ 2 and E e4+∆

i <∞ for some ∆ > 0. Again, the situation with ei having the
normal distribution N

(
0, σ 2

)
is a special case.

The basic test procedures are based either on (I.40) or on the quadratic
form of the partial sums Sk and Sk,sc introduced in (I.44) and (I.60). More
precisely, the corresponding maximum-type statistic is defined as

max
1≤k<n

{√
n

k(n− k)

√
S2
k

σ̂ 2
n

+
S2
k,sc

σ̂ 2
n,sc

}
, (I.64)

where σ̂ 2
n and σ̂ 2

n,sc were introduced in (I.31) and (I.62).
Comparing the test statistics with their counterparts for a change in loca-

tion only and for a change in variance, we see that the test statistic (I.64) is
the maximum over m of the roots of quadratic forms of the terms for test-
ing a change in location and a change in scale separately. It can be shown,
assuming E e3

i = 0, that

cov
(
Sk, Sk,sc

)
= 0, k = 1, . . . , n.

Further, under H and for k large it can be shown that

n

k(n− k)

(
S 2
k

σ̂ 2
n

+
S 2
k,sc

σ̂ 2
n,sc

)
(I.65)

has approximately a χ2-distribution with two degrees of freedom.
Moreover, it can be shown that under H

P

(
max

1≤k<n

{√
n

k(n− k)

√
S 2
k

σ̂ 2
n

+
S 2
k,sc

σ̂ 2
n,sc

}
>
x+ bn,2
an

)
≈

≈ 1− exp
{
− 2e−x

}
, x ∈ R1, (I.66)

where

an =
√

2 log log n and bn,2 = 2 log logn+ log log logn.
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This approximation can be again used to get the approximation to the critical
values. Concerning test statistic (I.40) under H0 and under additional as-
sumptions E ei = 0,E e3

i = 0 and 0 < E e4
i = 3 var ei <∞, the approximation

(I.41) is still reasonable. For details see Horváth (1995).
Notice that introduction of the L1 test procedures is very simple (we have

to assume only that the error terms have a symmetric distribution around
zero and a positive continuous density in a neighborhood of zero). The test
procedure is based on the statistic

max
1≤k<n

	 � n

k(n − k) ���� k�
i=1 � sign

�
Yi − �µn � � 2

+
k�
i=1 � sign

�
|Yi − �µn | − �νn � � 2 � ,

where µ̃ and ν̃n are the sample median based on Y1, . . . , Yn and the sam-
ple median of

∣∣Yi − µ̃n |, i = 1, . . . , n. Under H , its distribution can be
approximated in the same way as in (I.66).

However, as soon as we can assume that the error terms have the first four
moments (almost) the same as the double exponential distribution, then it is
more convenient to use the test statistic

max
1≤k<n





√
−2 log

σ̃ kk (σ̃ ok )n−k

σ̃nn





,

where

σ̃k =
1

k

k∑

i=1

∣∣∣Yi − µ̃k
∣∣∣ and σ̃ ok =

1

n− k
n∑

i=k+1

∣∣∣Yi − µ̃ok
∣∣∣

with µ̃k and µ̃ok being medians based on X1, . . . , Xk and Xk+1, . . . , Xn, re-
spectively. Under H , the distribution can be approximated again as in (I.66).

4.4. Change in mean with unknown starting value – dependent
observations
Consider the case of testing null hypothesis H against the alternative A:

H : Yi = µ+ ei, i = 1, . . . , n, (I.67)

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ+ ei, i = 1, . . . ,m,

Yi = µ+ δ + ei, i = m + 1, . . . , n, δ 6= 0,

where µ, δ 6= 0 and m are parameters, and where the variables ei are not
anymore independent, but form a stationary sequence.

Here we can again apply the tests described in Section 3.1. when σ is
replaced by a proper estimator or, in other words, a different standardization
is needed. We will discuss it further. More precisely, we assume that in (I.67)
the error terms ei form a linear process satisfying
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ei =
∞∑

t=0

wtεi−t, i = 1, 2, . . . ,

where εi are iid random variables, E εi = 0, var εi = σ 2 > 0, E |εi|2+4 < ∞
for some 4 > 0 and the weights {wj}∞j=0 satisfy

∞∑

j=0

j |wj | <∞,
∞∑

j=0

wj 6= 0.

Notice that AR and ARMA processes fulfill these assumptions.
In procedures described in Section 3.1. σ2 has to be replaced by

σ 2
0 = σ 2

( ∞∑

j=0

wj

)2

.

For example, if the sequence en is an AR(1) sequence with the coefficient
ρ ∈ (−1, 1), then σ 2 in (II.9) has to be replaced by σ 2/(1 − ρ) or by its
estimator.

Generally, σ 2
0 can be estimated, e.g., by

σ̂ 2
0,n(L) = R̂(0) + 2

L∑

k=1

(
1− k

L

)
R̂(k), L < n,

where for k ≥ 0

R̂(k) =
1

n

{ �
m−k∑

t=1

(
Yt − Y �m) (Yt+k − Y �m)+

n−k∑

t=
�
m+1

(
Yt − Y o�

m

)(
Yt+k − Y o�

m

)}
·

If we have more information about the type of dependency, it is advisable
to use the estimator specific for the particular model since the above men-
tioned estimator σ̂ 2

0,n(L) behaves quite poorly for small and moderate sample
sizes. Further discussions the on choice of L together with other theoretical
results as well as results from a simulation study can be found in Antoch et
al. (1997).

There exists an extensive literature about these procedures, mostly in
econometrically oriented papers.

5. Change in simple linear regression

The basic change point detection problem in regression concerns the decision
whether a relationship among some variables changed during the observation
time. The simplest case that can be treated is that of the simple linear
regression when only the relationship between two variables is studied with
the explained variable depending linearly on the explanatory one. Even in
such a simple setting we can consider many different situations, e.g.:

• either one or both parameters (intercept, slope) can change;
• either the starting parameters before the change point are known or

they are unknown;
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• either the continuity of the regression function at the change point is
assumed or there can be discontinuity etc.

Analogously as above, we can consider for the testing problem both maxi-
mum-type statistics as well as sum-type statistics. Nevertheless, we will deal
here with the maximum-type statistics only. Provided the number of obser-
vations is large, the decision whether to reject the null hypothesis may be
based on the asymptotic distribution of the test statistic under H . However,
we have to admit that, for many problems that appear in application, the
limit behavior of test statistics is not known because the limit behavior de-
pends on the values attained by the explanatory variable. In what follows,
we treat several special cases for two basic situations. In the first one we
suppose that the design points {xi} are randomly chosen, e.g. they represent
a realization of a sequence of independent random variables, or more gener-
ally a realization of a stationary ARMA sequence. In the second case the
design points are equally spaced, i.e. xi = i/n, i = 1, . . . , n.

5.1. Change in intercept – random design
We consider the problem of testing the null hypothesis H against the alter-
native A, i.e.

H : Yi = a+ bxi + ei, i = 1, . . . , n, (I.68)

A : ∃m ∈ {2, . . . , n− 2} such that

Yi = a+ bxi + ei, i = 1, . . . ,m,

Yi = ao + bxi + ei, i = m + 1, . . . , n,

where a 6= ao. Here, and in the whole section about the changes in linear
regression, the random errors ei are supposed to be iid with E ei = 0,E e2

i =
σ 2 and E|ei|2+∆ <∞ for some ∆ > 0 and independent of xi. Moreover, the
variance σ 2 is supposed to be known. If it is unknown, it can be replaced by
its usual estimator

σ̂ 2 =
1

n− 2

n∑

i=1

(
Yi − â− b̂xi

)2
,

where â and b̂ are the least squares estimators of the parameters a and b
calculated under H .

The maximum-type test statistics have the form

max
2≤k≤n−2

{
|Uk|

}
and max

bβnc≤k≤b(1−β)nc

{
|Uk|

}
, (I.69)

where

Uk =
1

σ

√
k

1− k/n
Yk − Yn −

(
xk − xn

)̂
b√

1− k
(
xk − xn

)2(
1− k/n

)
Q−1
xx

Here Q−1
xx =

∑n
i=1

(
xi − xn

)2
.
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Notice that the statistics {Uk} are standardized partial sums of regression
residuals, i.e.

Uk =
n−1/2

∑k
i=1

(
Yi − Ŷi

)
√
var

(
n−1/2

∑k
i=1

(
Yi − Ŷi

))
,

where Ŷi = â + b̂xi. To find critical values of the test statistic (I.69), the
Bonferroni inequality may be used if n is moderate whereas, for n large, the
asymptotic behavior of the proposed test is applied.

Supposing that {xi} represent a realization of a stationary ARMA se-
quence, it follows that, as k and n− k tend to ∞,

1

k

k∑

i=1

xi
P−→ ζ,

1

n− k
n∑

i=k+1

xi
P−→ ζ,

1

k

k∑

i=1

x2
i
P−→ η,

1

n− k
n∑

i=k+1

x2
i
P−→ η

(I.70)
for some ζ ∈ R1 and η > 0. Moreover, under additional assumptions about
the rate of convergence of the above averages, for more information see Csörgő
and Horváth (1997), we have

P

(
max

2≤k≤n−2

{
|Uk|

}
>
x+ bn
an

)
≈ 1− exp

{
− 2e−x

}
, x ∈ R1, (I.71)

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
logπ,

and

P

(
max

bβnc≤k≤b(1−β)nc

{
|Uk|

}
> x

)
≈ 2
(
1− Φ(x)

)
+ 2xφ(x) log

1− β
β
· (I.72)

5.2. Change in intercept – equally spaced design
We consider again the problem (I.68) with xi = i/n, i = 1, . . . , n, and the
maximum-type statistics (I.69). Under H , the limit behavior of (I.69) is
again given by (I.71), while

P

(
max

bβnc≤k≤b(1−β)nc

{
|Uk|

}
> x

)
≈ (I.73)

≈ 2
(
1− Φ(x)

)
+ 2xφ(x)

∫ 1−β

β

1

t(1− t)
(
1− 3t(1− t)

) dt.

For deatils see Kim and Siegmund (1989).
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5.3. Change in both intercept and slope – random design
We test the null hypothesis H against the alternative A in the form

H : Yi = a+ bxi + ei, i = 1, . . . , n, (I.74)

A : ∃m ∈ {2, . . . , n− 2} such that

Yi = a+ bxi + ei, i = 1, . . . ,m,

Yi = ao + boxi + ei, i = m + 1, . . . , n,

where a 6= ao and/or b 6= bo.
Let us denote

Xk =




1 x1

. . .
1 xk


 , Xo

k =




1 xk+1

. . .
1 xn




and

χ2(k) =
1

σ 2

(
â− âo, b̂− b̂o

)((
X ′kXk

)−1
+
(
Xo′
k X

o
k

)−1
)−1(

â− âo, b̂− b̂o
)′

=
1

σ 2

(
nk
(
Yk − Yn

)2

n− k +
Q2
xy(k)

Qxx(k)
+
Qo2xy(k)

Qoxx(k)
− Q2

xy(n)

Qxx(n)

)
,

where â, âo, b̂ and b̂o are the least squares estimators of corresponding quan-
tities under A and

Qxx(k) =
k∑

i=1

(
xi − xk

)(
xi − xk

)
, Qxy(k) =

k∑

i=1

(
xi − xk

)(
Yi − Yk

)
,

Qoxx(k) =
n∑

i=k+1

(
xi − xok

)(
xi − xok

)
, Qoxy(k) =

n∑

i=k+1

(
xi − xok

)(
Yi − Y

o

k

)
.

The maximum-type test statistics are of the form

max
2≤k≤n−2

{
χ2
k

}
and max

bβnc≤k≤b(1−β)nc

{
χ2
k

}
. (I.75)

It holds that

P

(
max

2≤k≤n−2

{
χ2
k

}
>
(x+ bn,2

an

)2
)
≈ 1− exp

{
− 2e−x

}
, x ∈ R1, (I.76)

where

an =
√

2 log log n and bn,2 = 2 log log n+
1

2
log log log n,

and

P

(
max

bβnc≤k≤b(1−β)nc

{
χ2
k

}
> x2

)
≈ e−x2/2 + x2e−x

2/2 log
1− β
β
· (I.77)

The approximation (I.76) can be found in Csörgő and Horváth (1997), see
also Albin (1990).
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5.4. Change in both intercept and slope – equally spaced design
We consider the problem (I.74) with xi = i/n, i = 1, . . . , n. Then for the
maximum-type test statistics (I.75) hold

P

(
max

2≤k≤n−2

{
χ2
k

}
>
(x+ bn,2

an

)2
)
≈ 1− exp

{
− 2e−x

}
, x ∈ R1,

where

an =
√

2 log log n and bn,2 = 2 log log n+
1

2
log log log n,

and

P

(
max

bβnc≤k≤b(1−β)nc

{
χ2
k

}
> x2

)
≈ e−x2/2 + 2x2e−x

2/2 log
1− β
β
·

For more details see Albin et al. (2000).

5.5. Appearance of gradual trend – equally spaced design
Sometimes it is important to decide whether all observations have the same
mean and whether at some unknown time point a gradual (continuous) trend
appeared. When the appearing trend is supposed to be linear, we are to test
the null hypothesis H against the alternative A:

H : Yi = a+ ei, i = 1, . . . , n, (I.78)

A : ∃m ∈ {1, . . . , n− 1} such that

Yi = a+ ei, i = 1, . . . ,m,

Yi = a+ b · i−m

n
+ ei, i = m + 1, . . . , n,

where b 6= 0.
The maximum-type statistics have the form

max
1≤k<n




| b̂k|√
var b̂k



 and max

1≤k≤b(1−β)nc




| b̂k|√
var b̂k





, (I.79)

where b̂k is the least squares estimator of b under A supposing that the change
occurred at the moment k. Notice that

| b̂k|√
var b̂k

=

∣∣∣∣∣
1

σ

1√
n

n∑
i=k+1

(
Yi − Yn

) i− k
n

∣∣∣∣∣
√

(n−k)(n−k+1)(n−k+1/2)
3n3 − (n−k)2(n−k+1)2

4n4

·

For n large, critical values can be attained using the approximation

P


 max

1≤k≤n−1




| b̂k|√
var b̂k



 >

x+ bn,3
an


 ≈ 1− exp

{
− 2e−x

}
, x ∈ R1,

(I.80)
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where

an =
√

2 log log n and bn,3 = 2 log log n+ log

√
3

4π
,

and

P

(
max

1≤k≤b(1−β)nc




| b̂k|√
var b̂k



 > x

)
≈ (I.81)

≈ 2
(
1− Φ(x)

)
+ 2

1√
π
φ(x)

∫ 1−β

0

√
6t

(1− t)(1 + 3t)
dt

= 2
(
1− Φ(x)

)
+

1√
π
φ(x)

(√
3

2
log

1 +
√

1− β
1−√1− β −

√
2 arctan

√
3(1− β)

)
.

The approximation (I.80) can be found in Jarušková (1998a), for (I.81) see
Jarušková (1997).

5.6. Continuous change in linear regression
In this section we suppose that the regression slope may continuously change
and thus test the hypothesis H against the alternative A:

H : Yi = a+ b · i
n

+ ei, i = 1, . . . , n, (I.82)

A : ∃m ∈ {2, . . . , n− 2} such that

Yi = a+ b · i
n

+ ei, i = 1, . . . ,m,

Yi = a+ b · i
n

+ c · i−m

n
+ ei, i = m + 1, . . . , n,

where c 6= 0.
The maximum-type test statistics are of the form

max
2≤k≤n−2

{ | ĉk|√
var ĉk

}
and max

bβnc≤k≤b(1−β)nc

{ | ĉk|√
var ĉk

}
, (I.83)

where ĉk is the least squares estimator of c under A supposing that the change
occurred at the moment k. It holds that

P

(
max

2≤k≤n−2

{ | ĉk|√
var ĉk

}
>
x+ bn,3
an

)
≈ 1−exp

{
−4e−x

}
, x ∈ R1, (I.84)

where

an =
√

2 log log n and bn,3 = 2 log log n+ log

√
3

4π
,
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and

P

(
max

bβnc≤k≤b(1−β)nc

{ | ĉk|√
var ĉk

}
> x

)
≈

≈ 2
(
1− Φ(x)

)
+ 2

1√
π
φ(x)

∫ 1−β

β

√
3

8

1

t(1− t) dt (I.85)

= 2
(
1− Φ(x)

)
+

√
6

π
φ(x) log

1− β
β
·

6. Nonparametric and robust procedures in simple
regression

The M - and R-procedures can be constructed along the lines of the pro-
cedures described in Sections 5.1. – 5.6.. One has only to replace the least
squares estimators and corresponding residuals by their M - and R-counter-
parts.

6.1. M-test procedures
We start with the M -test procedures. Consider the problem of testing the
null hypothesis H against the alternative A:

H : Yi = a+ bxi + ei, i = 1, . . . , n, (I.86)

A : ∃m ∈ {2, . . . , n− 2} such that

Yi = a+ bxi + ei, i = 1, . . . ,m,

Yi = µo + boxi + ei, i = m + 1, . . . , n,

where
(
a, b
)
6=
(
ao, bo

)
. The random errors ei are supposed to be iid with

symmetric distribution function, the moment assumptions need not to be
satisfied and the errors be independent of {xi}.

We assume that ψ is a monotone and skew symmetric
(
ψ(x) = −ψ(x) ∀x ∈

R1
)

score function. For information on the choice of ψ see Section 4.1.1. Then

the M -estimators ân,M (ψ) and b̂n,M (ψ) based on all n observations can be
defined as the solution of the equations

n∑

i=1

ψ
(
Yi − a− bxi

)
= 0 and

n∑

i=1

xiψ
(
Yi − a− bxi

)
= 0,

the corresponding M -residuals as

êi,M (ψ) = ψ
(
Yi − ân,M (ψ)− xib̂n,M (ψ)

)
, i = 1, . . . , n,



40 Jaromı́r Antoch, Marie Hušková and Daniela Jarušková

and the scale estimator can be introduced, e.g., as

σ̂ 2
n,M (ψ) = min

2≤k<n−2

1

n

{
k∑

i=1

ψ2
(
Yi − ân,M (ψ)− xib̂n,M (ψ)

)

+
n∑

i=k+1

ψ2
(
Yi − âon,M (ψ)− xib̂on,M (ψ)

)}
,

where âon,M (ψ) and b̂on,M (ψ) are the M -estimators of a and b based on
Ym+1, . . . , Yn.

The maximum-type test statistic for the case b = bo (change in the inter-
cept a only) has the form

max
1≤k<n

{
1

σ̂n,M (ψ)

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

êi,M (ψ)

∣∣∣∣∣

}
· (I.87)

Under mild assumptions on ψ, on the error distribution F , on design points(
satisfying (I.70)

)
and if H holds true, we can use the same approximation

to the distribution of (I.87) as in previous case, i.e.

P

(
max

1≤k<n

{
1

σ̂n,M (ψ)

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

êi,M
(
ψ
)
∣∣∣∣∣

}
>
x+ bn
an

)
≈ (I.88)

≈ 1− exp
{
− 2e−x

}
, x ∈ R1,

where

an =
√

2 log log n and bn = 2 log log n+
1

2
log log log n− 1

2
log π.

Next, we consider the testing problem (I.86) when both parameters can
change. Let the error terms ei have a symmetric distribution function. Then
the M -test statistic is of the form

max
2≤k≤n−2

{
χ̃2
(
k
)}
, (I.89)

where

χ̃2
(
k
)

=
1

σ̂ 2
n,M (ψ)

{
n

k(n− k)

(∑k

i=1
êi,M

(
ψ
))2

+

+

[∑n
i=1(xi − xn)2

]
·
[∑k

i=1(xi − xn)êi,M
(
ψ
)]2

[∑k
i=1(xi − xn)2

]
·
[∑n

i=k+1(xi − xn)2
]

}
·

The approximation of the distribution of the statistic (I.89) analogous as
in (I.76) applies here too, i.e., we can use

P

(
max

2≤k≤n−2

{
χ̃2
(
k
)}

>
(x+ bn,2

an

)2
)
≈ 1−exp

{
−e−x

}
, x ∈ R1, (I.90)
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where

an =
√

2 log log n and bn,2 = 2 log log n+
1

2
log log log n.

6.2. R-test procedures
We consider the testing problem (I.86) with the error terms having continuous
distribution function F . Here we need an estimator of the slope parameter b.
We can use either some R-estimator if we want to have purely rank procedure
or, which is more often the case, we can use any consistent estimator (least

squares, L1-norm etc.). We denote this estimator by b̃n. Then we calculate

the ranks R1 (̃bn), . . . , Rn(̃bn) of Y1 − x1b̃n, . . . , Yn − xnb̃n. Of course, in
practice we estimate both parameters a and b. However, it is clear that the

ranks of
(
Yi − xib̃n

)
’s do not depend on the estimate of the intercept.

The maximum-type R-statistic for testing problem (I.86) is defined as

max
1≤k<n

{
˜̃χ2(

k
)}
, (I.91)

where

˜̃χ2(
k
)

=
1

σ̂ 2
n,R(ψ)

{
n

k(n− k)

(∑k

i=1

[
a
(
Ri (̃bn)

)
− an

])2

+

+

[∑n
i=1(xi − xn)2

]
·
[∑k

i=1(xi − xn)a
(
Ri (̂bn)

)]2
[∑k

i=1(xi − xn)2
]
·
[∑n

i=k+1(xi − xn)2
]

}

with

σ̂ 2
n,R =

1

n− 1

n∑

i=1

(
an(i)− an

)2

.

Unfortunately, see Section 4.1.2., this rank test is not distribution free
underH as it was the case in the location model. Under the same assumptions
on the design matrix as in Section 5.1., the distribution of (I.91) can be
under H approximated as in (I.90), where the statistic (I.89) is replaced by
statistic (I.91).

The R-procedures for problems in Sections 5.1. – 5.6. can be constructed
along the same line. However, they are not very attractive. Nevertheless, the
R-test statistic for the testing problem (I.78), where the error terms ei have
a continuous distribution function F , is quite appealing because under H it
is distribution free. More precisely, the R-test statistic has the form

max
1≤k<n

{
1

σ̂n,R

∣∣∣∣∣
n∑

i=k+1

(i− k)
(
a(Ri)− an

)
∣∣∣∣∣

(
(n− k)3

3
− (n− k)4

4n

)−1/2
}

,

(I.92)
where R1, . . . , Rn are the ranks of Y1, . . . , Yn.

Under H , the distribution of (I.92) does not depend on the error distribu-
tion F . Therefore, similarly as in the case of the rank-based procedures for
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changes in location described earlier, the approximation as in (I.90)
(
where

(I.89) is replaced by (I.92)
)

remains valid for our test statistic, too. Aside
that, we can obtain the approximation also through simulations.

7. Change in general linear regression

We briefly survey procedures for detection changes in general linear models.
We consider the testing problem:

H : Yi = x′iβ + ei, i = 1, . . . , n, (I.93)

A : ∃m ∈ {0, . . . , n− 1} such that

Yi = xi′β + ei, i = 1, . . . ,m,

= x′iβ + x′iδ + ei, i = m + 1, . . . , n,

where β =
(
β1, . . . , βp

)′
and δ =

(
δ1, . . . , δp

)′ 6= 0 are parameters, x1, . . . ,xn
are p−dimensional vectors; e1, . . . , en are random errors that are iid with zero
mean, nonzero variance σ 2 and E|ei|2+∆ < ∞ for some ∆ > 0. Concerning
the sets of assumptions on the design points xi, i = 1 . . . , n slightly stronger
then for classical tests on the parameters β are needed. Here are some pos-
sibilities:

• xi = g
(
i/n
)

=
(
g1(i/n), . . . , gp(i/n)

)′
, i = 1, . . . , n, where g1, . . . , gp

are continuous functions on [0, 1] such that
∫ b
a g(x) dx is a positive

definite matrix for each 0 ≤ a < b ≤ 1.
• There are fixed p linearly independent p-dimensional vectors x 0

1 , . . . ,
x 0
p and the design points are chosen according to some rule from this

p vectors.
• The design points can be a realization of AR or ARMA sequences

fulfilling certain moment assumptions.

Notice that as a special case one gets the testing problems considered in
Section 5.

Similarly as in the previous sections the test procedures are developed us-
ing either likelihood ratio approach or Bayesian one (or their modifications).
We present likelihood ratio type test statistics only.

If one assumes that ei’s have N(0, σ 2) distribution the likelihood ratio
type test statistic is

Vn0 = max
p<k<n−p

{
− 2 log

k
n σ̂

2
1,k + n−k

n σ̂ 2
k+1,n

σ̂ 2
k+1,n

}
,

where

σ̂ 2
1,k =

1

k

k∑

i=1

(
Yi − x′iβ̂1,k

)2
, σ̂ 2

k+1,n =
1

n− k
n∑

i=k+1

(
Yi − x′iβ̂k+1,n

)2
,

β̂1,k and β̂k+1,n are the least squares estimators of β based on Y1, . . . , Yk and
Yk+1, . . . , Yn, respectively.
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A slight modification leads to the test statistics

Vn = max
p≤k<n

{ 1

σ̃ 2
n

n

(n− k)k
S′k(X ′nXn)−1Sk

}
,

where Xn = (x1, . . . ,xn)′, Sk =
∑k
i=1 xi

(
Yi − x′iβ̂1,n

)
, k = 1, . . . , n and,

σ̃ 2
n is an estimator of σ 2; for instance

σ̃ 2
n =

1

n− p min
p<k<n−p

{
kσ̂ 2

1,k + (n− k)σ̂ 2
k+1,n

}

can be used.
Under the null hypothesis H and mild assumptions we have the following

approximations

P
(
Vn0 >

(x+ bn,p
an

)2)
≈ 1− exp{−2e−x}, x ∈ R1

and

P
(
Vn >

(x+ bn,p
an

)2)
≈ 1− exp{−2e−x}, x ∈ R1,

where

bn,p = 2 log logn+
p

2
log log logn− log Γ (p/2) and an =

√
2 log logn.

Similarly as in the previous sections these approximations can be used to get
an approximation to the critical values.

In econometrically oriented literature one often meets the test procedures
based on partial sums of residuals, namely the following test statistic is used

max
1≤k<n

{
1√
nσ̃n

∣∣∣
k∑

i=1

(Yi − x′iβ̂1,n)
∣∣∣
}

This test statistic is much simpler than Vn and Vn0 but it is sensitive only to
some δ 6= 0.

Under the null hypothesis H and mild assumptions (ei can be even depen-
dent)

P
(

max
1≤k<n

1√
nσ̃n

∣∣∣
k∑

i=1

(
Yi − x′iβ̂1,n

)∣∣∣ ≤ x
)
≈ P

(
sup

0<t<1
|B(t)| ≤ x

)
=

= 1− 2
∞∑

j=1

(−1)j+1e−2j 2x2

, x ∈ R1,

where {B(t); t ∈ (0, 1)} is a Brownian bridge and σ̃n is a proper standardiza-
tion. More information can be found e.g. in Jandhyala and MacNeill (1991),
Jandhyala and MacNeill (1992), MacNeill (1978), Horváth (1995), Kim and
Siegmund (1989) or Ploberger (1992).



44 Jaromı́r Antoch, Marie Hušková and Daniela Jarušková

Part II. Estimators of changes

Part I deals with tests on the stability of statistical models. The problem was
formulated in terms of testing the null hypothesis H against the alternative
hypothesis A. The null hypothesis H claims that the model remains the same
during the whole observational period, usually it means that the parameters
of the model do not change. The alternative hypothesis A claims that, at
an unknown time point, the model changes, which means that some of the
parameters of the model are subject to a change. In case we reject the null
hypothesis H , i.e. we decide that there is a change in the model, a number
of questions arise:
• when has the model changed;
• is there just one change or are there more changes;
• what is the total number of changes.
The time moment when the model has changed is usually called change

point. In this part our primary interest is to estimate the change point(s) in
various models. Of course, we also estimate other parameters of the models.
We will show approximations to the distributions of the change point esti-
mators and finally construct the interval estimators for the change points.
As we will see below, the estimators of the change points are usually closely
related to some of the test statistics treated in Part I.

8. Change in location

We assume that the observations Y1, . . . , Yn follow the model

Yi =

{
µ+ σei, i = 1, 2, . . . ,m,

µ+ δ + σei, i = m + 1, . . . , n,
(II.1)

where µ, σ 2 > 0, δ 6= 0 and m(< n) are parameters, and e1, . . . , en are iid
random variables with zero mean, unit variance and with E |ei|2+∆ <∞ with
some ∆ > 0. The distribution of ei will be denoted by F .

It is supposed that the observations Y1, . . . , Yn are obtained at the ordered
time moments t1 < · · · < tn. Hence, this model says that there is just one
change after the mth observation, and the corresponding time moment is
called the change point. More exactly, the change occurs in the time period
(tm, tm+1]. However, we will work here only with integer valued tm.

We assume the change point m satisfies

m = bnγc, γ ∈ (0, 1), (II.2)

where bac denotes the integer part of a. This means that the change can
occur neither at the very beginning nor at the very end of the observational
period. To estimate the unknown parameters we can apply some of the gen-
eral methods, e.g. the maximum likelihood method, however the distribution
function F of the error terms ei has to be known.
• Another possibility is to estimate the unknown parameters m, µ and δ by
the least squares (LS) method, that gives a simple solution. The least squares
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estimators m̂LS, µ̂LS and δ̂LS of the parameters m, µ and δ are defined as
solutions of the minimization problem

min

{
k∑

i=1

(
Yi − µ

)2
+

n∑

i=k+1

(
Yi − µ− δ

)2
; (II.3)

k ∈
{

1, . . . , n− 1
}
, µ ∈ R1, δ ∈ R1

}
,

In other words, the parameters m, µ and δ are estimated in such a way that
the sum of squares of residuals is minimal.

Direct calculation gives the explicit expressions for the estimators µ̂LS and

δ̂LS :

µ̂LS = Y �mLS , (II.4)

δ̂LS = Y
o�

mLS − Y �mLS , (II.5)

while m̂LS is a solution of the maximization problem

max

{√
n

k(n− k)

∣∣∣Sk
∣∣∣ ; k ∈

{
1, . . . , n− 1

}}
,

where Yk and Y
o

k are defined in (I.2). We recall the definition of the partial
sums Sk:

Sk =
k∑

i=1

(
Yi − Yn

)
, k = 1, . . . , n. (II.6)

Notice that if the error terms ei have N(0, 1) distribution, the least squares
estimators coincide with the maximum likelihood estimators.

The solution of the maximization problem need not to be unique, therefore
we make the following convention.

Convention. We will typically treat a random variable V defined as a so-
lution of the maximization problem

max
{
W (t) ; t ∈ T

}
,

where
{
W (t); t ∈ T

}
is a random process or a sequence of random vari-

ables. If the solution is not uniquely determined, we always take the smallest
solution and write shortly

V = arg max
{
W (t) ; t ∈ T

}
·

Using this convention, the estimator m̂LS is defined as

m̂LS = arg max

{√
n

k(n− k)

∣∣Sk
∣∣ ; k ∈

{
1, . . . , n− 1

}}
· (II.7)

Moreover, the estimator m̂LS can be equivalently defined as
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m̂LS = arg max

{
k(n− k)

n

(
Yk − Y

o

k

)2
; k ∈

{
1, . . . , n− 1

}}
·

• Another type of estimators of m is based on moving sums (MOSUM). These
estimators will be denoted by m̂LS(G) and defined as

m̂LS(G) = arg max
{∣∣Sk+G−2Sk +Sk−G

∣∣; k ∈
{
G+ 1, . . . , n−G

}}
· (II.8)

The bandwidth G is usually chosen much smaller than n, typically g = 0.1n
or 0.05n. Some tuning has to be done for the real data.

The connection of the estimators m̂LS and m̂LS(G) with the test statistics
(I.17) and (I.54) is clearly visible. Calculating the tests statistics we usually
calculate the corresponding estimators as a “free” by-product.

To get an idea about the behavior of the estimators, we present the ex-
pectations and variances of the partial sums of residuals and the moving
sums:

ESk =




−δkn−m

n
, 1 ≤ k ≤ m,

−δ(n− k)
m

n
, m < k ≤ n,

var Sk = σ 2 k(n− k)

n
, 1 ≤ k ≤ n,

E
(
Sk+G − 2Sk + Sk−G

)
=





0, G < k ≤ m−G,
δ
(
k +G−m

)
, m−G < k ≤ m,

δ
(
m +G− k

)
, m < k ≤ m +G,

0, m +G < k ≤ n−G,
var

(
Sk+G − 2Sk + Sk−G

)
= 2σ 2G.

In both cases the maximum of the absolute values of the expectations is

reached for k = m. Moreover, if the random parts of (Sk−ESk)
√

n
k(n−k) and

(
Sk+G − 2Sk + Sk−G

)
− E

(
Sk+G − 2Sk + Sk−G

)
are stochastically smaller

than the expectations, then the estimators m̂LS and m̂LS(G) are “close” to
the change point. More exactly, under certain assumptions, as n→∞,

m̂LS −m

n
P−→ 0 and

m̂LS(G)−m

n
P−→ 0,

i.e., the estimators are consistent.For details see Antoch and Hušková (1998).
Finding the exact distribution of either type of estimators is a very complex

problem (similarly as in the testing problem); up to now no exact solution
has been found. The limit distribution of these estimators has been treated
and this provides a reasonable approximation to the exact distribution.
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If δ 6= 0 can be assumed small with respect to the number of observations
n, mathematically expressed as δ ≡ δn → 0 as n→∞, we speak about a local
change. In such a case we have the following approximation, i.e.:

P

(
δ2

σ 2

(
m̂LS −m

)
≤ x

)
≈ P (V ≤ x), x ∈ R1, (II.9)

where the random variable V is defined by

V = arg max
{
W (s)− |s|/2 ; s ∈ R1

}
· (II.10)

Here {W (s); s ∈ R1} is a two-sided standard Wiener process, i.e.,

W (s) =

{
W1(−s), s < 0,

W2(s), s ≥ 0,

where
{
W1(t); t ∈ [0,∞)

}
and

{
W2(t); t ∈ [0,∞)

}
are independent standard

Wiener processes. This approximation is “distribution free”, which means
that it does not depend on the distribution of the error terms ei.

Concerning the MOSUM type estimators, it holds

P

(
2δ2

3σ 2

(
m̂LS(G) −m

)
≤ x

)
≈ P (V ≤ x), x ∈ R1, (II.11)

with V given by (II.10).
The parameter σ 2 can be estimated, e.g., by

σ̂ 2
n =

1

n− 2

{ �
m∑

i=1

(
Yi − Y �m)2 +

n∑

i=
�
m+1

(
Yi − Y

o�
m

)2
}

, (II.12)

where m̂ is any of the above estimators of m. The approximations described
in (II.9) and (II.11) remain valid if δ and σ are replaced by their estimators
(II.5) and (II.12), respectively.

The distribution of the random variable V is known. It was independently
derived by several authors. Stryhn (1996) showed that random variable V
has the distribution function

P (V ≤ x) =

{
1 +

√
x
2π e
−x/8 − 1

2 (x+ 5)Φ(− 1
2

√
x) + 3

2e
xΦ(− 3

2

√
x), x ≥ 0,

1− P (V ≤ −x), x < 0.

(II.13)
This result can be used for construction of a confidence interval for the

change point m. The tables needed for this task can be found in the book of
Csörgő and Horváth (1997); here we give only a few useful quantiles.

β 0.9 0.95 0.975 0.99 0.995

vβ 4.696 7.687 11.033 15.868 19.767

Table 18. Selected quantiles of V, P
(
V ≤ vβ

)
= β

)
.
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8.1. Dependent observations
Now, we shortly discuss the problem of estimation of m when in the model
(II.1) the error terms are dependent. More precisely, we consider the model
(II.1) with m fulfilling (II.2), where the error terms ei form a linear process
satisfying

ei =
∞∑

t=0

wtεi−t, i = 1, 2, . . . ,

where εi are iid random variables, E εi = 0, var εi = σ 2 > 0, E |εi|2+4 < ∞
for some 4 > 0 and the weights {wj}∞j=0 satisfy

∞∑

j=0

j |wj | <∞,
∞∑

j=0

wj 6= 0.

Notice that AR and ARMA processes fulfill these assumptions.
The maximum likelihood method can be applied here, however, we need to

know the distribution of the error terms ei. It appears that we can apply the
estimators m̂LS and m̂LS(G) defined by (II.7) and (II.8), respectively. Their
distributions can be approximated as in the case of independent errors, i.e.
(II.9) and (II.11) apply, however, different standardization is needed. Namely,
σ 2 has to be replaced by

σ 2
0 = σ 2

( ∞∑

j=0

wj
)2

.

For example, if the sequence en is an AR(1) sequence with the coefficient
ρ ∈ (−1, 1), then σ 2 in (II.9) has to be replaced by σ 2/(1 − ρ) or by its
estimator.

Generally, σ 2
0 can be estimated, e.g., by

σ̂ 2
0,n(L) = R̂(0) + 2

L∑

k=1

(
1− k

L

)
R̂(k), L < n,

where for k ≥ 0

R̂(k) =
1

n

{ �
m−k∑

t=1

(
Yt − Y �m) (Yt+k − Y �m)+

n−k∑

t=
�
m+1

(
Yt − Y

o�
m

)(
Yt+k − Y

o�
m

)}
·

If we have more information about the type of dependency, it is advisable
to use the estimator specific for the particular model since the above men-
tioned estimator σ̂ 2

0,n(L) behaves quite poorly for small and moderate sample
sizes. Further discussions the on choice of L together with other theoretical
results as well as results from a simulation study can be found in Antoch et
al. (1997).

♣ Now, we turn to the estimators based on M -statistics and R-statistics.
Analogously as in the testing problem H against A, we can construct the
estimators of the change point m replacing in the least squares type estimators
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(II.7) and (II.8) the partial sums Sk by their M -counterparts Sk,M (ψ) or their
R-counterparts Sk,R, cf Part I.

8.2. M-estimators of the change point
We assume that the observations Y1, . . . , Yn follow the model (II.1) with m
fulfilling (II.2) and with the error term ei having a common distribution F
that is symmetric about zero (no need of zero mean and a finite variance).
The M - estimator µ̂n(ψ) of µ generated by the score function ψ is defined as
the solution of the equation

n∑

i=1

ψ(Yi − t) = 0.

The score function ψ is assumed to be monotone and skew symmetric, i.e.
ψ(x) = −ψ(−x), ∀x ∈ R1.

The M -estimator m̂M (ψ) of m is defined as

m̂M (ψ) = arg max

{√
n

k(n− k)

∣∣Sk,M (ψ)
∣∣ ; k ∈

{
1, . . . , n− 1

}}
, (II.14)

where

Sk,M (ψ) =
k∑

i=1

ψ
(
Yi − µ̂n(ψ)

)
, k = 1, . . . , n. (II.15)

Under some mild assumptions on ψ and F we have the following approxi-
mation to the distribution of these errors:

P

(
δ2λ2(ψ, F )∫
ψ2(x) dF (x)

(
m̂M (ψ)−m

)
≤ x

)
≈ P (V ≤ x), x ∈ R1, (II.16)

where λ(ψ, F ) is the value of the derivative, in t, of the function
∫
−ψ(x −

t)dF (x) at t = 0. This means that the approximation to the distribution
of m̂M (ψ) is the same as that to the distribution of m̂LS or m̂LS(G) up
to the multiplicative constant that depends on the choice of ψ and on the
distribution of the error terms. The unknown constants can be replaced by
suitable estimators, e.g., by:

δ̂n,M (ψ) = µ̂o�mM (ψ)− µ̂ �mM (ψ),

σ̂ 2
n,M (ψ) =

1

n− 2





�
mM∑

i=1

ψ2
(
Yi − µ̂ �mM (ψ)

)
+

n∑

i=
�
mM+1

ψ2
(
Yi − µ̂o�mM (ψ)

)




,

λ̂n,M (ψ) =
1

2ncn

{ �
mM∑

i=1

(
ψ
(
Yi − µ̂ �mM (ψ) + cn

)
− ψ

(
Yi − µ̂ �mM (ψ)− cn

))

+
n∑

i=
�
mM+1

(
ψ
(
Yi − µ̂o�mM (ψ) + cn

)
− ψ

(
Yi − µ̂o�mM (ψ)− cn

))
}

,
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where µ̂ �mM (ψ) and µ̂o�mM (ψ) are M -estimators based on Y1, . . . , Y �mM and

Y �mM+1, . . . , Yn and
{
cn
}
n

is a sequence of positive numbers tending to 0

not faster than n−1/2.
Motivated by the definition of the least squares estimators in (II.3), we

can also define other M -estimators. Let ρ be a non-negative convex function

on R1 and let ψ be its derivative. Then the M -estimators m̃M (ρ), δ̃M (ρ) and
µ̃M (ρ) are defined as a solution of the minimization problem

min

{
k∑

i=1

ρ
(
Yi − µ

)
+

n∑

i=k+1

ρ
(
Yi − µ− δ

)
;µ ∈ R1, δ ∈ R1, k ∈

{
1, . . . , n−1

}
}

The distribution of the estimator m̃M (ρ) can be approximated in the same
way as that of m̂M (ψ), i.e. (II.16) remains true if m̂M (ψ) is replaced by
m̃M (ρ).

Typical choices of the score functions are discussed in subsection 4.1.1. of
the present paper or in some books or papers devoted to the M− estimators.

Next, we shortly discuss the particular choice ψ(x) = sign x, x ∈ R1.
This is usually called L1-procedure and the corresponding estimators are
called L1-estimators. This is due to the fact that the sample median based
on Y1, . . . , Yn is a solution of the minimization problem

min

{
n∑

i=1

|Yi − t| ; t ∈ R1

}
·

We should recall that the sample median minimizes the sum of the L1-
distances, while the least squares estimator minimizes the sum of the L2-
distances. We denote this L1-estimator of the change point m by m̂L1 and
we receive the approximation to its distribution in the following form:

P

(
m̂L1 −m

4f2(0)
≤ x

)
≈ P

(
V ≤ x

)
, x ∈ R1,

where f(0) is the density of the error term at the point 0. If the density is
unknown, we have to replace it by an estimator.

There is also another possibility to define the L1 estimators that is more

transparent, however, more difficult to calculate. Namely, we define m̃L1 , δ̃L1

and µ̃L1 as a solution of the minimization problem

min

{
k∑

i=1

|Yi − µ|+
n∑

i=k+1

|Yi − µ+ δ| ; µ ∈ R1, δ ∈ R1, k ∈
{

1, . . . , n− 1
}
}
.

The M -estimators of a change in other models can be introduced along the
lines explained above.

8.3. R-estimators of the change point
We assume the model (II.1) with m fulfilling (II.2) and with the error terms
having absolutely continuous density f with the Fisher information
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0 < I(f) =

∫ ∞

−∞

(f ′(x))2

f(x)
dx <∞,

where f ′ is the derivative of f .
The rank-based estimator of m is based on the partial sums

Sk,R =
k∑

i=1

(
a(Ri)− an

)
, k = 1, . . . , n, (II.17)

where R1, . . . , Rn are the ranks corresponding to Y1, . . . , Yn and

an = n−1
n∑

i=1

a(i).

The scores a(1), . . . , a(n) are usually related to a function ξ defined on the
interval (0, 1) such that

0 <

∫ 1

0

∣∣ ξ(u)
∣∣2+∆

du <∞

with some ∆ > 0; typically,

a(i) = ξ
(
i/(n+ 1)

)
, i = 1, . . . , n. (II.18)

In this section we will work with these scores; for other possibilities consult
books on rank-based procedures.

The R-estimator of m is defined as

m̂R = arg max

{√
n

k(n− k)
|Sk,R| ; k ∈

{
1, . . . , n− 1

}}
· (II.19)

We have the following approximation to the distribution of m̂R:

P

(
δ 2b2

R(ξ)

σ 2
R

(
m̂R −m

)
≤ x

)
≈ P (V ≤ x), x ∈ R1,

where

σ 2
R =

1

n− 1

n∑

i=1

(
a(Ri)− an

)2 ≈
∫ 1

0

ξ2(u)du−
(∫ 1

0

ξ(u) du
)2

and

b2
R(ξ) =

(∫ ∞

−∞
ξ
(
F (x)

)
f ′(x) dx

)2

.

If F is unknown, we replace b2
R(ξ) by an estimator, however, as this is

going beyond the scope of this paper, the interested reader should consult
some advanced material on the rank-based procedures.

Comparing the rank-based tests discussed in Part I with rank-based esti-
mators just introduced, we see that the estimators are not anymore distribu-
tion-free even asymptotically and, moreover, we have stronger assumptions
on the scores than in case of tests.

The MOSUM type M - and R-estimators can be introduced analogously
and the same holds for the approximations to their distributions.
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8.4. Multiple changes
Consider the location model with multiple changes

Yi = µj + ei, bnγj−1c < i ≤ bnγjc, j = 1, . . . , q + 1, (II.20)

where µj ∈ R1, µj 6= µj+1, j = 1, . . . , q, 0 = γ0 < γ1 < · · · < γq+1 = 1
and e1, . . . , en are iid random variables with zero mean, nonzero variance
var ei = σ 2 and E |ei|2+∆ < ∞ for some ∆ > 0. The change points are
bnγjc, j = 1, . . . , q. Their number q can be known or unknown, however an
upper bound qo for q is supposed to be known.

We should point out, that if we test the null hypothesis

H : Y1, . . . , Yn are iid with mean µ

against the alternative A corresponding to the multiple changes described in
(II.20), where only the upper bound q0 for the number of possible changes is
known, we can apply any of the test procedures developed for the alternative
with one change only. These tests are consistent. We could construct, e.g.,
the likelihood ratio test, however this brings big problems with finding an
approximation to the critical values. A Bayesian approach is studied, e.g.,
in Chib (1999). We describe three types of estimators for the number of
changes. They also provide the estimators for the change points.

The first one was proposed by Yao (1988). This is a modification of the
Schwarz’ criterion for determining the dimension of regression. The estimator
q̂ of the number of change q is defined as a solution of the minimization
problem

min
{n

2
log σ̃ 2

q + q logn
∣∣∣ q = 1, . . . , q0

}
, (II.21)

where q0 is the possible largest number of changes and

σ̃ 2
q = min

{
q+1∑

j=1

nj∑

i=nj−1+1

(
Yi − µj

)2 ∣∣∣

µj ∈ R1, j = 1, . . . , q, 0 = n0 < n1 < · · · < nq < nq+1 = n

}
·

The estimators of the parameters nj = bnγjc and µj are then obtained as
a solution of the minimization problem

min

{ �
q+1∑

j=1

nj∑

i=nj−1+1

(
Yi − µj

)2 ∣∣∣

µj ∈ R1, j = 1, . . . , q̂ + 1, 0 = n0 < n1 < · · · < n �q < n �q+1 = n
}
·

Computational difficulties are evident and therefore some modifications
were proposed. Notice, however, that if the observations follow a normal
distribution, then these estimators are consistent and coincide with the max-
imum likelihood estimators.
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The second and the third method are related to the methods for one change
only developed, and treated, in previous sections. Thus the estimators m̂LS

and m̂LS(G) introduced in (II.7) and (II.8) can be used to estimate multiple
changes, too.

Direct calculation gives

ESk =
v∑

j=1

(
bnγjc − bnγj−1c

)(
µj − µ

)
+
(
k − bnγvc

)(
µv − µ

)
,

bnγv−1c < k ≤ bnγvc, v = 1, . . . , q + 1,

where

µ =
1

n

q+1∑

j=1

(
bnγjc − bnγj−1c

)
µj

and

E
(
Sk+G − 2Sk + Sk−G

)
= (II.22)

=





0, G < |k − bnγjc|,(
µj − µj−1

)(
bnγjc − k +G

)
, bnγjc −G < k ≤ bnγjc,(

µj − µj−1

)(
k − bnγjc+G

)
, bnγjc < k ≤ bnγjc+G,

for j = 1, . . . , q. The extremes in both expectations can be reached only for
k = bnγjc, j = 1, . . . , q. This leads to the following estimation procedures.

At first, find

m̃(1) = arg max

{√
n

k(n− k)

∣∣Sk
∣∣; k ∈

{
1, . . . , n− 1

}}
, (II.23)

where Sk is given by (II.6). At second divide observations into two groups
Y1, . . . , Y �m(1) and Y �m(1)+1, . . . , Yn and find the estimator in each group using
(II.7). The whole procedure is repeated for each subset until “a (constant)
mean is obtained”, i.e. until there is a statistically significant difference in
the means of groups. We apply the test based on

max
k∈D





√
n

k(n− k)

1

σ̂n

∣∣∣∣∣∣
∑

i∈D

(
Yi −

1

#D

∑

j∈D
Yj
)
∣∣∣∣∣∣



 ,

where D denotes the indexes corresponding to the particular group, #D
its cardinality and σ̂ 2

n is a suitable estimator of σ 2. Critical values can be
determined from the approximation (I.20) and the level αn has to be chosen
such that, as n → ∞, αn → 0. Then, this procedure consistently estimates
all change points and also the number of changes. This type of procedure
was developed by Vostrikova (1981).

Motivated by (II.22) and by the behavior of m̂LS(G), we propose the fol-
lowing estimation procedure. We find all pairs of indices vj , wj , j = 1, . . . , q̂,
such that wj − vj ≥ G/2, j = 1, . . . , q̂ and such that for k = vj , . . . , wj
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∣∣Sk+G − 2Sk + Sk−G
∣∣ ≤ D(n;G,αn),

∣∣Svj−1+G − 2Svj−1 + Svj−1−G
∣∣ ≥ D(n;G,αn),

∣∣Swj+1+G − 2Swj+1 + Swj+1−G
∣∣ ≥ D(n;G,αn),

where

D(n;G,αn) = σn
√

2G
2 log

n

G
+

1

2
log log

n

G
− 1

2
log

4π

9
− log log

1

1− αn√
2 log (n/G)

and αn → 0 as n→∞. This means that we find all segments where a certain
critical value is exceeded. This critical value corresponds to test whether
a change occurred or not based on

max
G<k<nG

{
|Sk+G − 2Sk + Sk−G|

}

with asymptotic level αn. The estimator of the number of change points is
q̂.

Then q̂, estimate of the number of change points, and the index k ∈ [vj , wj ]
for which the maximum over the set {vj , . . . , wj} is reached, can serve as the
estimator of one of the change points.

These two procedures, particularly the second one, are quite simple and
can certainly serve as a simple diagnostic tool. There is a problem to find
a reasonable estimator of the variance σ 2. For that, we need an upper bound,
say qo, of the number q of change points. Then we can estimate σ 2 as follows:

σ 2
n =

1

n− qo − 1
min

1≤k1<k2<···<kqo≤n

{
k1∑

i=1

(
Yi − Y0,k1

)2
+

+

k2∑

i=k1+1

(
Yi − Yk1,k2

)2
+ · · ·+

n∑

i=kqo+1

(
Yi − Ykqo ,n

)2
}

,

where

Yk,s =
1

s− k
s∑

i=k+1

Yi.

There exist more sophisticated procedures for detection and identification
of multiple changes, however, they need stronger assumptions, for details see,
e.g., Yao (1988).

Particular attention has been paid to the epidemic alternatives correspond-
ing to the model (II.20) with q = 2 and µ1 = µ3 6= µ2. For more information
see, among others, Bhattacharya and Brockwell (1976), Yao (1993), Hušková
(1995), Antoch and Hušková (1996).
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8.5. Change in location or/and scale
The present section deals with changes in location or/and scale in the location
model:

Yi =

{
µ+ σei, i = 1, . . . ,m,

µ+ δ + (σ + h)ei, i = m + 1, . . . , n,
(II.24)

where m, µ, (δ, h) 6= (0, 0) and σ 2 > 0 are parameters, and e1, . . . , en are iid
random variables with symmetric distribution around zero, unit variance and
E |ei|4+∆ <∞ with some ∆ > 0. The change point m fulfills (II.2).

If the distribution function F of ei is known, we can try to derive the
maximum likelihood estimators (MLE). For example, if e1, . . . , en are iid with
N(0, 1) distribution, direct calculation gives the MLE m̂MLE of the change
point m in the form

m̂MLE = arg max

{
σ̃nn

σ̃ kk (σ̃ ok )n−k
; k ∈

{
1, . . . , n

}
}

,

where for k = 1, . . . , n− 1,

σ̃ 2
k =

1

k

k∑

i=1

(
Yi − Yk

)2
and σ̃ o2k =

1

n− k
n∑

i=k+1

(
Yi − Y

o

k

)2
,

i.e. σ̂ 2
k and σ̂ o2k are estimators of σ 2 based on Y1, . . . , Yk and Yk+1, . . . , Yn,

respectively.
The distribution of m̂MLE can be approximated using, x ∈ R1,

P




δ2

σ 2 + 1
2

(
h2

σ 2

)2

δ2

σ 2 + 1
2

(
h2

σ 2

)2

var e2
1

(
m̂MLE −m

)
≤ x


 ≈ P (V ≤ x), (II.25)

where the random variable V is defined by (II.10).
Despite the fact, that the estimator m̂MLE was developed for observations

with normal distribution, it can be used for other underlying distributions,
too. The same holds for the approximation (II.25). Moreover, the approxima-
tion (II.25) can be used if we replace δ2, σ 2 and var e2

1 by suitable estimators.
Notice, that the estimator m̂LS can be used also when we a priori know

that the change occurs only in the location (i.e. h = 0) or only in the scale σ
(i.e. δ = 0); in the approximation, we replace h and δ, respectively, by zero.

Next, we propose an estimator of m that works for a quite general situation
described in the model (II.24). The estimator is based on the pairs of the
partial sums Sk and Sk,sc, k = 1, . . . , n, where Sk is defined by (II.6) and

Sk,sc =
k∑

i=1

((
Yi − Yn

)2 − 1

n

n∑

j=1

(
Yj − Yn

)2)
, k = 1, . . . , n. (II.26)
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The estimator itself has the form

m̃SC = arg max

{
n

k(n− k)

(S2
k

σ̂ 2
k

+
S2
k,sc

σ̂ 2
k,sc

)
; k ∈

{
1, . . . , n− 1

}
}

, (II.27)

where σ̂ 2
k and σ̂ 2

k,sc are, respectively, estimators of σ and var (Y1 − µ)2. We
can use, e.g., the estimators

σ̂ 2
k =

1

n− 2

{
k∑

i=1

(
Yi − Yk

)2
+

n∑

i=k+1

(
Yi − Y o

k

)2
}

and

σ̂ 2
k,sc =

1

n− 2

(
k∑

i=1

((
Yi − Yk

)2 − 1

k

k∑

j=1

(
Yj − Yk

)2)
+

+
n∑

i=k+1

((
Yi − Y

o

k

)2 − 1

n− k
k∑

j=k+1

(
Yj − Y

o

k

)2)
)
.

The approximation to the distribution is of a similar type as above, i.e.:

P




δ2

σ 2 + 1
2

(
h2

σ 2

)2

δ2

σ 2 + 1
2

(
h2

σ 2

)2

var e2
1

(
m̃SC −m

)
≤ x


 ≈ P

(
V ≤ x

)
, x ∈ R1, (II.28)

where the random variable V is defined by (II.10).
Finally, we present an L1-estimator that is asymptotically equivalent with

(II.27). This estimator has the form

arg max

{
n

k(n− k)

k∑

i=1

(
sign

(
Yi − µ̃n

))2

+
k∑

i=1

(
sign

(
|Yi − µ̃n| − ν̃n

))2

;

k ∈
{

1, .., n− 1
}
}
, (II.29)

where µ̃n is the sample median of Y1, . . . , Yn and ν̃n is the sample median
of |Y1 − µ̃n|, . . . , |Yn − ν̃n|. This estimator is very simple to calculate. The
approximation to the distribution is the same as in (II.28).

8.6. Gradual changes
We assume the observations Y1, . . . , Yn follow the model:

Yi =

{
µ+ σei, i = 1, . . . ,m,

µ+ δ i−m
n + σei, i = m + 1, . . . , n,

(II.30)

where µ, σ 2 > 0, δ 6= 0 and m (< n) are unknown parameters, e1, . . . , en are
iid random errors with zero mean, nonzero variance σ 2 and E |ei|2+∆ < ∞
with some ∆ > 0. Again, m is the change point which is assumed to fulfill
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(II.2). This type of change is called gradual. The least squares method leads
to the following estimator of m, i.e.:

m̃gr = arg max





(
n∑

i=k+1

(
Yi − Yn

) i− k
n

)2

n∑
i=k+1

(i− k)2

n2
− 1

n

(
n∑

i=k+1

i− k
n

)2
; k ∈

{
1, . . . , n− 1

}





,

and the parameters µ and δ are estimated by

µ̂n = Y n +
δ̂n
n

n∑

i=
�
mgr+1

i− m̂gr

n

and

δ̂n =

n∑
i=
�
mgr+1

(
Yi − Y n

) i− m̂gr + 1

n

n∑
i=
�
mgr+1

(
i− m̂gr

n

)2

−
(

n∑
i=
�
mgr+1

i− m̂gr

n

)2 ·

The distribution of this estimator is approximately normal, more exactly,

P

(√
θ(1− θ)
1 + 3θ

δ√
nσ

(
m̃gr −m

)
≤ x

)
≈ Φ(x), x ∈ R1.

Notice that the approximation to the distribution of the estimator m̃gr , in
this particular case, completely differs from the approximations we had so
far. This is due to the fact that we have a gradual (continuous) change while
all other considered changes are abrupt (jump).

9. Change in regression

9.1. Change point estimators in regression models
We assume that the observations Y1, . . . , Yn follow the regression model:

Yi =

{
x′iβ + σei, i = 1, . . . ,m,

x′iβ + x′iδ + σei, i = m + 1, . . . , n,

where β, σ 2 > 0, δ 6= 0, m(< n), are parameters, β and δ are p-dimensional
vectors and e1, . . . , en are iid random variables with zero mean, nonzero vari-
ance σ 2, and with E |ei|4+∆ < ∞ with some ∆ > 0. The change point m
fulfills (II.2).

Similarly as in the testing problem, there are many variants of the as-
sumptions on the design points xi, i = 1, . . . , n. Generally, in the usual
linear regression setup the assumptions are stronger than in the estimation
problem. We give here only three possible sets of assumptions:
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• xi = g
(
i/n
)

=
(
g1(i/n), . . . , gp(i/n)

)′
, i = 1, . . . , n, where g1, . . . , gp

are continuous functions on [0, 1] such that
∫ b
a g(x) dx is a positive

definite matrix for each 0 ≤ a < b ≤ 1.
• There are fixed p linearly independent p-dimensional vectors x 0

1 , . . . ,
x 0
p and the design points are chosen according to some rule from this

p vectors.
• The design points can be a realization of AR or ARMA sequences

fulfilling certain moment assumptions.

The estimator is defined as follows:

m̂regr = arg min

{
k∑

i=1

(
Yi − x′β̂k

)2
+

n∑

i=k+1

(
Yi − x′β̂

o

k

)2
; k = 1, . . . , n

}
,

where β̂k and β̂
o

k are least squares estimators of β based on Y1, . . . , Yk and
Yk+1, . . . , Yn, respectively. Equivalently, the estimators can be also defined
as

m̂regr = arg max

{
k∑

i=1

x′i
(
Yi − x′iβ̂n

)
·C−1

k Cn(Cn −Ck)·

·
k∑

i=1

x′i
(
Yi − x′iβ̂n

)
; k ∈

{
1, . . . , n

}
}

,

where Cn =
∑n
i=1 xix

′
i. Here

∑k
i=1 x

′
i

(
Yi − xTi β̂n

)
, i = 1, . . . , n, are vectors

of sums of partial residuals.
The approximation to the distribution of the estimators

P


 1

σ 2

1

2kn

�
m+kn∑

i=
�
m−kn+1

(
x′iδ
)2 (

m̂regr −m
)
≤ x


 ≈ P (V ≤ x), x ∈ R1,

with kn →∞, kn/n→ 0 and the random variable V is defined by (II.10).
The readers interested in this problem should consult some more advanced

text, e.g., Csörgő and Horváth (1997), Horváth and Kokozska (1997) and Bai
(1994).

9.2. Change in regression parameters and/or scale
We assume that the observations Y1, . . . , Yn follow the regression model:

Yi =

{
x′iβ + σei, i = 1, . . . ,m,

x′iβ + x′iδ + (σ + h)ei, i = m + 1, . . . , n,

where β, σ 2 > 0, (δ, h) 6= 0, m(< n), are parameters, and e1, . . . , en are
iid random variables with unit variance, and with E |ei|4+∆ < ∞ with some
∆ > 0, the distribution of ei is supposed to be symmetric around 0. The
assumptions on the design points are the same as in the previous section and
the change point m fulfills (II.2).
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The estimator is defined as

m̃regr = arg max

{
σ̃nn

σ̃ kk σ̃
o(n−k)
k

; k ∈ {1, . . . , n− 1
}
}
,

where

σ̃ 2
k =

1

k

k∑

i=1

(
Yi − x′β̂k

)2
, k = 1, . . . , n− 1,

σ̃ o2k =
1

n− k
n∑

i=k+1

(
Yi − x′β̂

0

k

)2

, k = 1, . . . , n− 1,

and β̂k and β̂
o

k are the least squares estimators of β based on Y1, . . . , Yk and
Yk+1, . . . , Yn. The approximation to the distribution of m̃regr is ∀x ∈ R1

P



(

1

σ 2

1

2kn

�
m+kn∑

i=
�
m−kn+1

(
x′iδ
)2

+
1

2

( h
σ 2

)2
)2(

m̃regr −m
)
≤ x


 ≈ P

(
V ≤ x

)
,

where the random variable V is defined by (II.10).

10. Confidence intervals

We focus on the confidence intervals based on the estimator m̂LS , defined
by (II.7), of the change points in the location model studied in Section 8.
However, we attempt to keep in mind generalization to other estimators and
models as well.

Three types of confidence intervals will be developed, one based on the
limit distribution of the (point) estimator(s) of m and two based on the
bootstrap methods. All three methods are suitable for local changes while
only the bootstrap constructions apply also to fixed changes.

Asymptotic approach

Using the approximation to the distribution of m̂LS described in (II.9), we
get the 100(1− α)% approximate confidence interval(

m̂LS − v1−α/2
σ̂ 2
n

δ̂ 2
n

, m̂LS + v1−α/2
σ̂ 2
n

δ̂ 2
n

)
, (II.31)

where m̂LS , δ̂n and σ̂ 2
n are defined in (II.7), (II.5) and (II.12), respectively,

and v1−α/2 is the quantile corresponding to the random variable V defined
in (II.10). (Selected quantiles are in Table 18.)

Now, we turn to the bootstrap approximations to the confidence intervals
based on the estimator m̂LS of m.

Bootstrap sampling scheme I.

Take two independent samples Y ∗1 , . . . , Y
∗�

m and Y ∗�m+1, . . . , Y
∗
n from the empir-

ical cumulative distribution function of Y1, . . . , Y �m and Y �m+1, . . . , Yn, respec-
tively. Then the bootstrap estimator m̂∗LS (corresponding to the estimator
m̂LS) is defined as
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m̂∗LS = arg max

{√
n

k(n− k)

∣∣∣
k∑

i=1

(
Y ∗i − Y

∗
n

)∣∣∣; k ∈
{

1, . . . , n− 1
}
}
.

(II.32)
This means, that the bootstrap estimator is calculated exactly as m̂ , however,
Yi, i = 1, . . . , n are replaced by their bootstrap counterparts Y ∗i , i = 1, . . . , n.

We can also modify the procedure taking the maximum only over the set{
k : |k − m̂| ≤ Dn

}
, with {Dn} fulfilling, as n→∞,

Dn ≤ min(m, n−m) and Dnδ
2
n −→∞. (II.33)

If the amount of the change δn ≡ δ 6= 0 is fixed, {Dn} can be chosen to tend
to infinity arbitrary slowly, while in the case of local changes {Dn} has to
tend to infinity faster than δ −2

n .

The modified bootstrap estimator ̂̂m
∗
LS related to m̂LS is defined as

̂̂m
∗
LS = arg max

{√
n

k(n− k)

∣∣∣
k∑

i=1

(
Y ∗i − Y

∗
n

)∣∣∣;
∣∣k − m̂LS

∣∣ ≤ Dn

}
, (II.34)

where
{
Dn

}
fulfills (II.33).

The bootstrap estimators m̂∗LS(G) and ̂̂m
∗
LS(G) related to m̂LS(G) are

defined accordingly.

Bootstrap sampling scheme II.

Define the estimated residuals

ẽi =

{
Yi − Y �m, i = 1, . . . , m̂,

Yi − Y
o�

m , i = m̂ + 1, . . . , n,

and the centered residuals

êi = ẽi −
1

n

n∑

j=1

ẽj , i = 1, . . . , n,

where Y �m and Y
o�

m are defined by (I.2), respectively, with m = m̂.
Take e∗∗1 , . . . , e

∗∗
n iid from the empirical cdf of ê1, . . . , ên and consider the

bootstrap observations

Y ∗∗i =

{
Ŷ �m + e∗∗i , i = 1, . . . , m̂,

Ŷ o�
m + e∗∗i , i = m̂ + 1, . . . , n.

Then we proceed as in the bootstrap sampling scheme I, i.e. we apply (II.32)
and (II.34) with Y ∗i replaced by Y ∗∗i .

Both these bootstrap schemes provide a reasonable approximation to the
confidence intervals for the change point m, typically they provide a better
approximation than the one based on the approximation (II.31).
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Part III. Selected limit properties

11. Selected limit theorems for test statistics

The test statistics which appeared in the text are mostly functionals of par-
tial sums of iid variables ei. Their distributions are very complex. However,
as we suppose that the number of observations n is large, their asymptotic
distributions are of interest. The theory used for obtaining the limit distri-
butions is based on the Donsker invariance principle and the theory of strong
approximations. Therefore, the limit distributions do not depend on the as-
sumption of the normality of ei. Usually it is sufficient to suppose that the
random errors ei are iid satisfying E ei = 0,E e2

i = 1 and E |ei|2+δ < ∞ for
some δ > 0.

The over-all maximum-type statistics go to infinity as n → ∞ almost
surely. The speed of the convergence of their critical values can be traced by
approximating these statistics by the maximum of certain processes over an
increasing interval, e.g.,

∣∣∣∣∣ max
1≤k≤n

| ∑k
i=1 ei |√
k

− sup
1/n≤t≤1

|W (t)|√
t

∣∣∣∣∣ = oP

(
1√

2 log logn

)
,

∣∣∣∣∣ max
1≤k≤n−1

∣∣∣
(
k
n

(
1− k

n

))−η 1√
n

k∑

i=1

(
ei − en

)∣∣∣− sup
1/n≤t≤1−1/n

|B(t) |(
t(1− t)

)η

∣∣∣∣∣ =

= oP

(
1√

2 log logn

)

∀η ∈ [0, 1/2], and

∣∣∣∣∣ max
1≤k≤n

∣∣∣ 1√
n

∑k
i=1

k−i
n ei

∣∣∣
√

1
n

∑k
i=1

(
k−i
n

)2 − sup
1/n≤t≤1

∣∣ ∫ t
0 (t− x) dW (x)

∣∣
√
t3/3

∣∣∣∣∣ = oP

(
1√

2 log logn

)

Similar approximations may be derived for a multidimensional case, for de-
tails see the book Csörgő and Horváth (1997).

Next we present the limit behavior of some of over-all maximum type
statistics. The type of limits are known as extreme value theorems. Under
the assumptions formulated at the beginning of the section and with an =√

2 log logn we have ∀y ∈ R1, as n→∞,

P

(
an max

1≤k<n
1√
k

k∑

i=1

ei ≤ y+2 log logn+
log log logn

2
− logπ

2

)
→ exp

{
e−y

2

}
,

P

(
an max

1≤k<n
1√
k

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣ ≤ y+2 log logn+
log log logn

2
− logπ

2

)
→ exp

{
e−y
}
,
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P

(
an max

1≤k<n

√
n

k(n− k)

∣∣∣∣∣
k∑

i=1

(ei − en)

∣∣∣∣∣ ≤

≤ y + 2 log logn+
1

2
log log logn− 1

2
logπ

)
→ exp

{
2e−y

}
,

P

(
an max

1≤k<n

∣∣∑k
i=1(k − i)ei

∣∣
√∑k

i=1(k − i)2

≤ y+2 log log n− 1

2
log(4π/3)

)
→ exp{2e−y},

P
(
an max

1≤k<n

∣∣∑k
i=1(k − i)(ei − en)

∣∣
√∑k

i=1(k − i)2 − (
∑k
i=1(k − i))2/n

≤

≤ y + 2 log logn− 1

2
log(4π/3)

)
→ exp

{
2e−y

}
·

Some of the above results can be extended to the multivariate case. Par-
ticularly, if YYY 1, . . . ,YYY n are iid p-dimensional random vectors with zero mean,
positive variance matrix Σ and E|Yij |2+∆ < ∞ with some ∆ > 0, i =
1, . . . , n, j = 1, . . . , p, then, for any y ∈ R1,

P

(
√

2 log log n max
1≤k<n

{√
n

k(n− k)

√
S′kΣ

−1S′k

}
≤

≤ y + 2 log logn+
p

2
log log logn− 1

2
log Γ(p)

)
→ exp

{
− 2 exp{−y}

}

as n→∞, where

Sk =
(
S1,k, . . . , Sp,k

)′
, Sj,k =

k∑

i=1

(
Yij − Y j

)
, k = 1, . . . , n, j = 1, . . . , p.

For maximum-type statistic of moving sums under the assumptions (de-
noting G = Gn)

n2/(2+∆) logn

G
→ 0 and G/n→ 0 as n→∞,

we have for any y ∈ R1, as n→∞,

P

(√
2 log

n

G
max

G<k<n−G

{
1√
G

1

σ

∣∣Sk+G − 2Sk + Sk−G
∣∣
}
≤

≤ y + 2 log
n

G
+

1

2
log log

n

G
− 1

2
log

4π

9

)
→ exp

{
− 2 exp{−y}

}
.

For a trimmed maximum-type statistic as well as for a sum-type statistic
we obtain the limit distributions by approximating them, respectively, by the
maximum of some processes over a fixed interval, e.g.,
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n∑

k=1

1

n

(
1√
n

k∑

i=1

ei

)2

D−→
∫ 1

0

W 2(t) dt,

max
bβnc≤k≤n

∣∣ ∑k
i=1 ei |√
k

D−→ max
β≤t≤1

|W (t) |√
t

, ∀β ∈ (0, 1),

max
bβnc≤k≤n

∣∣∣ 1√
n

∑k
i=1

k−i
n ei

∣∣∣
√

1
n

∑k
i=1

(
k−i
n

)2
D−→ max

β≤t≤1

∣∣ ∫ t
0 (t− x) dW (x)

∣∣
√
t3/3

, ∀β ∈ (0, 1),

max
bβnc≤k≤b(1−β)nc

∣∣∣∣∣

√
n

k(n− k)

k∑

i=1

(
ei − en

)
∣∣∣∣∣
D−→

max
β≤t≤(1−β)

∣∣B(t)
∣∣

√
t(1− t)

, ∀β ∈ (0, 1/2),

and

max
1≤k≤n−1

∣∣∣
(
k
n

(
1− k

n

))−η 1√
n

k∑

i=1

(
ei − en

)∣∣∣ D−→

sup
1/n≤t≤1−1/n

|B(t) |(
t(1− t)

)η , ∀η ∈ [0, 1/2).

Here
D−→ denotes the convergence in distibution, {W (t), t ∈ (0, 1) and

{B(t), t ∈ (0, 1) are Wiener process and Brownian bridge, respectively. The
random variables on the rhs are functionals of Wiener process and Brown-
ian bridge. The exact form of their distribution functions are usually ex-
plicitely unknown. Some approximations were developed, selected details are
described bellow. For more information see Billingsley (1968) and Csörgő
and Horváth (1993).

12. Properties of maximum of one-dimensional Gaussian
processes

The limit distributions of the maximum-type statistics are given by distribu-
tions of a maximum of a Gaussian process either over a fixed or an increasing
interval. As we wish to approximate the upper quantiles of our test statistics,
we are interested in the high level exceedence probabilities of the considered
limit processes. More specifically, approximate critical values can be found
applying theorems for the exceedence probabilities of stationary Gaussian
processes, see Theorem 12.2.9 and 12.3.5 of Leadbetter et al. (1983).
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Let
{
ξ(t), t ≥ 0

}
be a zero-mean standardised stationary Gaussian process

with the covariance function ρξ(τ) that satisfies

lim
τ→∞

ρξ(τ) log τ = 0 (III.1)

and has the following expansion at zero, i.e.,

ρξ(τ) = 1− C|τ |α + o(|τ |α) as τ → 0,

where α = 1 or α = 2. Then it holds:

1) for T being fixed and the exceedence level u→∞

lim
u→∞

P
(

max0≤t≤T ξ(t) > u
)

u2/α−1φ(u)
= TC1/αHα; (III.2)

2) for T tending to infinity and

xT =
√

2 logT+
1√

2 logT

(
x+

2− α
2α

log logT + log

(
C1/αHα

2(2−α)/2α

√
2π

))
,

lim
T→∞

P

(
max

0≤t≤T
ξ(t) > xT

)
= 1− exp

{
−e−x

}
,

x ∈ R1, H1 = 1, H2 = 1/
√
π.

If we are interested in the maximum of absolute values of studied processes
then, under the same conditions as above, the following properties hold:

1) for T being fixed and the exceedence level u→∞

lim
u→∞

P
(

max0≤t≤T |ξ(t)| > u
)

u2/α−1φ(u)
= 2TC1/αHα, (III.3)

2) for T tending to infinity and xT as above

lim
T→∞

P

(
max

0≤t≤T
|ξ(t)| > xT

)
= 1− exp

{
−2e−x

}
. (III.4)

Remark: For T fixed and u large, the following approximations seem to be
more accurate than (III.2) and (III.3), i.e.

P

(
max

0≤t≤T
ξ(t) > u

)
≈
(
1− Φ(u)

)
+ u2/α−1φ(u)TC1/αHα

and

P

(
max

0≤t≤T

∣∣ξ(t)
∣∣ > u

)
≈ 2
(
1− Φ(u)

)
+ 2u2/α−1φ(u)TC1/αHα.

Example 1: Consider the process{
Y (t) =

∫ t
0 x

p dW (x)√
t2p+1/(2p+ 1)

, t ∈ (0, 1]

}
, p = 0, 1, . . . ,

and the process
{
U(t) = Y (e−t), t ∈ [0,∞)

}
. The covariance function of the

process
{
Y (t), t ∈ (0, 1]

}
is RY (t, s) = (t/s)p+1, 0 < t ≤ s ≤ 1. It follows

that {U(t), t ∈ [0,∞)} is a zero-mean standardized Gaussian process with
the covariance function



Off – line statistical process control 65

RU (τ) = EU(t)U(t+ τ) = exp

{
−2p+ 1

2
τ

}
, τ ≥ 0,

that satisfies (III.1) and

Ru(τ) = 1− 2p+ 1

2
|τ | + o(τ) as τ → 0.

It follows that

P

(
max
β≤t≤1

|Y (t)| > u

)
= P

(
max

0≤t≤− log β
|U(t)| > u

)

≈ 2(− logβ)
2p+ 1

2
uφ(u).

for small β and large u. Particularly, for p = 0 we get

P

(
max
β≤t≤1

∣∣W (t)
∣∣

√
t

> u

)
≈ uφ(u) log

1

β

A better approximation can be found in the subsection 13.

Example 2: Consider the process{
Y C(t) =

∫ t
0
(t− x)p dW (x)√
t2p+1/(2p+ 1)

, t ∈ (0, 1]

}
, p = 1, 2, . . . ,

with the covariance function

RY C(t, s) = (2p+ 1)

p∑

i=0

(
p

i

)
1

p+ i+ 1

(
t

s

)i+ 1
2
(

1− t

s

)p−i
, 0 < t ≤ s ≤ 1.

The process
{
UC(t) = Y C(e−t), t ∈ [0,∞)

}
is a zero-mean standardized

stationary Gaussian process with the covariance function

RUC(t) =
(
2p+ 1

) p∑

i=0

(
p

i

)
1

p+ i+ 1
e−(i+1/2)τ

(
1− e−τ

)p−i
, τ ≥ 0

satisfying (III.1) and

RUC(τ) = 1− 2p+ 1

8(2p− 1)
τ2 + o(τ2) as τ → 0.

It follows that

P

(
max
β≤t≤1

|Y C(t)| > u

)
= P

(
max

0≤t≤− log β
|UC(t)| > u

)
≈

≈ 2(− logβ)

√
2p+ 1

8(2p− 1)

1

π
φ(u).

The former theory for stationary Gaussian processes were generalized for
locally stationary Gaussian processes by Hüsler (1990), Hüsler (1993) and
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Bräker (1993). Let
{
ξ(t), t ≥ 0

}
be a zero-mean locally stationary Gaussian

process with the covariance function ρξ
(
t, s
)

that satisfies

lim
τ→∞

(
sup

{
ρξ(t, s), | t− s | > τ

})
log τ = 0

and has the following expansion at zero, i.e.

ρξ
(
t, t+ τ

)
= 1− C(t)| τ |α + o(| τ |α) as τ → 0,

where α = 1 or α = 2 and 0 < inf C(t) ≤ supC(t) <∞. Then
1) for T being fixed and the exceedence level u→∞

lim
u→∞

P
(

max0≤t≤T ξ(t) > u
)

u2/α−1φ(u)
= Hα

∫ T

0

(
C(t)

)1/α
dt;

2) for T →∞ and

xT =
√

2 logT +
1√

2 logT

(
x+

2− α
2α

log logT + log

(
C?THα

2(2−α)/2α

√
2π

))
,

where C?T = T−1
∫ T

0

(
C(t)

)1/α
dt,

lim
T→∞

P

(
max

0≤t≤T
ξ(t) > xT

)
= 1− exp

{
−e−x

}
, x ∈ R1.

13. Exceedence level properties of Wiener process and
Brownian bridge

The standardized Wiener process
{
W (t)/

√
t, β ≤ t ≤ 1

}
and standardized

Brownian bridge process
{

B(t)√
t(1− t)

=
W (t)− tW (1)√

t(1− t)
, β ≤ t ≤ 1− β

}

belong, for every 0 < β < 1/2, to locally stationary random processes with
α = 1, so that the described exceedence theory for locally stationary random
processes may be applied to get high level exceedence probabilities that we
applied in our text. However, for these two, a better approximation is known,
i.e., for small β and large x

P

(
sup
β≤t≤1

∣∣W (t)
∣∣

√
t

> x

)
≈ xφ(x)

(
(1− 1

x2
) log

1

β
+

4

x2

)

and

P

(
sup
β≤t≤1

∣∣B(t)
∣∣

√
t(1− t)

> x

)
≈ 2xφ(x)

(
(1− 1

x2
) log

1− β
β

+
2

x2

)
·

For the multivariate Wiener process W (t) =
{
W1(t), . . . ,Wd(t)

}
with in-

dependent components and the multivariate Brownian bridge process B(t) ={
B1(t), . . . , Bd(t)

}
, the following approximations hold, i.e., for small β and

large x
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P

(
sup
β≤t≤1

W 2
1 (t) + · · ·+W 2

d (t)

t
> x2

)
≈ xde−x

2/2

2d/2Γ(d/2)

((
1− d

x2

)
log

1

β
+

4

x2

)

and

P � sup
β≤t≤(1−β)

B2
1(t) + · · ·+B2

d(t)

t(1− t) > x2 
 ≈ 2xde−x
2/2

2d/2Γ(d/2)
� � 1 − d

x2

� log
1 − β
β

+
2

x2 

14. Selected limit properties of of change point estimators

In this section we formulate some important theoretical results on behavior
of change point estimators described in Section 8.

If random variables Y1, . . . , Yn follow the model (II.1) with δn ≡ δ 6= 0
fixed, m = bnγc, γ ∈ (0, 1) and e1, . . . , en be iid random variables with zero
mean, nonzero variance σ 2 and E |ei|2+∆ < ∞ with some ∆ > 0. We deal
with m̂LS and m̂LS(G) defined in (II.7) and (II.8).

Then m̂LS −m, as n→∞, has the limit distribution as

arg max
{
δWI(j)− δ2|j|/2; j = 0,±1,±2, . . .

}
,

where

WI (j) =





0, j = 0,∑0
i=j ei, j = −1,−2, . . . ,

−∑j
i=1 ei, j = 1, 2, . . .

This assertion says that the approximation depends on the distribution of
the error terms ei, which sometimes can create problems.

However, this is not the case with local changes i.e. when δ ≡ δn → 0 as
n→∞. Particularly, if

δn → 0 and |δn|
√
n/
√

log logn →∞. (III.5)

then, as n → ∞, δ2
nσ
−2
(

m̂LS − m
)

has the same distribution as V , where

V is a random variable defined by (II.10). The distribution function of V is
known and it has the form (II.13).

If, moreover,

G/n→ 0 and G−1n2/(2+∆) logn→ 0 as n→∞, (III.6)

then, as n→∞, 2δ2
n

(
3σ 2

)−1
(

m̂LS(G)−m
)

has the same limit distribution

as V , where V is a random variable defined by (II.10).
In case δ = 0 (no change) m̂LS and m̂LS(G) have different limit distribu-

tions. Particularly, we have ∀ε ∈ (0, 1/2]

P
(

m̂LS < nε
)
≈ 1/2, P

(
m̂LS > n(1− ε)

)
≈ 1/2

and m̂LS(G) has approximately uniform distribution on
{
G+ 1, . . . , n−G

)
.
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Part IV. Selected Matlab codes

We decided to offer the reader the possibility to use the methods described
in details in this paper. Therefore, we prepared Matlab codes covering them.
As an example, several of these macros including detailed description and
links to the previous sections are included here. They cover the following
models, i.e. detection of:

(1) change in mean with unknown starting value, maximum – type test
statistic;

(2) change in mean with unknown starting value, sum – type test statis-
tic;

(3) change in variance;
(4) change in mean and/or variance.

More codes are available from the authors.
Respective macros were written and tested in Matlab version 6.0.0.88 (R12

of September 22, 2000. However, we believe that they can be run under much
older versions of the Matlab as well.

Each user should take into account that the critical values are not im-
plemented into the codes. The reason is that, for each method, there exist
several possibilities how to calculate them using either asymptotic results,
Bonferroni inequality or simulations. Despite the fact that the authors per-
sonally prefer, for most situations, the simulated critical values, we leave the
choice on the reader. For each of the methods, this paper reports all the
possibilities.

As an example we used the following three data sets:

Nile data

This data set is probably one of the most frequently used in the change point
setup, for details see, e.g., Cobb (1978) or Hinkley and Schechtman (1987).
The data correspond to the annual flows (in billions of cubic meters) in the
Nile river at Aswan (Egypt) during the years 1871 – 1970.

Simulated data I.

The data used as the testing example for the subroutine m3 2.m were gener-
ated as follows:

1) X1, . . . , X20 follow standard normal distribution N(0, 1);
2) X21, . . . , X50 follow a normal distribution N(0, 32);

Simulated data II.

The data used as the testing example for the subroutine m3 3.m were gener-
ated as follows:

1) X1, . . . , X20 follow standard normal distribution N(0, 1);
2) X21, . . . , X50 follow a normal distribution N(4, 32);
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year flow year flow year flow year flow

1871 1120 1896 1220 1921 768 1946 1040
1872 1160 1897 1030 1922 845 1947 860
1873 963 1898 1100 1923 864 1948 874
1874 1210 1899 774 1924 862 1949 848
1875 1160 1900 840 1925 698 1950 890

1876 1160 1901 874 1926 845 1951 744
1877 813 1902 694 1927 744 1952 749
1878 1230 1903 940 1928 796 1953 838
1879 1370 1904 833 1929 1040 1954 1050
1880 1140 1905 701 1930 759 1955 918

1881 995 1906 916 1931 781 1956 986
1882 935 1907 692 1932 865 1957 797
1883 1110 1908 1020 1933 845 1958 923
1884 994 1909 1050 1934 944 1959 975
1885 1020 1910 969 1935 984 1960 815

1886 960 1911 831 1936 897 1961 1020
1887 1180 1912 729 1937 822 1962 906
1888 799 1913 456 1938 1010 1963 901
1889 958 1914 824 1939 771 1964 1170
1890 1140 1915 702 1940 676 1965 912

1891 1100 1916 1120 1941 649 1966 746
1892 1210 1917 1100 1942 846 1967 919
1893 1150 1918 832 1943 812 1968 718
1894 1250 1919 764 1944 742 1969 714
1895 1260 1920 821 1945 801 1970 740

The annual flows (in billions of cubic meters) in river Nile at Aswan
(Egypt) during the years 1871– 1970. Data are used as the example in
subroutines m3 1 be.m. and m3 1 le.m.

1880 1900 1920 1940 1960
400

600

800

1000

1200

1400

Nile data.
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i value i value i value i value i value

1 0.979 11 -0.438 21 -3.870 31 -1.116 41 0.962
2 -0.265 12 1.366 22 2.891 32 0.770 42 -0.578
3 -0.548 13 -0.872 23 1.957 33 2.432 43 4.673
4 -0.096 14 0.089 24 -1.232 34 -1.020 44 0.169
5 -1.380 15 0.247 25 -5.308 35 -3.955 45 -3.673

6 -0.728 16 0.407 26 1.318 36 -6.327 46 0.195
7 1.886 17 0.648 27 1.485 37 0.919 47 -3.284
8 -2.941 18 -0.164 28 2.053 38 -2.366 48 -3.208
9 0.980 19 0.811 29 -1.187 39 -1.511 49 0.649

10 -1.191 20 0.408 30 0.147 40 4.659 50 -2.317

Simulated data used as the example in subroutine m3 2.m.

0 10 20 30 40 50

−6

−4

−2

0

2

4

Simulated data I.

i value i value i value i value i value

1 0.979 11 -0.438 21 0.129 31 2.883 41 4.962
2 -0.265 12 1.366 22 6.891 32 4.770 42 3.422
3 -0.548 13 -0.872 23 5.957 33 6.432 43 8.673
4 -0.096 14 0.089 24 2.767 34 2.979 44 4.169
5 -1.380 15 0.247 25 -1.308 35 0.044 45 0.326

6 -0.728 16 0.407 26 5.318 36 -2.327 46 4.195
7 1.886 17 0.648 27 5.485 37 4.919 47 0.715
8 -2.941 18 -0.164 28 6.053 38 1.633 48 0.791
9 0.980 19 0.811 29 2.812 39 2.488 49 4.649

10 -1.191 20 0.408 30 4.147 40 8.659 50 1.682

Simulated data used as the example in subroutine m3 3.m.



Off – line statistical process control 71
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Simulated data II.

15. Change in mean with unknown starting value,
max-type test statistics

function Results = m3_1_le(data, sigma2, trimming)

%%% SUBROUTINE m3_1.m

%%%

%%% PURPOSE To test the null hypothesis H against the alternative

%%% A in the model:

H : Yi = µ+ ei, i = 1, . . . , n,

A : ∃m ∈ { 1, . . . , n− 1} such that (I.16)

Yi = µ + ei, i = 1, . . . ,m,

Yi = µ + δ + ei, i = m + 1, . . . , n, δ 6= 0.

We suppose that the variables ei are iid with the normal distribution N
�
0, σ 2 � ,

σ 2 either known or unknown. If σ 2 is known, we apply statistics (I.17) or (I.18).
On the other hand, if σ 2 is unknown, we apply statistics (I.27) or (I.28) with σ 2

estimated using (I.29).

%%%

%%% CALLING SEQUENCE

%%%

%%% function Results = m3_1(data, sigma2, trimming)

%%%

%%% INPUT

%%%

%%% data ... data series to be tested for the presence

%%% of change point in model (I.16)
%%%

%%% sigma2 ... variance of the error term

%%%

%%% > 0 ... user-supplied value for ‘sigma^2’ is used

%%% <=0 ... ‘sigma^2’ is estimated using (I.29)
%%%

%%% trimming ... trimming proportion (default: beta = 0.05)

%%%

%%% in (0,1/2) ... trimmed statistic (I.18) or (I.28) is used
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%%% otherwise ... non-trimmed statistic (I.17) or (I.27) is used

%%%

%%% OUTPUT

%%%

%%% Results :

%%%

%%% chp_place ... place of maximum of test statistics

%%% ts_value ... value of maximum of test statistics

%%% sigma2_used ... value of ‘s_k^2 (sigma^2)’ used for calculation

%%% test_stats ... values of test statistics (I.17) or (I.27),
%%% respectively (I.18) or (I.28)
%%% sigma2_stats .. values of statistics (I.29)
%%% trimming_used . value of ‘trimming’ used for calculation

%%%

%%% EXTERNAL PROCEDURES CALLED none

%%%

%%% EXAMPLE

%%%

%%% nile <- data are read in

%%% Results = m3_1_le(nil, 0, 0.05) <- calculation

%%%

%%% Results.chp_place = 28 -> change point place

%%% Results.ts_value = 8.7143 -> value of test statistic (I.17)
%%% or (I.18)
%%% Results.sigma2_used = 16293 -> ‘sigma^2’ used

%%% Results.test_stats = 1.1943, 1.8867, ...

%%% -> values of test statistics

%%% Results.sigma2_stats = 28503, 27904, ...

%%% -> values of estimators of ‘sigma^2’

%%% Results.trimming_used = 0.05

%%%

%%% CONTROL of PARAMETERS

if nargin == 2, trimming = 0; end

if nargin == 1, sigma2 = 0; trimming = 0; end

if trimming < 0| trimming >= 0.5, trimming = 0; end

if sigma2 < 0, sigma2 = 0; end

%%% COMPUTATION

%%% CALCULATION OF NECESSARY CONSTANTS

data = data(:);

n = length(data);

nm1 = n - 1;

nm2 = n - 2;

sk2 = zeros(nm1,1);

n1 = 1;
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n2 = nm1;

if trimming > 0

n1 = round(n*trimming);

n2 = n - n1;

if n1 < 1, n1 = 1; end

if n2 > nm1, n2 = nm1; end

end

konst1 = sqrt(n ./ ([1:nm1].*[nm1:-1:1]))’;

%%% CALCULATION OF TEST STATISTICS

junk = cumsum(data - mean(data));

stats = abs(konst1 .* junk(1:nm1));

if sigma2 == 0

for i = 1:nm1

data1 = data(1:i);

data2 = data(i+1:n);

sk2(i) = (sum((data1 - mean(data1)).^2) + ...

sum((data2 - mean(data2)).^2)) / nm2;

end

else

sk2 = sigma2;

end

test_stats = abs(stats./sqrt(sk2));

[ts_value, chp_place] = max(test_stats(n1:n2));

chp_place = chp_place + n1 - 1;

%%% STORING THE RESULTS

Results.chp_place = chp_place;

Results.ts_value = ts_value;

if sigma2 > 0

Results.sigma2_used = sigma2;

else

Results.sigma2_used = sk2(chp_place);

end

Results.test_stats = test_stats;

Results.sigma2_stats = sk2;

Results.trimming_used = trimming;

%%% PLOTTING (RELEVANT FOR MATLAB USERS ONLY)

plot([n1:n2], test_stats(n1:n2))

axis([0 n floor(min(test_stats(n1:n2))) ceil(max(test_stats(n1:n2)))])

xlabel(’Index’)

if sigma2 > 0 & trimming == 0
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ylabel(’Test statistics (I.17)’)
end

if sigma2 > 0 & trimming > 0

ylabel(’Test statistics (I.18)’)
end

if sigma2 == 0 & trimming == 0

ylabel(’Test statistics (I.27)’)
end

if sigma2 == 0 & trimming > 0

ylabel(’Test statistics (I.28)’)
end

title(’MODEL (I.16)’)
grid on

if sigma2 == 0

figure

plot([n1:n2], sk2(n1:n2))

xlabel(’Index’)

ylabel(’Values s_k^2 calculated using (I.29)’)
title(’MODEL (I.16)’)
grid on

axis([0 n floor(min(sk2)) ceil(max(sk2))])

end

16. Change in mean with unknown starting value,
sum-type test statistics

function Results = m3_1_be(data, sigma2)

%%% SUBROUTINE m3_1_be.m

%%%

%%% PURPOSE To test the null hypothesis H against the alternative

%%% A in the model:

H : Yi = µ+ ei, i = 1, . . . , n,

A : ∃m ∈ { 1, . . . , n− 1} such that

Yi = µ + ei, i = 1, . . . ,m,

Yi = µ + δ + ei, i = m + 1, . . . , n, δ 6= 0.

We suppose that the variables ei are iid with the normal distribution N
�
0, σ 2 � , σ 2

either known or unknown. If σ 2 is known, we apply Bayesian-type statistic (I.19).
On the other hand, if σ 2 is unknown or supplied value of σ 2 is ≤ 0, we apply
Bayesian-type statistic (I.19) with σ 2 estimated using (I.26).

%%% CALLING SEQUENCE Results = m3_1_be(data, sigma2)

%%%

%%% INPUT
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%%%

%%% data ... data series to be tested for the presence

%%% of change point

%%%

%%% sigma2 ... variance of the error term

%%% > 0 ... statistic (I.19) is used with user-supplied

%%% value for ‘sigma^2’

%%% <=0 ... statistic (I.19) is used and ‘sigma^2’

%%% or missing estimated using (I.26)
%%%

%%% OUTPUT

%%%

%%% Results :

%%% test_stat ... value of the test statistic (I.19)
%%% sigma2 ... user-supplied value for ‘sigma^2’ or value of

%%% the statistic (I.26)
%%%

%%% EXTERNAL PROCEDURES CALLED none

%%%

%%% EXAMPLE

%%% nile <- data about Nile are read in

%%% Results = m3_1_be(nil, 0) <- calculation

%%%

%%% Results.test_stat = 2.5276 -> value of test statistic (I.19)
%%% Results.sigma2 = 2.8340e+04 -> value of statistic (I.26)
%%%

%%% CONTROL OF PARAMETERS

if nargin == 1, sigma2 = 0; end

%%% CALCULATION OF NECESSARY CONSTANTS

data = data(:);

n = length(data);

nm1 = n - 1;

%%% CALCULATION OF THE TEST STATISTIC

junk = cumsum(data - mean(data));

stat = sum(junk.^2)/(n^2);

if sigma2 <= 0, sigma2 = sum((data - mean(data)).^2)/n; end

test_stat = stat/sigma2;

%%% STORING THE RESULTS

Results.test_stat = test_stat;

Results.sigma2 = sigma2;
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17. Change in variance

function Results = m3_2(data, trimming, a)

%%% SUBROUTINE m3_2.m

%%%

%%% PURPOSE

We suppose that the observations Y1, . . . , Yn are independent normally distributed
with a known mean µ and unknown variances. Supposing that the mean remains
the same, the problem of the detection of a change in variance can be formulated
as the following testing problem, i.e. we test the null hypothesis H against the
alternative A:

H : Y1 . . . , Yn ∼ N
�
µ, σ 2 �

A : ∃m ∈ {1, . . . , n − 1} such that (I.32)

Y1, . . . , Ym ∼ N
�
µ, σ 2

1 � ,
Ym+1, . . . , Yn ∼ N

�
µ, σ 2

2 � ,
where σ 2

1 6= σ 2
2 .

%%% CALLING SEQUENCE Results = m3_2(data, trimming, a)

%%%

%%% INPUT

%%%

%%% data ... data series to be tested for the presence of

%%% change point in variance in model (I.32)
%%%

%%% trimming ... trimming proportion (default: beta = 0.05)

%%%

%%% if in (0,1/2) .. trimmed statistic (I.33) is used

%%% otherwise ... non-trimmed statistic (I.33) is used

%%%

%%% a ... (expected) mean of observations

%%%

%%% specified ... user-supplied value of ‘a’

%%% not specified ... ‘a’ will be estimated by the mean of the data

%%%

%%% OUTPUT

%%%

%%% Results :

%%%

%%% chp_place ... place of the maximum of test statistics

%%% ts_value ... value of the maximum of test statistics

%%% stats_zk ... values of statistics $Z_k$ from (I.34)
%%% trimming_used ... value of ‘trimming’ used for calculation

%%% a_used ... value of ‘a’ used for calculation

%%%

%%% EXTERNAL PROCEDURES CALLED none
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%%% EXAMPLE

%%% randn(’seed’,1); <- seeding RNG

%%% data = [randn(20,1); 3*randn(30,1)] <- data are generated

%%% Results = m3_2(data, 0.05, 0) <- calculation

%%%

%%% Results.chp_place = 20 -> change point place

%%% Results.ts_value = 4.1267 -> value of test statistic (I.17)
%%% or (I.18)
%%% Results.stats_zk = 0.9174, 1.6637, ...

%%% -> values of statistics Z_k

%%% Results.a_used = 0

%%% Results.trimming_used = 0.9174, 1.6637, ...

%%%

%%% CONTROL OF PARAMETERS

if nargin == 1, trimming = 0; a = mean(data); end

if nargin == 2, a = mean(data); end

if trimming < 0 | trimming >= 0.5, trimming = 0; end

%%% CALCULATION OF NECESSARY CONSTANTS

data = data(:);

n = length(data);

nm1 = n - 1;

zk2 = zeros(n,1);

n1 = 1;

n2 = nm1;

if trimming > 0

n1 = round(n*trimming);

n2 = n - n1;

if n1 < 1, n1 = 1; end

if n2 > nm1, n2 = nm1; end

end

%%% CALCULATION OF TEST STATISTICS

junk = n*log(sum((data - a).^2)/n);

for k = n1:n2

data1 = data(1:k);

data2 = data(k+1:n);

junk1 = sum((data1 - a).^2)/k;

junk2 = sum((data2 - a).^2)/(n-k);

zk2(k) = junk - k*log(junk1) - (n-k)*log(junk2);

end

stats_zk = sqrt(zk2);

[ts_value, chp_place] = max(stats_zk(n1:n2));

chp_place = chp_place + n1 - 1;
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%%% STORING THE RESULTS

Results.chp_place = chp_place;

Results.ts_value = ts_value;

Results.stats_zk = stats_zk;

Results.a_used = a;

Results.trimming_used = trimming;

%%% PLOTTING (RELEVANT FOR MATLAB USERS ONLY)

plot([n1:n2],stats_zk(n1:n2));

axis([0 n floor(min(stats_zk(n1:n2))) ceil(max(stats_zk))])

xlabel(’Index’)

ylabel(’Test statistics (I.33)’)
title(’MODEL (I.32)’)
grid on

18. Change in mean and/or variance

function Results = m3_3(data, trimming)

%%% SUBROUTINE m3_3.m

%%%

%%% PURPOSE

Sometimes it can happen that the change may occur either in one parameter or in
both (simultaneously) . Then we test the null hypothesis H against the alternative
A:

H : Y1 . . . , Yn ∼ N
�
µ, σ 2 �

A : ∃m ∈ {2, . . . , n − 2} such that (I.38)

Y1, . . . , Ym ∼ N
�
µ1, σ

2
1 � ,

Ym+1, . . . , Yn ∼ N
�
µ2, σ

2
2 � ,

where
�
µ1, σ

2
1 � 6= �

µ2, σ
2
2 � .

%%% CALLING SEQUENCE Results = m3_3(data, trimming)

%%%

%%% INPUT

%%%

%%% data ... data series to be tested for the presence of

%%% change point in variance in model (I.38)
%%%

%%% trimming ... trimming proportion (default: beta = 0.05)

%%%

%%% if in (0,1/2) .. trimmed statistic (I.39) is used

%%% otherwise ... non-trimmed statistic (I.39) is used
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%%%

%%% OUTPUT

%%%

%%% Results :

%%%

%%% chp_place ... place of the maximum of test statistics

%%% ts_value ... value of the maximum of test statistics

%%% stats_zk ... values of statistics sqrt of (I.41)
%%% trimming_used ... value of ‘trimming’ used for calculation

%%% a1_used ... value of ‘a1’ used for calculation

%%% a2_used ... value of ‘a2’ used for calculation

%%%

%%% EXTERNAL PROCEDURES CALLED none

%%%

%%% EXAMPLE

%%% randn(’seed’,1); <- seeding RNG

%%% data = [randn(20,1); 4+3*randn(30,1)] <- data are generated

%%%

%%% Results = m3_3(data, 0.05) <- calculation

%%%

%%% Results.chp_place = 21 -> change point place

%%% Results.ts_value = 6.639 -> value of test statistic (I.39)
%%% Results.stats_zk = 0, 2.212, ...

%%% -> values of statistics Z_k

%%% Results.trimming_used = 0.05

%%% Results.a1_used = -0.0321

%%% Results.a2_used = 3.5931

%%%

%%% CONTROL OF PARAMETERS

if nargin == 1, trimming = 0; end

if trimming < 0 | trimming >= 0.5, trimming = 0; end

%%% CALCULATION OF NECESSARY CONSTANTS

data = data(:);

n = length(data);

zk2 = zeros(n,1);

n1 = 2;

n2 = n - 2;

nm2 = n - 2;

if trimming > 0

n1 = round(n*trimming);

n2 = n - n1;

if n1 < 2, n1 = 2; end

if n2 > nm2, n2 = nm2; end

end
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%%% CALCULATION OF TEST STATISTICS

junk = n*log(sum((data - mean(data)).^2)/n);

for k = n1:n2

data1 = data(1:k);

data2 = data(k+1:n);

junk1 = sum((data1 - mean(data1)).^2)/k;

junk2 = sum((data2 - mean(data2)).^2)/(n-k);

zk2(k) = junk - k*log(junk1) - (n-k)*log(junk2);

end

stats_zk = sqrt(zk2);

[ts_value, chp_place] = max(stats_zk(n1:n2));

chp_place = chp_place + n1 - 1;

%%% STORING THE RESULTS

Results.chp_place = chp_place;

Results.ts_value = ts_value;

Results.stats_zk = stats_zk;

Results.trimming_used = trimming;

Results.a1_used = mean(data(1:chp_place));

Results.a2_used = mean(data(chp_place+1:n));

%%% PLOTTING (RELEVANT FOR MATLAB USERS ONLY)

plot([n1:n2],stats_zk(n1:n2));

axis([0 n floor(min(stats_zk(n1:n2))) ceil(max(stats_zk))])

xlabel(’Index’)

ylabel(’Test statistics (I.39)’)
title(’MODEL (I.38)’)
grid on
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Antoch J. and Hušková M. (2000). Bayesian like R- and M-estimators of change points.
Discussiones Mathematicae 20, 115 – 134.
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Antoch J. and V́ı̌sek J. Á. (1992). Robust estimation in linear model and its computational
aspects. Computational Aspects of Model Choice, Antoch J. (ed.), Physica – Verlag,
Heidelberg, 39 – 104.

Bai J. (1991). On the partial sums of residuals in autoregressive and moving average
models. J. Time Series Analysis 14, 247 – 259.

Bai J. (1994). Least squares estimation of a shift in linear processes. J. Time Series Analysis
15, 453 – 472.

Berman S. M. (1982). Sojourns and extremes of stationary processes. Ann. Probab. 10,
1 – 46.

Bhattacharya P. K. and Brockwell P. J. (1976). The minimum of additive process with
applications to signal, estimation and storage theory. Z. Wahrsch. Verw. Gebiete 37,
51 – 75.

Billingsley P. (1968). Convergence of Probability Measures. J. Wiley, New York.
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Jarušková D. (1996). Change point detection in meteorological measurement. Monthly
Weather Review 124, 1535 – 1543.

Jarušková D. (1997). Some problems with application of change point detection methods
to environmental data. Environmetrics 8, 469 – 483.
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