Quasialgebras, Lattices and Matrices

Helena Albuquerque (Dep. of Math. Coimbra - Portugal) Rolf Soeren Kraushnar (Dep. of Math. Paderborn-Germany)

Prague, June 2010

Helena Albuquerque and Shahn Majid

Quasialgebra structure of the octonions, J. Algebra 1999, 200, 188-224;

Helena Albuquerque and Shahn Majid

Clifford Algebras obtained by twisting of Group Algebras, Journal of Pure and Applied Algebra, 171 (2002) 133-148;

Helena Albuquerque and Rolf Soeren Krausshar

Multiplicative invariant lattices in Rⁿ obtained by twisting of group algebras and some explicit characterizations, Journal of Algebra, 319 (2008) 1116-1131;

< 回 > < 三 > < 三 >

A G-graded algebra $A = \bigoplus_{g \in G} A_g$ is a quasialgebra if, $(ab)c = \phi(\bar{a}, \bar{b}, \bar{c})a(bc), \forall_{a \in A_{\bar{a}}, b \in A_{\bar{b}}, c \in A_{\bar{c}}},$ for any invertible group cocycle $\phi : G \times G \times G \to K^*,$ that is, $\forall x, y, z, t \in G,$ $\phi(x, y, z)\phi(y, z, t) = \frac{\phi(xy, z, t)\phi(x, y, zt)}{\phi(x, yz, t)}$ $\phi(x, e, y) = 1.$

Helena Albuquerque (Dep. of Math. Coimbra - Portugal) Rc Quasialgebras, Lattices and Matrices

伺 ト イヨト イヨト

 $(\Rightarrow A_0 \text{ is an associative algebra and } A_q \text{ is an } A_0 \text{- bimodule})$

(A *G*-graded quasialgebra is an algebra in the monoidal category of *G*-graded vector spaces)

Examples of quasiassociative algebras are $K_F G$ algebras: $K_F G$ is the same vector space as the group algebra KG but with a different product a.b = F(a, b)ab, $\forall_{a,b\in G}$, where F is any 2-cochain on G.

Some examples of $K_F G$ algebras are Cayley algebras as octonions and Clifford algebras as quaternions or complex numbers, ...

< 回 > < 三 > < 三 >

Cayley Algebras

A algebra with identity over K

 σ involutive anti-automorphism]

 α non zero element of K

 $\bar{A} = A + vA$ is an algebra with identity for the multiplication defined by $(a + vb)(c + vd) = (ac + \alpha d\sigma(b)) + v(\sigma(a)d + cb)$ endowed with an involutive automorphism $\bar{\sigma}(a + vb) = \sigma(a) - vb$

We say that \overline{A} is obtained from A by Cayley-Dickson process.

$\mathbb{R} \xrightarrow{-1} \mathbb{C} \xrightarrow{-1}$ Quaternions $\xrightarrow{-1}$ Octonions

1844 - John Graves (Arthur Cayley) Algebra of Octaves (Octonions)

	1	а	b	С	X	y	Ζ	t
1	1	а	b	С	X	y	Ζ	t
а	а	-1	- <i>c</i>	b	- <i>y</i>	x	t	-z
b	b	С	-1	-a	-z	-t	x	y y
С	С	-b	а	-1	-t	Ζ	-y	x
x	x	Y	z	t	-1	-a	-b	- <i>C</i>
y	y	-x	t	-z	а	-1	С	-b
z	Ζ	-t	-x	Y	b	- <i>c</i>	-1	а
t	t	Ζ	- <i>y</i>		С	b	-a	-1

イロト 不得 トイヨト イヨト

з.

$K \xrightarrow{\alpha} K[a] \xrightarrow{\beta}$ Generalized quaternion $\xrightarrow{\gamma}$ Cayley algebra algebra

	1	а	b	С	X	У	Z	t
1	1	а	b	С	X	Y	Z	t
а	а	α1	- <i>C</i>	$-\alpha b$	-y	$-\alpha x$	t	αz
b	b	с	β1	βa	-z	-t	$-\beta x$	$-\beta y$
С	С	αb	-βа	$-\alpha\beta$ 1	-t	$-\alpha z$	βy	αβχ
<i>x</i>	x	Y	z	t	<i>y</i> 1	yа	уb	γс
y	y y	αχ	t	αz	-уа	$-\alpha \gamma 1$	-yc	$-\alpha \gamma b$
z	z	-t	βx	$-\beta y$	$-\gamma b$	ус	$-\beta\gamma$ 1	βγа
t	t	$-\alpha z$	βy	$-\alpha\beta x$	-yc	αγb	$-\beta\gamma a$	αβγ1

<ロト <回ト < 回ト < 回ト -

2

Let G be a finite abelian group, F a cochain on it (so $k_F G$ is a G-graded guasialgebra). For any $s: G \to k^*$ with s(e) = 1 we define $\overline{G} = G \times Z_2$ and on it the cochain \overline{F} and function \overline{s} . $\overline{F}(x, y) = F(x, y), \overline{F}(x, y) = s(x)F(x, y),$ $\overline{F}(vx, y) = F(y, x), \overline{F}(vx, vy) = \alpha s(x)F(y, x),$ $\overline{s}(x) = s(x), \overline{s}(vx) = -1$ for all $x, v \in G$. Here $x \equiv (x, e)$ and $vx \equiv (x, v)$ denote elements of \overline{G} , where $Z_2 = \{e, v\}$ with product $v^2 = e$. If $\sigma(x) = s(x)x$ is a strong involution, then $k_{\bar{E}}\bar{G}$ is the algebra obtained from Cavley-Dickson process applied to $k_F G$.

伺下 イヨト イヨト

If $G = (Z_2)^n$ and $F = (-1)^f$ then the standard Cayley-Dickson process has $\overline{G} = (Z_2)^{n+1}$ and $\overline{F} = (-1)^{\overline{f}}$. We use a vector notation $\vec{x} = (x_1, \dots, x_n) \in (Z_2)^n$ where $x_i \in \{0, 1\}$ (and the group Z_2 is now written additively). Then, $\overline{f}((\vec{x}, x_{n+1}), (\vec{y}, y_{n+1})) =$ $f(\vec{x}, \vec{y})(1 - x_{n+1}) + f(\vec{y}, \vec{x})x_{n+1} + y_{n+1}f(\vec{x}, \vec{x}) + x_{n+1}y_{n+1}$.

Complex number algebra

 $G = Z_2, f(x, y) = xy, x, y \in Z_2$ where we identify G as the additive group Z_2 but also make use of its product.

Quaternion algebra

$$\overline{G} = Z_2 \times Z_2$$
, $\overline{f}(\vec{x}, \vec{y}) = x_1 y_1 + (x_1 + x_2) y_2$ where $\vec{x} = (x_1, x_2) \in \overline{G}$ is a vector notation.

Octonion algebra

$$\bar{\bar{G}} = Z_2 \times Z_2 \times Z_2, \bar{\bar{f}}(\vec{x}, \vec{y}) = \sum_{i \le j} x_i y_j + y_1 x_2 x_3 + x_1 y_2 x_3 + x_1 x_2 y_3.$$

16-onion algebra

$$\bar{\bar{G}} = Z_2 \times Z_2 \times Z_2 \times Z_2 \text{ and } \bar{\bar{f}}(\vec{x}, \vec{y}) = \sum_{i \le j} x_i y_j + \sum_{i \ne j \ne k \ne i} x_i x_j y_k + \sum_{\text{distinct } i,j,k,l} x_i x_j y_k y_l + \sum_{i \ne j \ne k \ne i} x_i y_j y_k x_4.$$

< 回 > < 三 > < 三 >

Clifford Algebras

Let **q** be a nondegenerate quadratic form on a vector space *V* over *k* of dimension *n*. It is known that there is an orthogonal basis $\{e_1, \dots, e_n\}$, say, of *V* such that $\mathbf{q}(e_i) = q_i$ for some $q_i \neq 0$. The Clifford algebra $C(V, \mathbf{q})$, is the associative algebra generated by 1 and $\{e_i\}$ with the relations $e_i^2 = q_i.1, e_ie_j + e_je_i = 0, \forall i \neq j$. The dimension of $C(V, \mathbf{q})$ is 2^n and it has a canonical basis $\{e_i, \dots, e_i\} = 1 \le i_1 \le i_2 \le n\}$

 $\{e_{i_1} \cdots e_{i_p} | 1 \le i_1 < i_2 \cdots < i_p \le n\}$

The algebra $k_F Z_2^n$ can be identified with $C(V, \mathbf{q})$, where $F \in Z^2(G, k)$ is defined by $F(x, y) = (-1)^{\sum_{j < i} x_i y_j} \prod_{i=1}^n q_i^{x_i y_i}$ where $x = (x_1, \dots x_n) \in Z_2^n$.

(人間) シスヨン スヨン

A algebra with identity over K

 σ involutive automorphism

 α non zero element of K

 $\bar{A} = A + Av$ is an algebra with identity for the multiplication defined by $(a + bv)(c + dv) = (ac + \alpha b\sigma(d)) + (ad + b\sigma(c))v$ endowed with an involutive automorphism $\bar{\sigma}(a + bv) = \sigma(a) - \sigma(b)v$

We say that \overline{A} is obtained from A by Clifford process.

Let G be a finite Abelian group and F a cochain as above. So $k_F G$ is a G-graded guasialgebra and for any $s: G \to k^*$ with s(e) = 1 and any $q \in k^*$, define $\overline{G} = G \times Z_2$ and $\bar{F}(x, vv) = F(x, v) = \bar{F}(x, v).$ $\overline{F}(xv, v) = s(v)F(x, v), \overline{F}(xv, vv) = as(v)F(x, v),$ $\overline{s}(x) = s(x), \overline{s}(xy) = -s(x)$ for all $x, y \in G$. Here $x \equiv (x, e)$ and $xv \equiv (x, \eta)$ where η with $\eta^2 = e$ is the generator of the Z₂. If $\sigma(e_x) = s(x)e_x$ is an involutive automorphism then $k_{\overline{e}}\overline{G}$ is the Clifford process applied to k⊧G.

(1) < (2) < (2) < (3) < (3) </p>

We now look at the case where *F* and *s* are of the form $F(x, y) = (-1)^{f(x,y)}$, $s(x) = (-1)^{\xi(x)}$, $q = (-1)^{\zeta}$ for some Z_2 -valued functions f, ξ and $\zeta \in Z_2$. We also suppose that $G = Z_2^n$ and use a vector notation. For *G*, *F*, *s* based on Z_2 , the generalised Clifford process yields the same form with $G = Z_2^{n+1}$ and $\overline{f}((x, x_{n+1}), (y, y_{n+1}))$ - $= f(x, y) + (y_{n+1}\zeta + \xi(y))x_{n+1}, \overline{\xi}(x, x_{n+1}) = \xi(x) + x_{n+1}$. Starting with C(r, s), the Clifford process with q = 1 yields C(r + 1, s) and with q = -1 gives C(r, s + 1). Hence any C(m, n) with $m \ge r, n \ge s$ can be obtained from C(r, s) by successive applications of the Clifford process.

Starting with C(0,0) = k and iterating the Clifford process with a choice of $q_i = (-1)^{\zeta_i}$ at each step, we arrive at the standard $C(V, \mathbf{q})$ and the standard automorphism $\sigma(e_x) = (-1)^{\rho(x)} e_x \ (\rho(x) = \sum x_i).$

An *n*-dimensional lattice in \mathbb{R}^n is a set of points of the form $\Omega = Z\omega_1 + \cdots + Z\omega_n$ where $\omega_1, \ldots, \omega_n$ are some \mathbb{R} -linear independent vectors from \mathbb{R}^n . (A priori, such a lattice is only endowed with the algebraic structure of a *Z*-module, that means, if $\omega, \eta \in \Omega$, then $\omega \pm \eta \in \Omega$ and $\alpha \Omega \subseteq \Omega$ for any $\alpha \in Z$.) If one defines a further multiplication operation on the underlying vector space \mathbb{R}^n , then special lattices,called *lattices with multiplication*, have the additional property that there are also non integers elements *a* such that $a \cdot \Omega \subset \Omega$. Furthermore, we say that the lattice Ω is *closed under multiplication* if for all $\omega, \eta \in \Omega$ holds $\omega \cdot \eta \in \Omega$. If we consider a group *G* with *n* elements, say $G = \{g_1, \ldots, g_n\}$, then we can identify each element $a_1g_1 + \ldots + a_ng_n, a_i \in \mathbb{R}$ of the algebra $\mathbb{R}_F G$ with the element $(a_1, \ldots, a_n) \in \mathbb{R}^n$. With this identification the multiplication defined in $\mathbb{R}_F G$ will introduce a special multiplication on \mathbb{R}^n . This is called the multiplication of \mathbb{R}^n induced by the group *G* using the cochain *F*. In this case we say that \mathbb{R}^n is embedded in $\mathbb{R}_F G$.

The simplest non-trivial explicit examples are lattices in the plane with complex multiplication that are extremely well studied (Fueter,Lang,Schoeneberg).

A two-dimensional lattice (in \mathbb{R}^2) in the normalized form $Z + Z\tau$ ($\mathfrak{I}(\tau) > 0$) has $\mathbb{R}_F Z_2$ (induced by the complex algebra or by Z_2 group algebra), if and only if $\tau \in Q[e_1\sqrt{D}]$, where D is a positive square-free integer. (Square-free means that no prime number appears more than once in the prime factorization.) In the case where $\tau \in Z[e_1\sqrt{D}]$, one even has $\omega \cdot \eta \in \Omega$ for all $\omega, \eta \in \Omega$.

Let's identify \mathbb{R}^{2^n} with the Clifford algebra $Cl_{0,n}$. Let $\Omega = Z\omega_1 + \cdots + Z\omega_{2^n}$ be a lattice where the generators w_i $(i = 1, \dots, 2^n)$ have the form

$$\omega_i = \omega_0^{(i)} + \sum_{j=1}^n \omega_j^{(i)} \sqrt{D_j} e_j + \sum_{j,k \in 1,\dots,n,i < j} \omega_{jk}^{(i)} \sqrt{D_j D_k} e_j e_k + \cdots +$$

$$\omega_{12\ldots n}^{(i)}\sqrt{D_1D_2\cdots D_n}e_{12\ldots n}.$$

If each $\omega_A^{(i)}$ ($A \subset P(1, 2, ..., n)$) is an integer and $D_1, ..., D_n$ are mutually distinct positive square-free integers, then Ω has a non-trivial $Cl_{0,n}$ multiplication. Here again one can show that the class of 2^n -dimensional lattices that have Clifford multiplication are exactly those whose real components of the generators stem up to conjugation from the multiquadratic number fields $Q[\sqrt{D_1}, \cdots, \sqrt{D_n}]$.

くぼう くほう くほう

Let $k \in N$ and $n_1, \ldots, n_k, m_1, \ldots, m_k$ be some positive integers. Let $D_1^{(n_j)}, \ldots, D_{m_j}^{(n_j)}$ be n_j -power free positive integers for all $j = 1, \ldots, k$. Suppose that F_1, \ldots, F_k are integer valued cochains. Lattices with generators whose components stem from the algebraic field

$$Q\Big[\sqrt[n_1]{D_1^{(n_1)}}, \cdots, \sqrt[n_1]{D_{m_1}^{(n_1)}}, \cdots, \sqrt[n_k]{D_1^{(n_k)}}, \cdots, \sqrt[n_k]{D_{m_k}^{(n_k)}}\Big]$$

伺 ト イヨト イヨト

have an $\mathbb{R}_{F_1} Z_{n_1}^{m_1} \times \cdots \times \mathbb{R}_{F_k} Z_{n_k}^{m_k}$ multiplication.

Let *G* be a group with *n* elements and *F* be a cochain in *G*. Further, let $\omega_1, \ldots, \omega_n$ be some \mathbb{R} -linearly independent vectors from \mathbb{R}^n . Let

$$\Omega = \mathbf{Z}\omega_1 + \cdots + \mathbf{Z}\omega_n$$

be the associated lattice embedded in $\mathbb{R}_F G$. Let $\mathbb{R}_{\tilde{F}} \tilde{G}$ be the algebra obtained from the algebra $\mathbb{R}_F G$ by the Clifford (Cayley- Dickson) process.

Consider the lattice

 $\tilde{\Omega} = Z(\omega_1, 0) + \cdots + Z(\omega_n, 0) + Z(0, \omega_1) + \cdots + Z(0, \omega_n)$ embedded in $\mathbb{R}_{\tilde{F}}\tilde{G}$.

(1) < (2) < (2) < (3) < (3) </p>

Then we can establish that the lattice Ω is closed under multiplication induced by $\mathbb{R}_F G$ and stable under the involutive automorphism σ if and only if the lattice $\tilde{\Omega}$ is closed under multiplication induced by $_{\tilde{F}}\tilde{G}$ and stable under the involutive automorphism $\tilde{\sigma}$.

We can define lattices in \mathbb{R}^{2^n} that are closed under the multiplication and the involutive automorphism of the Clifford algebras $Cl_{p,q}$ (for any $p, q \in N_0$ with p + q = n) and for Cayley algebras.

More general we can define a larger class of closed lattices in \mathbb{R}^n closed for \mathbb{R}^G_F multiplication:

Let $G = \{g_1, \dots, g_n\}$ and F be a cochain with integer values, Let $\Omega = Z\omega_1 + \dots + Z\omega_n$ be a lattice in \mathbb{R}^n embedded in the twisted group algebra $\mathbb{R}_F G$, where the generators are each of the form

$$\omega_i = a_1^{(i)}g_1 + a_2^{(i)}g_2 + \cdots + a_n^{(i)}g_n$$

with $a_1^{(i)}, \ldots, a_n^{(i)}$ integers.

Let

$$A := \begin{pmatrix} a_1^{(1)} & a_2^{(1)} & \dots & a_n^{(1)} \\ a_1^{(2)} & a_2^{(2)} & \dots & a_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{(n)} & a_2^{(n)} & \dots & a_n^{(n)} \end{pmatrix}$$

The lattice Ω is closed for the multiplication if det(A) is 1 or -1.

For each unimodular matrix A we have a closed lattice in \mathbb{R}^n .

A (10) A (10)

э

Let's consider the isomorphism between the group algebra of Z_n and the set of circulant matrices of order n with real elements, $C^n(\mathbb{R})$.

Let $\Omega = ZX_1 + \cdots + ZX_n$ where X_1, \cdots, X_n are in $C^n(\mathbb{R})$ each of the form, form

$$\omega_{i} = a_{1}^{(i)} I + a_{2}^{(i)} \Pi + \cdots + a_{n}^{(i)} \Pi^{n-1}$$

with $a_1^{(i)}, \ldots, a_n^{(i)}$ integers.

The product of any elements of Ω is in Ω if the matrix

$$A := \begin{pmatrix} a_1^{(1)} & a_2^{(1)} & \dots & a_n^{(1)} \\ a_1^{(2)} & a_2^{(2)} & \dots & a_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{(n)} & a_2^{(n)} & \dots & a_n^{(n)} \end{pmatrix}$$

is unimodular.