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Hard Tasks

Tasks Menu:
» Free Algebra
Bin V(A)
» Sub Power
» Primality
Maltsev Menu:
» Distributivity (Jonsson terms)
» Modularity (Gumm terms)
» n-Permutability (Hagemann-Mitschke terms)

v

» Maltsev term

» Majority term

» Pixley term

» near unamimity term
» Siggers Taylor term



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

» Is V(A) congruence modular?



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

» Is V(A) congruence modular?
» Is V(A) congruence distributive?



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

» Is V(A) congruence modular?
» Is V(A) congruence distributive?
» Is V(A) congruence semidistributive?



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

> Is V(A
Is V(A
Is V(A
Is V(A

congruence moadular?
congruence distributive?
congruence semidistributive?

v Vv

v

~— —r N —

congruence meet semidistributive?



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

Is V(A) congruence modular?
Is V(A) congruence distributive?
Is V(A) congruence semidistributive?

v

v

v

v

Is V(A) congruence meet semidistributive?

v

Does A have a Taylor term?



Hard Tasks

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite
algebra A,

Is V(A) congruence modular?

Is V(A) congruence distributive?

Is V(A) congruence semidistributive?

Is V(A) congruence meet semidistributive?

v

v

v

v

v

Does A have a Taylor term?
Does A have a Hobby-McKenzie term?

v



Results

Desc: Finding Jonsson terms for A4 (Baker2)

Index Term

0 e

1 bak(x,y,z)

2 bak(x,z,z)

3 bak(z,x.y)

4 z

Tasks
Description Pass Pass Size Size Time Left Pass Time Next Pass Status
F(5) over AD (lyndon) 4 326 326 0 DONE
Test if AZ in V(A3) 3 476 528 DONE
-> Finding Jonsson terms for A4 (B... 2 10 10 DONE

F(4) over AB (nS) 4 321556 662106 208:52:22 676:37:50 CANCE
F(4) over AS (m3) 4 15072 19982 257 5:28 RUNNIP

finding Jonsson terms

Looking for a Day quadruple in AA2
There are no Day quadruples in the subalgebras of As2.

So this algebra lies in a CM variety. (0 ms)

constructing free algebra on 2 generators over Baker2
using subdirect decompositions to eliminate some projections.
number of projections: 2, sizes: 2(2), (0 ms)
subpower closing ...

pass: 0. size: 2
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Directoids: Jezek and Quackenbush
A directoid is a groupoid defined on a p. o. set such that
X < Xy y < xy X<y = xy=yx=y
It is an equational class:

XErx (xy)x=xy yxy)=xy x((xy)z)=(xy)z

» |s every finite directoid finitely based?
» Hajilarov gave a 6 element directoid, H, which he asserted
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The directoid D:
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Directoids: Jezek and Quackenbush
The directoid D:

11 2 3 4 50
0 1/1 3 3 4 5 0
5 23 2 3 450
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3 4 414 4 0 4 5 0
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Directoids: Jezek and Quackenbush
The directoid D:

11 2 3 4 50
0 1/1 3 3 4 5 0
5 23 2 3 450

3/3 33050

3 4 414 4 0 4 5 0

] 0 5|5 5 55 5 0

0/0 000 OO

The argument that H is INFB implies D € V(H).
But it's not. The calculator gives the equation

x3((Xox1)(Xo(X1x2))) = (XoX1)(X3(X0(X1X2)))
and claims it holds in H and fails in D under the substitution

X—1 xx—=2 x—=4 xXx3—5
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(Straightforward) Testing B € V(A)

» Find a minimal sized generating set {go, ..., gk_1} of B.
» Start calculating Fya)(k) = Fya)(Xo, - - -, Xk—1), keeping
» A map from the elements to the term that gave them.
» A partial homomorphism from ¢ : Fy(a)(k) — B.

» Ifa=f(ao,...,ar_1) is not new, and
p(a) # f(v(@0), - - p(ar-1))
then the equation (of the Birkhoff basis):

ta% f(tao,...7tar71)

fails in B under the substitution x; — g;.
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D ¢ V(H)
> x3((Xox1)(Xo(X1x2))) =~ (XoX1)(X3(Xo(X1X2)))

witnesses this (under 1 second).
> [Fyn)(4)| = 26,467 (60 minutes)
» So the Birkhoff basis has over 700 million equations.

» Testing H € V(H) takes about 80 minutes.



Cg*(a, b) in Linear Time

Theorem

There is a linear time algorithm to compute CgA(a, b) for
algebras A of a fixed similarity type having at least one, at least
binary operation (and nearly linear even if it doesn’t).
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There are polynomial time algorithms for:

» calculating the principal congruences of A
» calculating the join irreducible congruences of A
» finding the TCT type set of A

calculating the atoms of Con (A)

v

v

deciding if A is simple; is subdirectly irreducible

v

(J. Demel) finding a subdirect decomposition of A into
subdirectly irreducibles

But not for:
» finding all of Con (A)
» finding all meet irreducibles of Con (A)
» finding all subdirect decompositions of A
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Theorem (Berman, Kiss, Préhle, Szendrei)

The TCT type of a cover o < (3 in Con (A) can be computed in
time O(]|A||*).

Outline:
» We may assume 5 > 0.

» Find a 3 subtrace (a two element subset, {a, b}, of a
trace), and deterimine if there is an involution (an
f € Pol;(A) interchanging a and b) in time O(||A[|?).

» Find the type of the subtrace.
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Finding the type

Assume {a, b} is a subtrace of 5 - 0. Let

T.b = {(h(a, a), h(a, b), h(b, a), h(b, b)) : h € Pol, A}
= Sgas({(a,a,b,b),(a,b,a,b)} Uly)

We may think of the elements of T, as 2 x 2 tables, like

a b

ajlx y

blu v
la b a b
ala b ala a
b|b b bla b

are called a join and a meet.
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Finding the type

While generating the universe of T, p,

» If a join or meet is found, record this. If {a, b} has an
involution, stop: the type is 3.

» If both a join and a meet are found, stop: the type is 4.
In the other cases we must generate all of T, .

» If a join or a meet was found, the type is 5.

» If a one-snag was found, the type is 2.

» Otherwise the type is 1.
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Computing the TCT Type Set of A

Theorem
The type of o < /3 can be found in time O(||A||?).

Theorem

Let A be a finite algebra with n elements. Let 5 > 0 be an atom
of Con (A) and let {a, b} be two elements of a 0-( trace. The
maximum size of T, depending on the type of 3 overQ is

10r2 n
5 m/3+ /2 +n/6
4 | n*/12+n®*/3+5n%/12+n/6
3 n*

These bounds all obtain infinitely often.
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Free Algebras: Birkhoff Construction of Fya)(X)

Theorem (Birkhoff)
Fya)(X) is the subalgebra of A~ generated by {x : x € X},
where X € A" is given by X, = v(x) for v € AX.

>

For v € AX let A(v) be the subalgebra of A generated by
v(X).
Let 5y be the kernel of Fy(a)(X) — A(v).

nv < ny iff v(x) — u(x), x € X extends to a
homomorphism of A(v) onto A(u).

(Thinning) In this case the u coordinate can be eliminated.

We can also eliminate u if (v4(x), va(x)) — u(x), x € X
extends to a homomorphism of the subdirect product of
A(vq) and A(v2) to A(u).

But this takes too much time.
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Free Algebras: Using Subdirect Decompositions
» Idea: find a subdirect decomposition of A(v) and replace

A(v) with these si algebras. And then thin.

While adding more coordinates, this allows for better

thinning.

Example: Fy(a)(4), for A = Ns.

Without thinning 625 coordinates.

With thinning 132 coordinates: 24 copies of 4, 24 copies of
2 x 2, and 84 copies of Ns.

With decomposing and thinning only the 84 copies of Ns.

v

v

v

v

v

In fact, every Fy(n,)(k), k > 3, is a subdirect product of copies
of Ns.
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Maltsev’s Conditions

Jonsson’s Terms

» A variety V is congruence distributive if and only if there
are 3-ary terms dy, . . ., di (called Jénsson terms) such that

(
di(x,y,x) ~ x for0<i<k
di(x,x,y) =~ di 1(x,x,y) foralleveni< k (1)
di(x,y,y) = di1(x,y,y) foralloddi< k

(

The Jdnsson level of V is the least k.

» How hard is it to test if V(A) is congruence distributive for a
finite A?
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A Better Way

Theorem
LetV be a variety and let S be the subalgebra of F3(x, y)
generated by (x, x,y), (x,y,x) and (y, x, x).
» 'V is congruence distributive iff there is a p-path in S from
(x,x,y) to(y, x, x), where the first link is po1.
» If 'V is congruence distributive then the Jonsson level of 'V
is the length of the shortest such path.
» Moreover, if V is congruence distributive then the Jonsson
level is at most2m — 2, where m = |Fy(x, y)| and this is
the best possible bound in terms of m.

Proof.
More or less obvious, (except the last part). O
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Maltsev Conditions

Taylor Terms

Theorem (Siggers)

For a locally finite variety, having a Taylor term is a strong
Maltsev condition.

» Variants of Siggers term have been given by several
people.

» Matt Valeriote’s talk will give some variants of Siggers
original term that are best for our computational purposes,
along with short proofs.
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Maltsev Conditions

Congruence SDA

Theorem (Kozik)
A finitely generated variety is congruence SD,, iff it has wnu
terms w(x,y, z,u) and s(x, y, z) satisfying

w(X, X, X,y) ~ S(X,X,y)

Corollary (M.Maroti and A. Janko)

A finitely generated variety is congruence SD,, iff it has a wnu
term s(x,y,z) and terms r(x,y,z) and t(x, y, z) satisfying

r(x,x,y) = r(x,y,x) = t(y,x, x) = t(x,y,Xx) ~ s(x, X, y)
r(y,x,x)~ t(y,y,x)
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Maltsev Conditions

Testing Congruence SDx

Form the subalgebra of F(x, y)* generated by

(X, x,y,x) (X,y,%,X) (¥, X,X,X)
And look for elements of the form

(a,a,a,x) (aab,x) (b,aa,x)

where b’ = 7(b), where 7 is the automorphism of F(x, y)
interchanging x and y.
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Directoids Again

0
3-4=5 6=4-3
1.2=3 4=2-1
1 2

The calculator found SD, terms:

f(X,y,Z) :yz~(zy-yx)
s(x,y,2) = (xy - yz)(2x - xy)
t(va’Z) = (ZX‘Xy) " yX

And also single wnu term s(x, y, z) with s(x, x, y) = s(y, y, X):

(xy - y)l(yz - 2x)(2y - x2)]
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Directoids Again

Theorem
The variety of directoids satisfies the Maltsev condition of the
Corollary with

I’(X,y,Z) =)z (Zyyx)
S(x.y,z) = (xy - yz)(zx - xy)
t(x,y,z) = (zx - xy) - yx

The variety of directoids is congruence SD, (using results of
Kearnes, Kiss, and Szendrei).

Proof.

r(x,x,y)=r(x,y,x) =t(y,x,x) =t(x,y,x) = s(x,x,y) = xy - yx
r(y,x,x) = xy
t(x,x,y) = yx
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s(x,y, z) satisfying
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Theorem
If V is a locally finite variety of directoids, it has a wnu term
s(x,y, z) satisfying

S(x,x,y) = s(y,y,X)
Proof.

» A finite directoid has a greatest element.
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Directoids Again

Theorem
If V is a locally finite variety of directoids, it has a wnu term
s(x,y, z) satisfying

s(x,x,y) ~ s(y,y.x)
Proof.
» A finite directoid has a greatest element.

» If s(x,y, z) is the top of F(x, y, z), then all maps of {x, y, z}
onto {x, y} map s to the top of F(x, y).

» So s(x,y,z)isawnutermand s(x, x,y) = s(y,y, x).

Theorem )
The variety of all directoids does not have such a term.

Proof.
Jezek and Quackenbush show directoids do not have a term
satisfying u(x, y) = u(y, x). O
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Testing Primality

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie)
Let A be an algebra on {0,1,...,n—1}. A is primal iff

» the subalgebra of A* generated by (0,0,1,1) and
(0,1,0,1) contains (0,0,0, 1) (the meet), and

» Fya)(1) < A" contains

X0:(1707"'70)7

and

» the subalgebra of Fya)(1) generated by the x;’s includes
(0,1,...,n—1).
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Day Quadruples
Let a, b, cand d € A and let

a=Cgh(c,d) £=Cg"((ab)(c,d) v=Cgi(a c)(b.d))

(a, b, c, d) is a Day quadruple if in the subalgebra B generated
by {a, b, c,d}

(a.b) ¢ Cg®(c,d) v [Ca®((a, b)(c, d)) A Ca®((a, ¢)(b, d))]
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Theorem (Freese, Valeriote)

Let A be a finite idempotent algebra and 'V be the variety it
generates. ThenV fails to be congruence modular if and only if
there is a Day quadruple, (a, b, c, d) in A?.



Polynomial Algorithms for Idempotent Algebras

Theorem (Freese, Valeriote)

Let A be a finite idempotent algebra and 'V be the variety it
generates. ThenV fails to be congruence modular if and only if
there is a Day quadruple, (a, b, c, d) in A?.

Moreover, this Day quadruple can be chosen so that

» there exist xo, X1, Yo, 1 in A such that a = (xg, X1),
b= (xo0,%1), ¢ = (Yo, x1), and d = (yo, 1),



Polynomial Algorithms for Idempotent Algebras

n=|A|

r
m=||A] =" kn
i=0
r = the largest arity of the operations of A

(ki = the number of basic operations of arity /)
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Let A be a finite idempotent algebra with parameters as above.

Then each of the following can be determined in the time
indicated:

V(A) is congruence modular: crn*m?.
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Theorem (Freese, Valeriote)

Let A be a finite idempotent algebra with parameters as above.

Then each of the following can be determined in the time
indicated:

V(A) is congruence modular:
V(A) is congruence distributive:
V(A) is congruence semidistributive:

crn*ma.
crn*ma.
crm m.
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)

V(A) is congruence meet semidistributive: crm?m?.
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Polynomial Algorithms for Idempotent Algebras

Theorem (Freese, Valeriote)

Let A be a finite idempotent algebra with parameters as above.
Then each of the following can be determined in the time

indicated:
V(A) is congruence modular: crn*m?.
V(A) is congruence distributive: crn*m?.
->  V(A) is congruence semidistributive: crm?me.
->  V(A) is congruence meet semidistributive: crm?m?.
V(A) is congruence permutable: crn*me.
> V(A) is congruence k-permutable for some k: crn®m.
-> A has a Taylor term: crnm.
-> A has a Hobby-McKenzie term: crn®m.

A has a majority term: crn®m?.
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TCT Types
3 Boolean

4 Lattice

Vector Space 2
5 Semilattice

1 Unary
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Polynomial Algorithms for Idempotent Algebras
TCT Types

Theorem (Szendrei, Valeriote)

» Let T be a proper order ideal of the lattice of types, and
» let A be a finite idempotent algebra that fails to omit T.

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

IfS is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S € HS(A) be strictly

simple. Then
» there are a, b € A such that, if B = Sg”(a, b), then
» CgB(a, b) = 15 and is join irreducible with lower cover p
such thatB/p = S.



The End



The End

UACalc Web Site:
http://uacalc.org/



