The complexity of the equivalence problem for commutative rings

Gábor Horváth

University of Debrecen, Hungary

joint work with Ross Willard and John Lawrence

24th June 2010

The equivalence (identity checking) problem

fixed finite algebra ${\mathcal A}$

Identity

$$\begin{array}{l} \text{two terms } t_1, \ t_2 \ \text{over} \ \mathcal{A} \\ t_1 \equiv t_2 \Longleftrightarrow \begin{array}{l} \text{for every } a_1, \ldots, a_n \in \mathcal{A} \\ t_1(a_1, \ldots, a_n) = t_2(a_1, \ldots, a_n) \end{array} \end{array}$$

Equivalence problem (identity checking problem)

Input: two terms t_1, t_2 over \mathcal{A} Question: is $t_1 \equiv t_2$ or not?

What is the complexity?

Theorem (Hunt, Stearnes, Burris, Lawrence)

 \mathcal{R} is nilpotent \implies equivalence is in P, \mathcal{R} is not nilpotent \implies equivalence is coNP-complete.

What happens for special input polynomials?

Sigma equivalence problem

- input polynomial is sum of monomials
- E.g. $x_1x_2^3 + x_1 + x_2x_1x_3 + x_{19}$
- $(x_1 + x_2)^n$ is not allowed

•
$$f_1 \equiv f_2 \iff f_1 - f_2 \equiv 0$$

Conjecture (Lawrence, Willard)

 \mathcal{R}/\mathcal{J} is commutative \Longrightarrow sigma equivalence is in P,

 \mathcal{R}/\mathcal{J} is not commutative \Longrightarrow sigma equivalence is coNP-complete.

Theorem (Szabó, Vértesi)

 \mathcal{R}/\mathcal{J} is not commutative \Longrightarrow sigma equivalence is coNP-complete.

What if \mathcal{R}/\mathcal{J} is commutative?

Theorem (Horváth, Lawrence, Willard)

 $\mathcal R$ is commutative \Longrightarrow sigma equivalence is in P

Theorem (Pierce)

 \mathcal{R} is a commutative ring $\Longrightarrow \mathcal{R} = \oplus \mathcal{R}_i \oplus \mathcal{N}$, where \mathcal{R}_i is local, \mathcal{N} is nilpotent.

- Equivalence can be checked for components.
- Nilpotent case is easy (bounded substitution).
- Main case: local rings.

Local Rings

 ${\mathcal R}$ is local iff there is a unique maximal ideal in ${\mathcal R}.$

Properties

- $\bullet \ \mathcal{J}$ is the unique maximal ideal
- $\mathcal{R}^* = \mathcal{R} \setminus \mathcal{J}$
- $\mathcal{R}/\mathcal{J}\simeq F_q$ if \mathcal{R} is commutative

$$f(\bar{x}) \equiv 0$$
?

$$x_i^p - x_i \equiv 0$$

Lemma

$$f \equiv 0 \iff f = \sum_{i} g_{i} \cdot (x_{i}^{p} - x_{i})$$

dividing by $(x_i^p - x_i)$ is easy: decrease the exponents by (p-1)

works for every finite field F_q

Separate \mathcal{R}/\mathcal{J} and \mathcal{J}

- unique maximal ideal is (3)
- $Z_9/(3) = Z_3 = \{-1, 0, 1\}$ (coset representation)

•
$$a = b + 3 \cdot c$$
, $(b, c \in \{-1, 0, 1\})$

•
$$x_i = y_i + 3 \cdot z_i$$
 $(y_i, z_i \in \{-1, 0, 1\})$

Example

 $\begin{aligned} x_1 x_2 x_3 &= (y_1 + 3z_1) \cdot (y_2 + 3z_2) \cdot (y_3 + 3z_3) = y_1 y_2 y_3 + \\ 3z_1 y_2 y_3 + 3y_1 z_2 y_3 + 3y_1 y_2 z_3 + 3^2 z_1 z_2 y_3 + 3^2 z_1 y_2 z_3 + 3^2 y_1 z_2 z_3 + 3^3 z_1 z_2 z_3 \\ &\implies \text{fast expansion, no exponential blowup} \end{aligned}$

$f\left(\bar{x} ight)=f_{1}\left(\bar{y} ight)+3\cdot f_{2}\left(\bar{y},\bar{z} ight), \quad \bar{y}, \bar{z}\in\{-1,0,1\}$

Check

$$\begin{split} f_1\left(\bar{y}\right) &\equiv 0 \text{ in } Z_3, \\ f_2\left(\bar{y}, \bar{z}\right) &\equiv 0 \text{ in } Z_3 \\ \text{Easy: divide by } \left(y_i^3 - y_i\right) \end{split}$$

Works for every $Z_{p^{\alpha}}$

Generalize F_q and $Z_{p^{\alpha}}$

F_q

- $q = p^d$
- m(x) irreducible of degree d
- $F_q = Z_p[x]/(m(x)) = \mathbb{Z}[x]/(p, m(x))$

Generalize F_q and $Z_{p^{\alpha}}$

F_q

- $q = p^d$
- m(x) irreducible of degree d

•
$$F_q = Z_p[x]/(m(x)) = \mathbb{Z}[x]/(p, m(x))$$

$Z_{p^{\alpha}}$

•
$$Z_{p^{lpha}} = \mathbb{Z}/(p^{lpha})$$

$$F_q$$

•
$$q = p^d$$

•
$$F_q = Z_p[x]/(m(x)) = \mathbb{Z}[x]/(p, m(x))$$

$$Z_{p^{\alpha}}$$

•
$$Z_{p^{lpha}} = \mathbb{Z}/(p^{lpha})$$

Galois Ring

•
$$\mathcal{GR}(p^{\alpha},q) = \mathbb{Z}[x]/(p^{\alpha},m(x))$$

Galois Rings

$\mathcal{R} = \mathcal{GR}(p^{lpha}, q) = \mathbb{Z}[x]/(p^{lpha}, m(x))$

- Raghavendran, Wilson
- char $\mathcal{R} = p^{\alpha}$
- $|\mathcal{R}| = q^{lpha}$
- $\mathcal{J} = (p)$
- $\mathcal{R}/\mathcal{J} = F_q$

Equivalence

•
$$r \in \mathcal{R}$$
 of order $(q-1)$

•
$$S = \{0, 1, r, r^2, \dots, r^{q-2}\}$$
 is a coset representation for \mathcal{R}/\mathcal{J}
($S = \{0, 1, -1\}$ for Z_9)

• $y^q \equiv y$ for $y \in S$, ...

$$\mathcal{R} = \begin{bmatrix} F_q & F_q \\ 0 & 0 \end{bmatrix}$$

• $F_q = \begin{bmatrix} F_q & 0 \\ 0 & 0 \end{bmatrix}$ is a subring
• $\mathcal{J} = \begin{bmatrix} 0 & F_q \\ 0 & 0 \end{bmatrix}$

• \mathcal{R} is a 2-dimensional module over F_q : $\mathcal{R} = \begin{bmatrix} F_q & 0 \\ 0 & 0 \end{bmatrix} \oplus_m \begin{bmatrix} 0 & F_q \\ 0 & 0 \end{bmatrix}$

• check equivalence for each F_q -component

Theorem (Raghavendran)

 $\mathcal R$ local \Longrightarrow there exists $\mathcal R_0 \leq \mathcal R$ Galois subring

Theorem (Raghavendran)

 $\begin{array}{l} M \mbox{ module over Galois ring } \mathcal{R}_0 \\ \Longrightarrow \mbox{ M is the direct sum of cyclic } \mathcal{R}_0 \mbox{-modules} \end{array}$

- \mathcal{R} is a direct sum of cyclic \mathcal{R}_0 -modules
- check equivalence for components separately
- each component: check equivalence for Galois ring \mathcal{R}_0

Theorem (Horváth, Lawrence, Willard)

 \mathcal{R} is finite, \mathcal{R}/\mathcal{J} can be lifted in the center \implies sigma equivalence is in P

Problem

 \mathcal{R} is finite, direct irreducible, $\mathcal{R}/\mathcal{J} = \oplus F_q$, \mathcal{R}/\mathcal{J} cannot be lifted in the center

Example $U_n(F_q) = \begin{bmatrix} F_q & F_q & F_q \\ 0 & F_q & F_q \\ 0 & 0 & F_q \end{bmatrix}$