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The equivalence (identity checking) problem

fixed finite algebra A

Identity

two terms t1, t2 over A

t1 ≡ t2 ⇐⇒
for every a1, . . . , an ∈ A
t1(a1, . . . , an) = t2(a1, . . . , an)

Equivalence problem (identity checking problem)

Input: two terms t1, t2 over A
Question: is t1 ≡ t2 or not?

What is the complexity?
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Equivalence for rings

Theorem (Hunt, Stearnes, Burris, Lawrence)

R is nilpotent =⇒ equivalence is in P,
R is not nilpotent =⇒ equivalence is coNP-complete.

What happens for special input polynomials?

Sigma equivalence problem

input polynomial is sum of monomials

E.g. x1x3
2 + x1 + x2x1x3 + x19

(x1 + x2)n is not allowed

f1 ≡ f2 ⇐⇒ f1 − f2 ≡ 0
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Sigma equivalence for finite rings

Conjecture (Lawrence, Willard)

R/J is commutative =⇒ sigma equivalence is in P,
R/J is not commutative =⇒ sigma equivalence is coNP-complete.

Theorem (Szabó, Vértesi)

R/J is not commutative =⇒ sigma equivalence is coNP-complete.

What if R/J is commutative?
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Sigma equivalence for finite rings

Theorem (Horváth, Lawrence, Willard)

R is commutative =⇒ sigma equivalence is in P
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Commutative Rings

Theorem (Pierce)

R is a commutative ring =⇒ R = ⊕Ri ⊕N ,
where Ri is local, N is nilpotent.

Equivalence can be checked for components.

Nilpotent case is easy (bounded substitution).

Main case: local rings.
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Local Rings

R is local iff there is a unique maximal ideal in R.

Examples

Fq

Zpα[
Fq Fq

0 0

]

Properties

J is the unique maximal ideal

R∗ = R \ J
R/J ' Fq if R is commutative
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Zp

f (x̄) ≡ 0 ?

xp
i − xi ≡ 0

Lemma

f ≡ 0 ⇐⇒ f =
∑

i gi ·
(
xp
i − xi

)
dividing by

(
xp
i − xi

)
is easy: decrease the exponents by (p − 1)

works for every finite field Fq

Gábor Horváth Equivalence for commutative rings



Z9

Separate R/J and J
unique maximal ideal is (3)

Z9/(3) = Z3 = {−1, 0, 1} (coset representation)

a = b + 3 · c , (b, c ∈ {−1, 0, 1})
xi = yi + 3 · zi (yi , zi ∈ {−1, 0, 1})

Example

x1x2x3 = (y1 + 3z1) · (y2 + 3z2) · (y3 + 3z3) = y1y2y3+
3z1y2y3 + 3y1z2y3 + 3y1y2z3 + 32z1z2y3 + 32z1y2z3 + 32y1z2z3 + 33z1z2z3

=⇒ fast expansion, no exponential blowup
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Z9 (cont.)

f (x̄) = f1 (ȳ) + 3 · f2 (ȳ , z̄), ȳ , z̄ ∈ {−1, 0, 1}

Check

f1 (ȳ) ≡ 0 in Z3,
f2 (ȳ , z̄) ≡ 0 in Z3

Easy: divide by (y 3
i − yi )

Works for every Zpα
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Generalize Fq and Zpα

Fq

q = pd

m(x) irreducible of degree d

Fq = Zp[x ]/(m(x)) = Z[x ]/(p,m(x))

Zpα

Zpα = Z/(pα)

Galois Ring

GR(pα, q) = Z[x ]/(pα,m(x))
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Galois Rings

R = GR(pα, q) = Z[x ]/(pα,m(x))

Raghavendran, Wilson

charR = pα

|R| = qα

J = (p)

R/J = Fq

Equivalence

r ∈ R of order (q − 1)

S =
{

0, 1, r , r 2, . . . , rq−2
}

is a coset representation for R/J
(S = {0, 1,−1} for Z9)

yq ≡ y for y ∈ S , . . .
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Third example

R =

[
Fq Fq

0 0

]
Fq =

[
Fq 0
0 0

]
is a subring

J =

[
0 Fq

0 0

]
R is a 2-dimensional module over Fq: R =

[
Fq 0
0 0

]
⊕m

[
0 Fq

0 0

]
check equivalence for each Fq-component
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Local rings

Theorem (Raghavendran)

R local =⇒ there exists R0 ≤ R Galois subring

Theorem (Raghavendran)

M module over Galois ring R0

=⇒ M is the direct sum of cyclic R0-modules

R is a direct sum of cyclic R0-modules

check equivalence for components separately

each component: check equivalence for Galois ring R0
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Noncommutative rings

Theorem (Horváth, Lawrence, Willard)

R is finite, R/J can be lifted in the center
=⇒ sigma equivalence is in P
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Open questions

Problem

R is finite, direct irreducible, R/J = ⊕Fq,
R/J cannot be lifted in the center

Example

Un (Fq) =

Fq Fq Fq

0 Fq Fq

0 0 Fq


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