On non-negative integer quadratic forms

Galyna V. Kriukova

Department of Algebra and Mathematical logic Faculty of Mechanics and Mathematics National Taras Shevchenko University of Kyiv

International Conference on Algebras and Lattices, 2010

- Definitions
- Properties of non-negative quadratic forms

Lie algebra associated to an integer quadratic form

- Definitions
- Main Results

▲冊▶▲臣▶▲臣▶ 臣臣 のへで

Definitions Properties of non-negative quadratic forms

Integer quadratic forms

An integral quadratic form $q : \mathbb{Z}^n \to \mathbb{Z}$

$$q(x) = \sum_{i \in \overline{1,n}} q_i x_i^2 + \sum_{i < j} q_{ij} x_i x_j, \quad (q_i, q_{ij} \in \mathbb{Z}, q_{ij} = q_{ji})$$

- is semi-integer if $q_{ij} \in q_i \mathbb{Z}$ for all $i, j \in \overline{1, n}$
- is integer if $\frac{q_{ij}}{q_i} \in \mathbb{Z}$ for all $i \in \overline{1, n}$
- is semi-unit if $q_i \in \{0, 1\}$ for all $i \in \overline{1, n}$
- is unit if $q_i = 1$ for all $i \in \overline{1, n}$
- is classic if $q_i > 0$ and $q_{ij} \leq 0$ for all $i, j \in \overline{1, n}$

Definitions Properties of non-negative quadratic forms

Integer quadratic forms

An integral quadratic form $q : \mathbb{Z}^n \to \mathbb{Z}$

$$q(x) = \sum_{i \in \overline{1,n}} q_i x_i^2 + \sum_{i < j} q_{ij} x_i x_j, \quad (q_i, q_{ij} \in \mathbb{Z}, q_{ij} = q_{ji})$$

- is semi-integer if $q_{ij} \in q_i \mathbb{Z}$ for all $i, j \in \overline{1, n}$
- is integer if $\frac{q_{ij}}{q_i} \in \mathbb{Z}$ for all $i \in \overline{1, n}$
- is semi-unit if $q_i \in \{0, 1\}$ for all $i \in \overline{1, n}$
- is unit if $q_i = 1$ for all $i \in \overline{1, n}$
- is classic if $q_i > 0$ and $q_{ij} \leq 0$ for all $i, j \in \overline{1, n}$

Definitions Properties of non-negative quadratic forms

Integer quadratic forms

An integral quadratic form $q : \mathbb{Z}^n \to \mathbb{Z}$

$$q(x) = \sum_{i \in \overline{1,n}} q_i x_i^2 + \sum_{i < j} q_{ij} x_i x_j, \quad (q_i, q_{ij} \in \mathbb{Z}, q_{ij} = q_{ji})$$

- is semi-integer if $q_{ij} \in q_i \mathbb{Z}$ for all $i, j \in \overline{1, n}$
- is integer if $\frac{q_{ij}}{q_i} \in \mathbb{Z}$ for all $i \in \overline{1, n}$
- is semi-unit if $q_i \in \{0, 1\}$ for all $i \in \overline{1, n}$
- is unit if $q_i = 1$ for all $i \in \overline{1, n}$
- is classic if $q_i > 0$ and $q_{ij} \leq 0$ for all $i, j \in \overline{1, n}$

Definitions Properties of non-negative quadratic forms

Integer quadratic forms

An integral quadratic form $q : \mathbb{Z}^n \to \mathbb{Z}$

$$q(x) = \sum_{i \in \overline{1,n}} q_i x_i^2 + \sum_{i < j} q_{ij} x_i x_j, \quad (q_i, q_{ij} \in \mathbb{Z}, q_{ij} = q_{ji})$$

- is semi-integer if $q_{ij} \in q_i \mathbb{Z}$ for all $i, j \in \overline{1, n}$
- is integer if $\frac{q_{ij}}{q_i} \in \mathbb{Z}$ for all $i \in \overline{1, n}$
- is semi-unit if $q_i \in \{0, 1\}$ for all $i \in \overline{1, n}$
- is unit if $q_i = 1$ for all $i \in \overline{1, n}$
- is classic if $q_i > 0$ and $q_{ij} \leq 0$ for all $i, j \in \overline{1, n}$

Definitions Properties of non-negative quadratic forms

Integer quadratic forms

An integral quadratic form $q : \mathbb{Z}^n \to \mathbb{Z}$

$$q(x) = \sum_{i \in \overline{1,n}} q_i x_i^2 + \sum_{i < j} q_{ij} x_i x_j, \quad (q_i, q_{ij} \in \mathbb{Z}, q_{ij} = q_{ji})$$

- is semi-integer if $q_{ij} \in q_i \mathbb{Z}$ for all $i, j \in \overline{1, n}$
- is integer if $\frac{q_{ij}}{q_i} \in \mathbb{Z}$ for all $i \in \overline{1, n}$
- is semi-unit if $q_i \in \{0, 1\}$ for all $i \in \overline{1, n}$
- is unit if $q_i = 1$ for all $i \in \overline{1, n}$
- is classic if $q_i > 0$ and $q_{ij} \leq 0$ for all $i, j \in \overline{1, n}$

Integer quadratic forms

Lie algebra associated to an integer quadratic form Summary Definitions Properties of non-negative quadratic forms

Matrix A

Denote by $(,) = (,)_q : \mathbb{Z}^n \times \mathbb{Z}^n \to \frac{1}{2}\mathbb{Z}$ the associated symmetrical bilinear form $(x, y)_q = \frac{1}{2}(q(x + y) - q(x) - q(y)), x, y \in \mathbb{Z}^n$. Let $R = \{\alpha_1, \dots, \alpha_n\}$ be canonical base of \mathbb{Z}^n .

$$A_q = (A_{ij})_{i,j\in\overline{1,n}}$$

$$A_{ij} = rac{2(lpha_i, lpha_j)}{(lpha_i, lpha_i)}$$
 if $q_i \neq 0$ and $A_{ij} = 0$ otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Reductions

Definitions Properties of non-negative quadratic forms

Canonical base R is called the simple root base of q.

Given a root base R of \mathbb{Z}^n , the form $q : \mathbb{Z}^n \to \mathbb{Z}$, and $i, j \in \overline{1, n}$, we construct the new root base $R' = \{\alpha'_k, k \in \overline{1, n}\}$ of \mathbb{Z}^n :

$$\alpha'_{k} = \alpha_{k}, \ k \neq r,$$
$$\alpha'_{r} = \alpha_{r} + \lambda \alpha_{s}.$$

Then the form q' is uniquely defined. If $\lambda = -A_{sr}$ correspondent form transformation R_{sr}^+ is a Gabrielov transformation or reduction. If $\lambda = -1$ and $A_{sr} > 0$ it is inflation If $\lambda = 1$ and $A_{rs} < 0$ it is deflation

Reductions

Canonical base *R* is called the simple root base of *q*. Given a root base *R* of \mathbb{Z}^n , the form $q : \mathbb{Z}^n \to \mathbb{Z}$, and $i, j \in \overline{1, n}$, we construct the new root base $R' = \{\alpha'_k, k \in \overline{1, n}\}$ of \mathbb{Z}^n :

Definitions

$$\alpha'_{k} = \alpha_{k}, \ k \neq r,$$
$$\alpha'_{r} = \alpha_{r} + \lambda \alpha_{s}.$$

Then the form q' is uniquely defined.

If $\lambda = -A_{sr}$ correspondent form transformation R_{sr}^+ is a Gabrielov transformation or reduction. If $\lambda = -1$ and $A_{sr} > 0$ it is inflation

If $\lambda = 1$ and $A_{rs} < 0$ it is deflation

Definitions Properties of non-negative quadra

Reductions

Canonical base *R* is called the simple root base of *q*. Given a root base *R* of \mathbb{Z}^n , the form $q : \mathbb{Z}^n \to \mathbb{Z}$, and $i, j \in \overline{1, n}$, we construct the new root base $R' = \{\alpha'_k, k \in \overline{1, n}\}$ of \mathbb{Z}^n :

$$\alpha'_{k} = \alpha_{k}, \ k \neq r,$$
$$\alpha'_{r} = \alpha_{r} + \lambda \alpha_{s}.$$

Then the form q' is uniquely defined. If $\lambda = -A_{sr}$ correspondent form transformation R_{sr}^+ is a Gabrielov transformation or reduction. If $\lambda = -1$ and $A_{sr} > 0$ it is inflation If $\lambda = 1$ and $A_{rs} < 0$ it is deflation

Definitions Properties of non-negative quadratic form

Reductions

Canonical base *R* is called the simple root base of *q*. Given a root base *R* of \mathbb{Z}^n , the form $q : \mathbb{Z}^n \to \mathbb{Z}$, and $i, j \in \overline{1, n}$, we construct the new root base $R' = \{\alpha'_k, k \in \overline{1, n}\}$ of \mathbb{Z}^n :

$$\alpha'_{k} = \alpha_{k}, \ k \neq r,$$
$$\alpha'_{r} = \alpha_{r} + \lambda \alpha_{s}.$$

Then the form q' is uniquely defined. If $\lambda = -A_{sr}$ correspondent form transformation R_{sr}^+ is a Gabrielov transformation or reduction. If $\lambda = -1$ and $A_{sr} > 0$ it is inflation If $\lambda = 1$ and $A_{rs} < 0$ it is deflation

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Definitions Properties of non-negative quadratic for

G-equivalence

Sign-inversion is a linear transformation S_i :

$$S_i(\alpha_j) = \alpha_j, j \neq i,$$

 $S_i(\alpha_i) = -\alpha_i.$

q and *q'* are \mathbb{Z} -equivalent if one comes from another after a \mathbb{Z} -invertible linear transformation. For two \mathbb{Z} -equivalent forms *q* and *q'*, *q* is non-negative (positive) iff *q'* is non-negative (positive).

q and q' are *G*-equivalent if one comes from another after a sequence of Gabrielov transformations, sign-inversions or a permutation of the variables.

Definitions Properties of non-negative quadratic forms

G-equivalence

Sign-inversion is a linear transformation S_i :

$$S_i(\alpha_j) = \alpha_j, j \neq i,$$

 $S_i(\alpha_i) = -\alpha_i.$

q and q' are \mathbb{Z} -equivalent if one comes from another after a \mathbb{Z} -invertible linear transformation. For two \mathbb{Z} -equivalent forms q and q', q is non-negative (positive) iff q' is non-negative (positive).

q and q' are *G*-equivalent if one comes from another after a sequence of Gabrielov transformations, sign-inversions or a permutation of the variables.

Definitions Properties of non-negative quadratic forms

G-equivalence

Sign-inversion is a linear transformation S_i :

ŝ

$$\mathbf{S}_i(\alpha_j) = \alpha_j, j \neq i,$$

 $\mathbf{S}_i(\alpha_i) = -\alpha_i.$

q and *q'* are \mathbb{Z} -equivalent if one comes from another after a \mathbb{Z} -invertible linear transformation. For two \mathbb{Z} -equivalent forms *q* and *q'*, *q* is non-negative (positive) iff *q'* is non-negative (positive).

q and q' are *G*-equivalent if one comes from another after a sequence of Gabrielov transformations, sign-inversions or a permutation of the variables.

Integer quadratic forms

Lie algebra associated to an integer quadratic form Summary Definitions Properties of non-negative quadratic forms

Associated bigraph

To an integer quadratic form q we associate bigraph B_q with vertices $1, \ldots, n$, two vertices $i \neq j$ are jointed by max $\{|A_{ij}|, |A_{ji}|\}$ full edges if $A_{ij} < 0$ dotted edges if $A_{ij} > 0$. Edge starts at point with greater $|q_i|$.

Definitions Properties of non-negative quadratic forms

Analoge of Ovsienko's Theorem

Theorem

Let q be connected positive quadratic form. Then there exists a finite sequence R of reductions such that R(q) is a connected classical positive form of Dynkin type $(A_n, D_n, B_n, C_n, G_2, F_4, E_6, E_7, E_8)$.

Theorem

If q is non-negative (positive) semi-integer form, then there is a sequence of inflation and deflations with composition T such that the bigraph of T(q) is disjoint union of unit Dynkin diagrams (A_n , D_n , E_6 , E_7 , E_8) multiplied by some non-negative (positive) integer.

Definitions Main Results

Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients *C* is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix *D* with positive diagonal entries such that *DC* is symmetric) and $C_{ii} = 2$ for all *i*.

A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $C_{ij} \leq 0$ for all $i \neq j$.

For positive integer form $A_{ii} = 2$ and $A_{ij} = \frac{q_{ij}}{q_i}$ for $i \neq j$, and A_q is symmetrizable by matrix $D = \text{diag}(q_1, \ldots, q_n) \Rightarrow A_q$ is quasi-Cartan matrix

 A_q is Cartan matrix iff form q is positive definite and classic.

Definitions Main Results

Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients *C* is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix *D* with positive diagonal entries such that *DC* is symmetric) and $C_{ii} = 2$ for all *i*.

A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $C_{ij} \leq 0$ for all $i \neq j$.

For positive integer form $A_{ii} = 2$ and $A_{ij} = \frac{q_{ij}}{q_i}$ for $i \neq j$, and A_q is symmetrizable by matrix $D = \text{diag}(q_1, \ldots, q_n) \Rightarrow A_q$ is quasi-Cartan matrix

 A_q is Cartan matrix iff form q is positive definite and classic.

Definitions Main Results

Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients *C* is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix *D* with positive diagonal entries such that *DC* is symmetric) and $C_{ii} = 2$ for all *i*.

A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $C_{ij} \leq 0$ for all $i \neq j$.

For positive integer form $A_{ii} = 2$ and $A_{ij} = \frac{q_{ij}}{q_i}$ for $i \neq j$, and A_q is symmetrizable by matrix $D = \text{diag}(q_1, \ldots, q_n) \Rightarrow A_q$ is quasi-Cartan matrix

 A_q is Cartan matrix iff form q is positive definite and classic.

Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients *C* is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix *D* with positive diagonal entries such that *DC* is symmetric) and $C_{ii} = 2$ for all *i*.

A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $C_{ij} \leq 0$ for all $i \neq j$.

For positive integer form $A_{ii} = 2$ and $A_{ij} = \frac{q_{ij}}{q_i}$ for $i \neq j$, and A_q is symmetrizable by matrix $D = \text{diag}(q_1, \ldots, q_n) \Rightarrow A_q$ is quasi-Cartan matrix

 A_q is Cartan matrix iff form q is positive definite and classic.

Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients *C* is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix *D* with positive diagonal entries such that *DC* is symmetric) and $C_{ii} = 2$ for all *i*.

A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $C_{ij} \leq 0$ for all $i \neq j$.

For positive integer form $A_{ii} = 2$ and $A_{ij} = \frac{q_{ij}}{q_i}$ for $i \neq j$, and A_q is symmetrizable by matrix $D = \text{diag}(q_1, \ldots, q_n) \Rightarrow A_q$ is quasi-Cartan matrix

 A_q is Cartan matrix iff form q is positive definite and classic.

Lie algebra

Given a positive integer form q with quasi-Cartan matrix A let $\mathfrak{g}(q)$ be the Lie algebra defined by the generators $\{e_i, e_{-i}, h_i\}_{i \in \overline{1,n}}$ and the relations: (w.1) $[h_i, h_j] = 0$; (w.2) $[e_i, e_{-i}] = h_i$, $[e_i, e_{-j}] = 0$ for $i \neq j$; (w.3) $[h_i, e_j] = A_{ij}e_j$, $[h_i, e_{-j}] = -A_{ij}e_{-j}$; (θ_{ij}^+) ad $(e_i)^{|A_{ij}|+1}(e_j) = 0$, $i \neq j$ (θ_{ij}^-) ad $(e_{-i})^{|A_{ij}|+1}(e_{-j}) = 0$, $i \neq j$

Definitions

Definitions Main Results

Lie algebra of a classic positive integer form.

Theorem (Serre, [1])

If q is positive definite and classic integer form then $\mathfrak{g}(q)$ is a semisimple (and finite dimensional) Lie algebra.

Definitions Main Results

Lie algebra associated to a non-negative unit form

Theorem (Barot, [2])

Two connected, non-negative unit forms q and q' are \mathbb{Z} -equivalent if and only if they are G-equivalent.

Theorem (Barot, [2])

If q and q' are G-equivalent then $\mathfrak{g}(q)$ and $\mathfrak{g}(q')$ are isomorphic as graded Lie algebras.

Equivalence

Theorem

Two connected, positive integer forms q and q' are \mathbb{Z} -equivalent and define identical sets of roots if and only if they are G-equivalent.

Main Results

 $x_1^2 - 3x_1x_2 + 3x_2^2$ and $x_1^2 - x_2^2$ are \mathbb{Z} -equivalent, but not *G*-equivalent.

Definitions Main Results

Lie algebra associated to a positive integer quadratic form

Theorem

If q and q' are G-equivalent, then $\mathfrak{g}(q)$ and $\mathfrak{g}(q')$ are isomorphic as graded Lie algebras.

Theorem

Let q be a connected positive integer form and Δ its Dynkin type, then algebras $\mathfrak{g}(q) \simeq \mathfrak{g}(q_{\Delta})$ are exactly finite-dimensional semisimple Lie algebras.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Summary

- Every positive integer form has corresponding uniquely defined Dynkin type.
- Every positive integer form defines Lie algebra in terms of the positive quasi-Cartan matrix.
- Associated Lie algebra is isomorphic to finite-dimensional semisimple Lie algebra of Dynkin type.
- Outlook
 - Properties of Lie algebra associated to non-negative integer quadratic form (non-negative quasi-Cartan matrix).
 - Properties of Lie algebra associated to any integer quadratic form (any quasi-Cartan matrix).

References I

🌭 Serre J.-P.

Complex Semisimple Lie Algebras Springer-Verlag, New York, 1987.

Barot M., Rivera D. Generalized Serre relations for Lie algebras associated with positive unit forms Journal of Pure and Applied Algebra. 211 (2007), pp. 360-373.

Golovaschuk N.S., Kriukova G.V. On non-negative integer quadratic forms Bulletin of Kyiv University. Physics & Mathematics. 3 (2009), pp. 14-21.