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Integer quadratic forms

An integral quadratic form q : Zn → Z

q(x) =
∑
i∈1,n

qix2
i +

∑
i<j

qijxixj , (qi ,qij ∈ Z,qij = qji)

is semi-integer if qij ∈ qiZ for all i , j ∈ 1,n

is integer if qij
qi
∈ Z for all i ∈ 1,n

is semi-unit if qi ∈ {0,1} for all i ∈ 1,n
is unit if qi = 1 for all i ∈ 1,n
is classic if qi > 0 and qij 6 0 for all i , j ∈ 1,n
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Matrix A

Denote by ( , ) = ( , )q : Zn × Zn → 1
2Z

the associated symmetrical bilinear form
(x , y)q = 1

2(q(x + y)− q(x)− q(y)), x , y ∈ Zn.
Let R = {α1, . . . , αn} be canonical base of Zn.

Aq =
(
Aij
)

i,j∈1,n

Aij =
2(αi ,αj )
(αi ,αi )

if qi 6= 0 and Aij = 0 otherwise.
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Reductions

Canonical base R is called the simple root base of q.
Given a root base R of Zn, the form q : Zn → Z, and i , j ∈ 1,n,
we construct the new root base R′ = {α′k , k ∈ 1,n} of Zn:

α′k = αk , k 6= r ,
α′r = αr + λαs.

Then the form q′ is uniquely defined.
If λ = −Asr correspondent form transformation R+

sr is a
Gabrielov transformation or reduction.
If λ = −1 and Asr > 0 it is inflation
If λ = 1 and Ars < 0 it is deflation

Galyna V. Kriukova On non-negative integer quadratic forms



Integer quadratic forms
Lie algebra associated to an integer quadratic form

Summary

Definitions
Properties of non-negative quadratic forms

Reductions

Canonical base R is called the simple root base of q.
Given a root base R of Zn, the form q : Zn → Z, and i , j ∈ 1,n,
we construct the new root base R′ = {α′k , k ∈ 1,n} of Zn:

α′k = αk , k 6= r ,
α′r = αr + λαs.

Then the form q′ is uniquely defined.
If λ = −Asr correspondent form transformation R+

sr is a
Gabrielov transformation or reduction.
If λ = −1 and Asr > 0 it is inflation
If λ = 1 and Ars < 0 it is deflation

Galyna V. Kriukova On non-negative integer quadratic forms



Integer quadratic forms
Lie algebra associated to an integer quadratic form

Summary

Definitions
Properties of non-negative quadratic forms

Reductions

Canonical base R is called the simple root base of q.
Given a root base R of Zn, the form q : Zn → Z, and i , j ∈ 1,n,
we construct the new root base R′ = {α′k , k ∈ 1,n} of Zn:

α′k = αk , k 6= r ,
α′r = αr + λαs.

Then the form q′ is uniquely defined.
If λ = −Asr correspondent form transformation R+

sr is a
Gabrielov transformation or reduction.
If λ = −1 and Asr > 0 it is inflation
If λ = 1 and Ars < 0 it is deflation

Galyna V. Kriukova On non-negative integer quadratic forms



Integer quadratic forms
Lie algebra associated to an integer quadratic form

Summary

Definitions
Properties of non-negative quadratic forms

Reductions

Canonical base R is called the simple root base of q.
Given a root base R of Zn, the form q : Zn → Z, and i , j ∈ 1,n,
we construct the new root base R′ = {α′k , k ∈ 1,n} of Zn:

α′k = αk , k 6= r ,
α′r = αr + λαs.

Then the form q′ is uniquely defined.
If λ = −Asr correspondent form transformation R+

sr is a
Gabrielov transformation or reduction.
If λ = −1 and Asr > 0 it is inflation
If λ = 1 and Ars < 0 it is deflation

Galyna V. Kriukova On non-negative integer quadratic forms



Integer quadratic forms
Lie algebra associated to an integer quadratic form

Summary

Definitions
Properties of non-negative quadratic forms

G-equivalence

Sign-inversion is a linear transformation Si :

Si(αj) = αj , j 6= i ,
Si(αi) = −αi .

q and q′ are Z-equivalent if one comes from another after a
Z-invertible linear transformation. For two Z-equivalent forms q
and q′, q is non-negative (positive) iff q′ is non-negative
(positive).
q and q′ are G-equivalent if one comes from another after a
sequence of Gabrielov transformations, sign-inversions or a
permutation of the variables.
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Associated bigraph

To an integer quadratic form q we associate
bigraph Bq with vertices 1, . . . ,n,
two vertices i 6= j are jointed by max{|Aij |, |Aji |}
full edges if Aij < 0
dotted edges if Aij > 0.
Edge starts at point with greater |qi |.
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Analoge of Ovsienko’s Theorem

Theorem
Let q be connected positive quadratic form. Then there exists a
finite sequence R of reductions such that R(q) is a connected
classical positive form of Dynkin type
(An,Dn,Bn,Cn,G2,F4,E6,E7,E8).

Theorem
If q is non-negative (positive) semi-integer form, then there is a
sequence of inflation and deflations with composition T such
that the bigraph of T (q) is disjoint union of unit Dynkin
diagrams (An,Dn,E6,E7,E8) multiplied by some non-negative
(positive) integer.
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Quasi-Cartan matrix of quadratic form

A square matrix with integer coefficients C is called a
quasi-Cartan matrix if it is symmetrizable (there exists a
diagonal matrix D with positive diagonal entries such that DC is
symmetric) and Cii = 2 for all i .
A quasi-Cartan matrix is called Cartan matrix if it is positive
definite and Cij ≤ 0 for all i 6= j .
For positive integer form Aii = 2 and Aij =

qij
qi

for i 6= j , and Aq is
symmetrizable by matrix D = diag(q1, . . . ,qn)⇒ Aq is
quasi-Cartan matrix
Aq is Cartan matrix iff form q is positive definite and classic.
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Lie algebra

Given a positive integer form q with quasi-Cartan matrix A let
g(q) be the Lie algebra defined by the generators
{ei ,e−i ,hi}i∈1,n and the relations:

(w.1) [hi ,hj ] = 0;
(w.2) [ei ,e−i ] = hi , [ei ,e−j ] = 0 for i 6= j ;
(w.3) [hi ,ej ] = Aijej , [hi ,e−j ] = −Aije−j ;
(θ+

ij ) ad(ei)
|Aij |+1(ej) = 0, i 6= j

(θ−ij ) ad(e−i)
|Aij |+1(e−j) = 0, i 6= j
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Lie algebra of a classic positive integer form.

Theorem (Serre, [1])

If q is positive definite and classic integer form then g(q) is a
semisimple (and finite dimensional) Lie algebra.
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Lie algebra associated to a non-negative unit form

Theorem (Barot, [2])

Two connected, non-negative unit forms q and q′ are
Z-equivalent if and only if they are G-equivalent.

Theorem (Barot, [2])

If q and q′ are G-equivalent then g(q) and g(q′) are isomorphic
as graded Lie algebras.
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Equivalence

Theorem
Two connected, positive integer forms q and q′ are
Z-equivalent and define identical sets of roots if and only if they
are G-equivalent.

x2
1 − 3x1x2 + 3x2

2 and x2
1 − x2

2
are Z-equivalent, but not G-equivalent.
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Lie algebra associated to a positive integer quadratic
form

Theorem
If q and q′ are G-equivalent, then g(q) and g(q′) are isomorphic
as graded Lie algebras.

Theorem
Let q be a connected positive integer form and ∆ its Dynkin
type, then algebras g(q) ' g(q∆) are exactly finite-dimensional
semisimple Lie algebras.
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Summary

Every positive integer form has corresponding uniquely
defined Dynkin type.
Every positive integer form defines Lie algebra in terms of
the positive quasi-Cartan matrix.
Associated Lie algebra is isomorphic to finite-dimensional
semisimple Lie algebra of Dynkin type.

Outlook
Properties of Lie algebra associated to non-negative
integer quadratic form
(non-negative quasi-Cartan matrix).
Properties of Lie algebra associated to any integer
quadratic form
(any quasi-Cartan matrix).
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