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Commuting operations

Let A be an arbitrary set, and n and m positive integers.

We denote [n] := {1, . . . , n}.

Definition
We say that f : An → A and g : Am → A commute if

f
(
g(a11, a12, . . . , a1m), . . . , g(an1, an2, . . . , anm)

)
= g

(
f (a11, a21, . . . , an1), . . . , f (a1m, a2m, . . . , anm)

)
,

for all aij ∈ A (i ∈ [n], j ∈ [m]).

If f and g commute, then we write f ⊥ g.



Commuting operations

In other words, f and g commute if

f( f( f( f(

g( a11 a12 · · · a1m ) = c1

g( a21 a22 · · · a2m ) = c2

...
...

. . .
...

...

g( an1 an2 · · · anm ) = cn

)
=

)
=

)
=

)
=

g( d1 d2 · · · dm ) = b



A particular case . . .

For n = m = 2, we have f ⊥ g if

f
(
g(a11, a12), g(a21, a22)

)
= g

(
f (a11, a21), f (a12, a22)

)
.

Theorem (Eckmann–Hilton, 1962)
If f and g are binary operations on A with an identity element
and f ⊥ g, then f = g and (A; f ) is a commutative monoid.



The relevance of commutation in universal algebra

Commutation is the defining property of:

1 entropic algebras,

2 modes,

3 centralizer clones,

4 ...



Self-commuting operations

Let A be an arbitrary set, and n a positive integer.

Definition
An operation f : An → A is self-commuting (or bisymmetric) if
f ⊥ f , that is,

f
(
f (a11, a12, . . . , a1n), . . . , f (an1, an2, . . . , ann)

)
= f
(
f (a11, a21, . . . , an1), . . . , f (a1n, a2n, . . . , ann)

)
,

for every aij ∈ A.



A particular case . . .

An algebra (A; f ) where f is a binary operation that satisfies the
identity

f
(
f (a11, a12), f (a21, a22)

)
= f
(
f (a11, a21), f (a12, a22)

)
is called a medial groupoid.

Thus, the notion of self-commutation generalizes mediality.



Lattice polynomial functions

Let (L;∧,∨) be a lattice with least and greatest elements 0 and
1, respectively.

Definition
A (lattice) polynomial function is any map p : Ln → L which is a
composition of

1 the lattice operations ∧, ∨,
2 projections x 7→ xi , i ∈ [n], and

3 constant functions x 7→ c, c ∈ L.



Representations: disjunctive normal form

A function p : Ln → L has a disjunctive normal form (DNF) if

p(x) =
∨

I⊆[n]

(
aI ∧

∧
i∈I

xi
)

for some aI ∈ L (I ⊆ [n]).



Representations: disjunctive normal form

Proposition (Goodstein 1965)
Let (L;∧,∨) be a bounded distributive lattice. A function
p : Ln → L is a polynomial function if and only if it has the DNF

p(x) =
∨

I⊆[n]

(
p(eI) ∧

∧
i∈I

xi
)
,

where for I ⊆ [n], eI ∈ {0, 1}n is the characteristic vector of I:

(eI)i =

{
1 if i ∈ I,
0 if i /∈ I.



A few consequences . . .

Corollary
Let L be a bounded distributive lattice. Every polynomial
function p : Ln → L is uniquely determined by its restriction to
{0, 1}n.

Corollary
Every polynomial function p : Ln → L over a bounded
distributive lattice L has a DNF

p(x) =
∨

I⊆[n]

(
aI ∧

∧
i∈I

xi
)
,

where aI ≤ aJ whenever I ⊆ J.



Our problems

Problem
Give necessary and sufficient conditions for two lattice
polynomial functions to commute.

Problem
Explicitly describe the self-commuting lattice polynomial
functions.
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Commuting lattice polynomial functions

Theorem (Behrisch, Kearnes, Lehtonen, Szendrei 2010)
Let L be a bounded distributive lattice, and let f : Lm → L and
g : Ln → L be polynomial functions over L, given by the DNFs

f =
∨

S⊆[m]

aS ∧
∧
i∈S

xi , g =
∨

T⊆[n]

bT ∧
∧
i∈T

xi .

The following are equivalent:

(i) f ⊥ g.
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Commuting lattice polynomial functions

Theorem (Behrisch, Kearnes, Lehtonen, Szendrei 2010)
Let L be a bounded distributive lattice, and let f : Lm → L and
g : Ln → L be polynomial functions over L, given by the DNFs

f =
∨

S⊆[m]

aS ∧
∧
i∈S

xi , g =
∨

T⊆[n]

bT ∧
∧
i∈T

xi .

The following are equivalent:
(iv) a∅ ∨ b∅ ≤ a[m]b[n] and for all U1, . . . , Up ⊆ [m] (p ≥ 1),

V1, . . . , Vq ⊆ [n] (q ≥ 1),

a∅ ∨
(
(

p∧
i=1

aUi )b⋃q
j=1 Vj

)
= a∅ ∨

(
a⋂p

i=1 Ui
b⋃q

j=1 Vj

)
∨
(
(

p∧
i=1

aUi )(

q∨
j=1

bVj )
)
,

b∅ ∨
(
(

q∧
j=1

bVj )a⋃p
i=1 Ui

)
= b∅ ∨

(
b⋂q

j=1 Vj
a⋃p

i=1 Ui

)
∨
(
(

q∧
j=1

bVj )(

p∨
i=1

aUi )
)
.



Commuting lattice polynomial functions

Theorem (Behrisch, Kearnes, Lehtonen, Szendrei 2010)
Let L be a bounded distributive lattice, and let f : Lm → L and
g : Ln → L be polynomial functions over L, given by the DNFs

f =
∨

S⊆[m]

aS ∧
∧
i∈S

xi , g =
∨

T⊆[n]

bT ∧
∧
i∈T

xi .

The following are equivalent:
(v) a∅ ∨ b∅ ≤ a[m]b[n] and for all U, U1, . . . , Up ⊆ [m] (p ≥ 1),

V , V1, . . . , Vq ⊆ [n] (q ≥ 1),

a∅ ∨
(
(

p∧
i=1

aUi )bV
)

= a∅ ∨
(
a⋂p

i=1 Ui
bV
)
∨
(
(

p∧
i=1

aUi )(
∨
v∈V

bv )
)
,

b∅ ∨
(
(

q∧
j=1

bVj )aU
)

= b∅ ∨
(
b⋂q

j=1 Vj
aU
)
∨
(
(

q∧
j=1

bVj )(
∨
u∈U

au)
)
.



Corollaries

If we take f = g, our theorem gives a characterization of
self-commuting lattice polynomial functions.

If we place extra assumptions on the underlying lattice L, we
can get more stringent conditions.
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f =
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(
(

p∧
i=1

aUi )a⋃q
j=1 Vj

)
=
(
a⋂p

i=1 Ui
a⋃q

j=1 Vj

)
∨
(
(

p∧
i=1

aUi )(

q∨
j=1
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Self-commuting lattice polynomial functions

Theorem
Let L be a bounded distributive lattice, and let f : Lm → L be a
polynomial function over L, given by the DNF

f =
∨

S⊆[m]

aS ∧
∧
i∈S

xi .

The following are equivalent:

(v) For all U1, . . . , Up, V ⊆ [m] (p ≥ 1),

(
(

p∧
i=1

aUi )aV
)

= a∅ ∨
(
a⋂p

i=1 Ui
aV
)
∨
(
(

p∧
i=1

aUi )(
∨

v∈V

av )
)
.



Special case: L is a chain

Theorem (Couceiro, Lehtonen 2010)
Let (L;∧,∨) be a bounded chain. A polynomial function
f : Ln → L is self-commuting if and only if

f = a∅ ∨
∨

i∈[n]

(ai ∧ xi) ∨
∨

1≤`≤r

(
aS`
∧
∧

i∈S`

xi
)
,

where r ≥ 0, |S1| ≥ 2, and

1 S1 ⊆ S2 ⊆ · · · ⊆ Sr ⊆ [n], and

2 if r ≥ 1, then for all i ∈ [n], there is a j ∈ S1 such that
ai ≤ aj .



Example 1

Consider f : [0, 1]3 → [0, 1] given by f = (x1 ∧ x2) ∨ (x2 ∧ x3).

f( f( f( f(
f ( 0 1 1 ) = 1
f ( 1 1 0 ) = 1
f ( 0 0 0 ) = 0

)
=

)
=

)
=

)
=

f ( 0 1 0 ) = 0 6= 1

Thus f is not self-commuting!



Example 2

Consider f : [0, 1]3 → [0, 1] given by f = (0.5 ∧ x1) ∨ (x2 ∧ x3).

f( f( f( f(

f ( 0 0 1 ) = 0
f ( 0 1 0 ) = 0
f ( 0 1 1 ) = 1

)
=

)
=

)
=

)
=

f ( 0 1 0.5 ) = 0.5 6= 0

Thus f is not self-commuting!



Thank you for your attention!


