Commuting polynomial functions over distributive lattices

Erkko Lehtonen

University of Luxembourg

joint work with Mike Behrisch, Miguel Couceiro, Keith A. Kearnes, Ágnes Szendrei

Jardafest Prague, 21–25 June 2010 Let *A* be an arbitrary set, and *n* and *m* positive integers.

We denote $[n] := \{1, ..., n\}.$

Definition

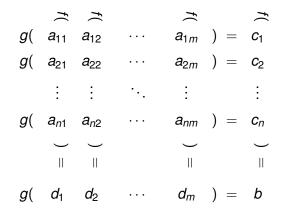
We say that $f: A^n \to A$ and $g: A^m \to A$ commute if

$$f(g(a_{11}, a_{12}, \dots, a_{1m}), \dots, g(a_{n1}, a_{n2}, \dots, a_{nm})) = g(f(a_{11}, a_{21}, \dots, a_{n1}), \dots, f(a_{1m}, a_{2m}, \dots, a_{nm})),$$

for all $a_{ij} \in A$ ($i \in [n], j \in [m]$).

If *f* and *g* commute, then we write $f \perp g$.

In other words, f and g commute if



For n = m = 2, we have $f \perp g$ if

 $f(g(a_{11}, a_{12}), g(a_{21}, a_{22})) = g(f(a_{11}, a_{21}), f(a_{12}, a_{22})).$

Theorem (Eckmann–Hilton, 1962)

If *f* and *g* are binary operations on *A* with an identity element and $f \perp g$, then f = g and (*A*; *f*) is a commutative monoid.

Commutation is the defining property of:

entropic algebras,

- 2 modes,
- centralizer clones,

Let A be an arbitrary set, and n a positive integer.

Definition

An operation $f: A^n \to A$ is self-commuting (or bisymmetric) if $f \perp f$, that is,

$$f(f(a_{11}, a_{12}, \dots, a_{1n}), \dots, f(a_{n1}, a_{n2}, \dots, a_{nn})) = f(f(a_{11}, a_{21}, \dots, a_{n1}), \dots, f(a_{1n}, a_{2n}, \dots, a_{nn})),$$

for every $a_{ij} \in A$.

An algebra (A; f) where f is a binary operation that satisfies the identity

$$f(f(a_{11}, a_{12}), f(a_{21}, a_{22})) = f(f(a_{11}, a_{21}), f(a_{12}, a_{22}))$$

is called a medial groupoid.

Thus, the notion of self-commutation generalizes mediality.

Let $(L; \land, \lor)$ be a lattice with least and greatest elements 0 and 1, respectively.

Definition

A (lattice) polynomial function is any map $p: L^n \to L$ which is a composition of

- **()** the lattice operations \land , \lor ,
- **2** projections $\mathbf{x} \mapsto x_i$, $i \in [n]$, and

3 constant functions $\mathbf{x} \mapsto \mathbf{c}, \mathbf{c} \in \mathbf{L}$.

A function $p: L^n \to L$ has a disjunctive normal form (**DNF**) if

$$\rho(\mathbf{x}) = \bigvee_{I \subseteq [n]} (a_I \land \bigwedge_{i \in I} x_i)$$

for some $a_I \in L$ ($I \subseteq [n]$).

Proposition (Goodstein 1965)

Let $(L; \land, \lor)$ be a bounded distributive lattice. A function $p: L^n \to L$ is a polynomial function if and only if it has the **DNF**

$$p(\mathbf{x}) = \bigvee_{I \subseteq [n]} (p(\mathbf{e}_I) \land \bigwedge_{i \in I} x_i),$$

where for $I \subseteq [n]$, $\mathbf{e}_I \in \{0, 1\}^n$ is the characteristic vector of *I*:

$$(\mathbf{e}_I)_i = \begin{cases} 1 & \text{if } i \in I, \\ 0 & \text{if } i \notin I. \end{cases}$$

Corollary

Let *L* be a bounded distributive lattice. Every polynomial function $p: L^n \to L$ is uniquely determined by its restriction to $\{0, 1\}^n$.

Corollary

Every polynomial function $p: L^n \rightarrow L$ over a bounded distributive lattice *L* has a **DNF**

$$p(\mathbf{x}) = \bigvee_{I\subseteq [n]} (a_I \wedge \bigwedge_{i\in I} x_i),$$

where $a_I \leq a_J$ whenever $I \subseteq J$.

Our problems

Problem

Give necessary and sufficient conditions for two lattice polynomial functions to commute.

Our problems

Problem

Give necessary and sufficient conditions for two lattice polynomial functions to commute.

Problem

Explicitly describe the self-commuting lattice polynomial functions.

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ and $g: L^n \to L$ be polynomial functions over *L*, given by the DNFs

$$f = \bigvee_{S \subseteq [m]} a_S \wedge \bigwedge_{i \in S} x_i, \qquad \qquad g = \bigvee_{T \subseteq [n]} b_T \wedge \bigwedge_{i \in T} x_i$$

The following are equivalent:

(i) $f \perp g$.

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ and $g: L^n \to L$ be polynomial functions over *L*, given by the DNFs

$$f = \bigvee_{S \subseteq [m]} a_S \wedge \bigwedge_{i \in S} x_i, \qquad \qquad g = \bigvee_{T \subseteq [n]} b_T \wedge \bigwedge_{i \in T} x_i$$

The following are equivalent:

(ii) For all $U_1, U_2 \subseteq [m], V_1, V_2 \subseteq [n],$

 $\begin{aligned} a_{\emptyset} \lor a_{[m]} b_{\emptyset} \lor a_{U_1 \cap U_2} b_{V_1 \cup V_2} \lor a_{U_1} b_{V_1} \lor a_{U_2} b_{V_2} \lor a_{U_1 \cup U_2} b_{V_1} b_{V_2} = \\ b_{\emptyset} \lor b_{[n]} a_{\emptyset} \lor b_{V_1 \cap V_2} a_{U_1 \cup U_2} \lor b_{V_1} a_{U_1} \lor b_{V_2} a_{U_2} \lor b_{V_1 \cup V_2} a_{U_1} a_{U_2}. \end{aligned}$

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ and $g: L^n \to L$ be polynomial functions over *L*, given by the DNFs

$$f = \bigvee_{S \subseteq [m]} a_S \wedge \bigwedge_{i \in S} x_i, \qquad \qquad g = \bigvee_{T \subseteq [n]} b_T \wedge \bigwedge_{i \in T} x_i$$

The following are equivalent:

(iii) $a_{\emptyset} \lor b_{\emptyset} \le a_{[m]}b_{[n]}$ and for all $U_1, U_2 \subseteq [m], V_1, V_2 \subseteq [n],$

$$egin{aligned} &a_{U_1}a_{U_2}b_{V_1\cup V_2} = a_{\emptyset} \lor a_{U_1\cap U_2}b_{V_1\cup V_2} \lor a_{U_1}a_{U_2}(b_{V_1}\lor b_{V_2}), \ &b_{\emptyset} \lor b_{V_1}b_{V_2}a_{U_1\cup U_2} = b_{\emptyset} \lor b_{V_1\cap V_2}a_{U_1\cup U_2} \lor b_{V_1}b_{V_2}(a_{U_1}\lor a_{U_2}). \end{aligned}$$

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ and $g: L^n \to L$ be polynomial functions over *L*, given by the DNFs

$$f = \bigvee_{S \subseteq [m]} a_S \wedge \bigwedge_{i \in S} x_i, \qquad \qquad g = \bigvee_{T \subseteq [n]} b_T \wedge \bigwedge_{i \in T} x_i$$

The following are equivalent:

(iv)
$$a_{\emptyset} \lor b_{\emptyset} \le a_{[m]}b_{[n]}$$
 and for all $U_1, \ldots, U_p \subseteq [m]$ $(p \ge 1), V_1, \ldots, V_q \subseteq [n]$ $(q \ge 1),$

$$\begin{aligned} a_{\emptyset} \lor \big(\big(\bigwedge_{i=1}^{p} a_{U_{i}} \big) b_{\bigcup_{j=1}^{q} V_{j}} \big) &= a_{\emptyset} \lor \big(a_{\bigcap_{i=1}^{p} U_{i}} b_{\bigcup_{j=1}^{q} V_{j}} \big) \lor \big(\big(\bigwedge_{i=1}^{p} a_{U_{i}} \big) \big(\bigvee_{j=1}^{q} b_{V_{j}} \big) \big), \\ b_{\emptyset} \lor \big(\big(\bigwedge_{j=1}^{q} b_{V_{j}} \big) a_{\bigcup_{i=1}^{p} U_{i}} \big) &= b_{\emptyset} \lor \big(b_{\bigcap_{j=1}^{q} V_{j}} a_{\bigcup_{i=1}^{p} U_{i}} \big) \lor \big(\big(\bigwedge_{j=1}^{q} b_{V_{j}} \big) \big(\bigvee_{i=1}^{p} a_{U_{i}} \big) \big). \end{aligned}$$

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ and $g: L^n \to L$ be polynomial functions over *L*, given by the DNFs

$$f = \bigvee_{S \subseteq [m]} a_S \wedge \bigwedge_{i \in S} x_i, \qquad \qquad g = \bigvee_{T \subseteq [n]} b_T \wedge \bigwedge_{i \in T} x_i$$

The following are equivalent:

(v)
$$a_{\emptyset} \lor b_{\emptyset} \leq a_{[m]}b_{[n]}$$
 and for all $U, U_1, \dots, U_p \subseteq [m]$ $(p \geq 1),$
 $V, V_1, \dots, V_q \subseteq [n]$ $(q \geq 1),$
 $a_{\emptyset} \lor ((\bigwedge_{i=1}^p a_{U_i})b_V) = a_{\emptyset} \lor (a_{\bigcap_{i=1}^p U_i}b_V) \lor ((\bigwedge_{i=1}^p a_{U_i})(\bigvee_{v \in V}b_v)),$
 $b_{\emptyset} \lor ((\bigwedge_{j=1}^q b_{V_j})a_U) = b_{\emptyset} \lor (b_{\bigcap_{j=1}^q V_j}a_U) \lor ((\bigwedge_{j=1}^q b_{V_j})(\bigvee_{u \in U}a_u)).$

If we take f = g, our theorem gives a characterization of self-commuting lattice polynomial functions.

If we take f = g, our theorem gives a characterization of self-commuting lattice polynomial functions.

If we place extra assumptions on the underlying lattice L, we can get more stringent conditions.

Theorem

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ be a polynomial function over *L*, given by the DNF

$$f = \bigvee_{S\subseteq [m]} a_S \wedge \bigwedge_{i\in S} x_i.$$

The following are equivalent:

(i) $f \perp f$.

Theorem

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ be a polynomial function over *L*, given by the DNF

$$f = \bigvee_{S\subseteq [m]} a_S \wedge \bigwedge_{i\in S} x_i.$$

The following are equivalent:

(ii) For all $U_1, U_2, V_1, V_2 \subseteq [m]$,

 $a_{U_1 \cap U_2} a_{V_1 \cup V_2} \vee a_{U_1} a_{V_1} \vee a_{U_2} a_{V_2} \vee a_{U_1 \cup U_2} a_{V_1} a_{V_2} = a_{U_1} a_{U_2} a_{V_1 \cup V_2} \vee a_{U_1} a_{V_1} \vee a_{U_2} a_{V_2} \vee a_{U_1 \cup U_2} a_{V_1 \cap V_2}.$

Theorem

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ be a polynomial function over *L*, given by the DNF

$$a_{S\subseteq[m]} = \bigvee_{S\subseteq[m]} a_{S} \wedge \bigwedge_{i\in S} x_{i}.$$

The following are equivalent:

(iii) For all $U_1, U_2, V_1, V_2 \subseteq [m]$,

 $a_{U_1}a_{U_2}a_{V_1\cup V_2} = a_{U_1\cap U_2}a_{V_1\cup V_2} \vee a_{U_1}a_{U_2}(a_{V_1}\vee a_{V_2}).$

Theorem

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ be a polynomial function over *L*, given by the DNF

$$a_{S\subseteq[m]} = \bigvee_{S\subseteq[m]} a_{S} \wedge \bigwedge_{i\in S} x_{i}.$$

The following are equivalent:

(iv) For all
$$U_1, \ldots, U_p, V_1, \ldots, V_q \subseteq [m] \ (p \ge 1, q \ge 1),$$

$$\big(\big(\bigwedge_{i=1}^{p} a_{U_{i}}\big)a_{\bigcup_{j=1}^{q} V_{j}}\big) = \big(a_{\bigcap_{i=1}^{p} U_{i}}a_{\bigcup_{j=1}^{q} V_{j}}\big) \vee \big(\big(\bigwedge_{i=1}^{p} a_{U_{i}}\big)(\bigvee_{j=1}^{q} a_{V_{j}})\big).$$

Theorem

Let *L* be a bounded distributive lattice, and let $f: L^m \to L$ be a polynomial function over *L*, given by the DNF

$$a = \bigvee_{S\subseteq [m]} a_S \wedge \bigwedge_{i\in S} x_i.$$

The following are equivalent:

(v) For all
$$U_1, \ldots, U_p, V \subseteq [m] \ (p \ge 1),$$

$$\left(\left(\bigwedge_{i=1}^{p} a_{U_{i}}\right)a_{V}\right) = a_{\emptyset} \vee \left(a_{\bigcap_{i=1}^{p} U_{i}}a_{V}\right) \vee \left(\left(\bigwedge_{i=1}^{p} a_{U_{i}}\right)\left(\bigvee_{v \in V} a_{v}\right)\right).$$

Theorem (Couceiro, Lehtonen 2010)

Let $(L; \land, \lor)$ be a bounded chain. A polynomial function $f: L^n \to L$ is self-commuting if and only if

$$f = a_{\emptyset} \lor \bigvee_{i \in [n]} (a_i \land x_i) \lor \bigvee_{1 \le \ell \le r} (a_{S_{\ell}} \land \bigwedge_{i \in S_{\ell}} x_i),$$

where $r \ge 0$, $|S_1| \ge 2$, and

② if $r \ge 1$, then for all $i \in [n]$, there is a $j \in S_1$ such that $a_i \le a_j$.

Consider $f : [0, 1]^3 \rightarrow [0, 1]$ given by $f = (x_1 \wedge x_2) \vee (x_2 \wedge x_3)$.

Thus *f* is not self-commuting!

Consider $f \colon [0,1]^3 \to [0,1]$ given by $f = (0.5 \land x_1) \lor (x_2 \land x_3)$.

Thus *f* is not self-commuting!

Thank you for your attention!