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Notation

R is an associative ring with unit.

R-Mod is the category of left R-modules.
R-simp is a complete irredundant set of representatives of
the isomorphism classes of simple left R-modules.
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Preradicals

definition of a preradical

Definition
A preradical over the ring R is a functor σ : R-Mod → R-Mod
such that:

1 σM ≤ M for each M ∈ R-Mod.
2 For each homomorphism f : M → N, f (σM) ≤ σN.
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Preradicals

R-pr as a complete (big) lattice

Let σ, τ in R-pr.

Order: σ � τ if for each M in R-Mod σ(M) ≤ τ(M)

Join: (σ ∨ τ)(M) = σ(M) + τ(M)

Meet: (σ ∧ τ)(M) = σ(M) ∩ τ(M)

Least element: zero functor
Greatest element: identity functor

Note: Join and meet can be defined
for arbitrary classes of preradicals.
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Preradicals

another two operations in R-pr

Let σ, τ in R-pr.

Product: (στ)(M) = σ(τ(M)).
Coproduct: (σ : τ)(M) is the submodule of M such that
σ(M) ≤ (σ : τ)(M) and (σ : τ)(M)/σ(M) = τ(M/σ(M)).

Notation:
σ2 = σσ
σ2 = (σ : σ)

σ is idempotent if σ2 = σ.
σ is a radical if σ2 = σ.
σ is nilpotent if σn = 0 for some n.
σ is unipotent if σn = 1 for some n.
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Preradicals

alpha and omega preradicals

Definition
Let M ∈ R-Mod. A submodule N of M is called fully invariant
(written N ≤fi M) if for each endomorphism f : M → M we have
f (N) ≤ N

For each M ∈ R-Mod and each N ≤fi M we define
the preradicals αM

N and ωM
N as follows:

Definition
Let K ∈ R-Mod.

αM
N (K ) =

∑
{f (N) | f ∈ HomR(M,K )}

ωM
N (K ) =

⋂
{f−1(N) | f ∈ HomR(K ,M)}
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alpha and omega preradicals
some properties

Proposition
If σ ∈ R-pr then:
σ =

∨
{αM

σM | M ∈ R-Mod} =
∧
{ωM

σM | M ∈ R-Mod}.

Proposition
If σ ∈ R-pr and M,N ∈ R-Mod then:
σ(M) = N ⇐⇒ N ≤fi M and αM

N � σ � ωM
N .
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Theorem
R-pr is an atomic and coatomic big lattice.

The set of atoms is {αES
S |S ∈ R-simp}.

The set of coatoms is {ωR
I |I is a maximal ideal of R}.
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Semicoprime Preradicals and Submodules

some definitions on primeness for preradicals

Definitions
σ ∈ R-pr is called:

1 prime if σ 6= 1 and for any τ, η ∈ R-pr τη � σ implies τ � σ
or η � σ.

2 coprime if σ 6= 0 and for any τ, η ∈ R-pr σ � (τ : η) implies
σ � τ or σ � η.

3 semiprime if σ 6= 1 and for any τ ∈ R-pr τ2 � σ implies
τ � σ.

4 semicoprime if σ 6= 0 and for any τ ∈ R-pr σ � τ2 implies
σ � τ .
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Semicoprime Preradicals and Submodules

semicoprime preradicals: basic properties

Proposition

Let σ ∈ R-pr and {σi}i∈I ⊆ R-pr. Then:

1 If σ is semicoprime then σ is coprime.
2 If σi is semicoprime for each i ∈ I then

∨
i∈I σi is

semicoprime.
3 If σ is semicoprime then e(σ) is semicoprime.

e(σ) =
∧
{τ ∈ R-pr|τσ = σ} is called the equalizer of σ.

Example

For each maximal ideal I of R, αR/I
R/I is a coprime preradical.

Therefore
∨
{αR/I

R/I | I maximal ideal of R} is semicoprime.
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Semicoprime Preradicals and Submodules

product and coproduct of submodules

Definitions
Let M ∈ R-Mod and let K ,L ≤fi M.

1 The product of K and L in M is
(KL)M = αM

K α
M
L (M) = αM

K (L).
2 The coproduct of K and L in M is

(K :M L) = (ωM
K : ωM

L )(M).
In other words, (K :M L)/K = ωM

L (M/K ).

Notation: K 2 = KK
K2 = (K : K ).
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some definitions on primeness for submodules

Definitions
Let M ∈ R-Mod. N ≤fi M is called:

1 prime in M if N 6= M and for any K ,L ∈ R-Mod KL ≤ N
implies K ≤ N or L ≤ N.

2 coprime in M if N 6= 0 and for any K ,L ∈ R-Mod
N ≤ (K : L) implies N ≤ K or N ≤ L.

3 semiprime in M if N 6= M and for any K ∈ R-Mod K 2 ≤ N
implies K ≤ N.

4 semicoprime in M if N 6= 0 and for any K ∈ R-Mod N ≤ K2
implies N ≤ K .



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for submodules

Definitions
Let M ∈ R-Mod. N ≤fi M is called:

1 prime in M if N 6= M and for any K ,L ∈ R-Mod KL ≤ N
implies K ≤ N or L ≤ N.

2 coprime in M if N 6= 0 and for any K ,L ∈ R-Mod
N ≤ (K : L) implies N ≤ K or N ≤ L.

3 semiprime in M if N 6= M and for any K ∈ R-Mod K 2 ≤ N
implies K ≤ N.

4 semicoprime in M if N 6= 0 and for any K ∈ R-Mod N ≤ K2
implies N ≤ K .



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for submodules

Definitions
Let M ∈ R-Mod. N ≤fi M is called:

1 prime in M if N 6= M and for any K ,L ∈ R-Mod KL ≤ N
implies K ≤ N or L ≤ N.

2 coprime in M if N 6= 0 and for any K ,L ∈ R-Mod
N ≤ (K : L) implies N ≤ K or N ≤ L.

3 semiprime in M if N 6= M and for any K ∈ R-Mod K 2 ≤ N
implies K ≤ N.

4 semicoprime in M if N 6= 0 and for any K ∈ R-Mod N ≤ K2
implies N ≤ K .



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for submodules

Definitions
Let M ∈ R-Mod. N ≤fi M is called:

1 prime in M if N 6= M and for any K ,L ∈ R-Mod KL ≤ N
implies K ≤ N or L ≤ N.

2 coprime in M if N 6= 0 and for any K ,L ∈ R-Mod
N ≤ (K : L) implies N ≤ K or N ≤ L.

3 semiprime in M if N 6= M and for any K ∈ R-Mod K 2 ≤ N
implies K ≤ N.

4 semicoprime in M if N 6= 0 and for any K ∈ R-Mod N ≤ K2
implies N ≤ K .



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for submodules

Definitions
Let M ∈ R-Mod. N ≤fi M is called:

1 prime in M if N 6= M and for any K ,L ∈ R-Mod KL ≤ N
implies K ≤ N or L ≤ N.

2 coprime in M if N 6= 0 and for any K ,L ∈ R-Mod
N ≤ (K : L) implies N ≤ K or N ≤ L.

3 semiprime in M if N 6= M and for any K ∈ R-Mod K 2 ≤ N
implies K ≤ N.

4 semicoprime in M if N 6= 0 and for any K ∈ R-Mod N ≤ K2
implies N ≤ K .



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for modules

Definitions
M ∈ R-Mod is called:

1 prime if 0 is prime in M.
2 coprime if M is coprime in M.
3 semiprime if 0 is semiprime in M.
4 semicoprime if M is semicoprime in M.



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for modules

Definitions
M ∈ R-Mod is called:

1 prime if 0 is prime in M.

2 coprime if M is coprime in M.
3 semiprime if 0 is semiprime in M.
4 semicoprime if M is semicoprime in M.



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for modules

Definitions
M ∈ R-Mod is called:

1 prime if 0 is prime in M.
2 coprime if M is coprime in M.

3 semiprime if 0 is semiprime in M.
4 semicoprime if M is semicoprime in M.



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for modules

Definitions
M ∈ R-Mod is called:

1 prime if 0 is prime in M.
2 coprime if M is coprime in M.
3 semiprime if 0 is semiprime in M.

4 semicoprime if M is semicoprime in M.



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

some definitions on primeness for modules

Definitions
M ∈ R-Mod is called:

1 prime if 0 is prime in M.
2 coprime if M is coprime in M.
3 semiprime if 0 is semiprime in M.
4 semicoprime if M is semicoprime in M.



Semicoprime Preradicals

Semicoprime Preradicals and Submodules

two theorems involving modules and preradicals

Theorem
Let M ∈ R-Mod and let 0 6= N ≤fi M. The following conditions
are equivalent:

N is semicoprime in M.

αM
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R/I | I is maximal ideal of R}.
3 ν0 =

∧
{τ ∈ R-pr | τ is unipotent}.

Then η � σ0 � ν0.
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For a ring R the following conditions are equivalent:

1 R is a finite product of simple rings.
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3 1 is a semicoprime preradical.
4 RR is a semicoprime module.
5 σ0 = 1.
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τ =
∧
{ρ ∈ R-pr | τ � ρ, ρ is a radical}

Proposition

1 C : R-pr→ R-pr and ( ) : R-pr→ R-pr are
order-preserving assignments.

2 For each radical ρ we have C(ρ) � ρ.
3 For each semicoprime preradical σ we have σ � C(ρ).
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a Galois connection between R-scp and R-rad

Notation:
R-scp denotes the class of all semicoprime preradicals.
R-rad denotes the class of all radicals.

Theorem

( ) : R-scp→ R-rad and C : R-rad→ R-scp form a Galois
connection between those ordered classes of preradicals.

Corollary

1 C( ) is a closure operator on R-scp .
2 C( ) is an interior operator on R-rad.
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