Semicoprime Preradicals

Francisco Raggi¹ José Ríos¹ Rogelio Fernández-Alonso² Hugo Rincón³

¹Instituto de Matemáticas Universidad Nacional Autónoma de México

²Departamento de Matemáticas Universidad Autónoma Metropolitana - Iztapalapa

³Facultad de Ciencias Universidad Nacional Autónoma de México

Prague, June 2010

(日) (日) (日) (日) (日) (日) (日)

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

• *R* is an associative ring with unit.

- *R* is an associative ring with unit.
- *R*-Mod is the category of left *R*-modules.

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Notation

- *R* is an associative ring with unit.
- *R*-Mod is the category of left *R*-modules.
- *R*-simp is a complete irredundant set of representatives of the isomorphism classes of simple left *R*-modules.

definition of a preradical

Definition

A *preradical* over the ring R is a functor σ : R-Mod \rightarrow R-Mod such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

definition of a preradical

Definition

A *preradical* over the ring R is a functor σ : R-Mod \rightarrow R-Mod such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\sigma M \leq M$ for each $M \in R$ -Mod.

definition of a preradical

Definition

A *preradical* over the ring R is a functor σ : R-Mod \rightarrow R-Mod such that:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

)
$$\sigma M \leq M$$
 for each $M \in R$ -Mod.

2 For each homomorphism $f: M \to N$, $f(\sigma M) \leq \sigma N$.

R-pr as a complete (big) lattice

Let σ , τ in *R*-pr.

R-pr as a complete (big) lattice

Let σ , τ in *R*-pr.

• Order: $\sigma \preceq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

R-pr as a complete (big) lattice

Let σ , τ in *R*-pr.

• Order: $\sigma \preceq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

• Join:
$$(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$$

R-pr as a complete (big) lattice

Let σ , τ in *R*-pr.

• Order: $\sigma \leq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

• Join:
$$(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$$

• Meet:
$$(\sigma \land \tau)(M) = \sigma(M) \cap \tau(M)$$

Let σ , τ in *R*-pr.

• Order: $\sigma \leq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

- Join: $(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$
- Meet: $(\sigma \land \tau)(M) = \sigma(M) \cap \tau(M)$
- Least element: zero functor

Let σ , τ in *R*-pr.

• Order: $\sigma \preceq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

- Join: $(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$
- Meet: $(\sigma \land \tau)(M) = \sigma(M) \cap \tau(M)$
- Least element: zero functor
- Greatest element: identity functor

Let σ , τ in *R*-pr.

• Order: $\sigma \preceq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

- Join: $(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$
- Meet: $(\sigma \land \tau)(M) = \sigma(M) \cap \tau(M)$
- Least element: zero functor
- Greatest element: identity functor

Let σ , τ in *R*-pr.

• Order: $\sigma \preceq \tau$ if for each *M* in *R*-Mod $\sigma(M) \leq \tau(M)$

- Join: $(\sigma \lor \tau)(M) = \sigma(M) + \tau(M)$
- Meet: $(\sigma \land \tau)(M) = \sigma(M) \cap \tau(M)$
- Least element: zero functor
- Greatest element: identity functor
- *Note:* Join and meet can be defined for arbitrary classes of preradicals.

Let σ , τ in *R*-pr.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Let
$$\sigma$$
, τ in *R*-pr.
• *Product:* $(\sigma \tau)(M) = \sigma(\tau(M))$.

Let σ , τ in *R*-pr.

- **Product:** $(\sigma \tau)(M) = \sigma(\tau(M)).$
- Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \le (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

(日) (日) (日) (日) (日) (日) (日)

Let σ , τ in *R*-pr.

- **Product:** $(\sigma \tau)(M) = \sigma(\tau(M)).$
- Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \le (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

(日) (日) (日) (日) (日) (日) (日)

Let σ , τ in *R*-pr.

• **Product:**
$$(\sigma \tau)(M) = \sigma(\tau(M)).$$

• Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \le (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

(日) (日) (日) (日) (日) (日) (日)

Notation:

$$\sigma^2 = \sigma \sigma$$
$$\sigma_2 = (\sigma : \sigma)$$

another two operations in *R*-pr

Let σ , τ in *R*-pr.

- **Product:** $(\sigma \tau)(M) = \sigma(\tau(M)).$
- Coproduct: $(\sigma : \tau)(M)$ is the submodule of M such that $\sigma(M) \le (\sigma : \tau)(M)$ and $(\sigma : \tau)(M)/\sigma(M) = \tau(M/\sigma(M))$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Notation:

$$\sigma^2 = \sigma \sigma$$

$$\sigma_2 = (\sigma : \sigma)$$

 σ is *idempotent* if $\sigma^2 = \sigma$. σ is a *radical* if $\sigma_2 = \sigma$. σ is *nilpotent* if $\sigma^n = 0$ for some *n*. σ is *unipotent* if $\sigma_n = 1$ for some *n*.

alpha and omega preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* (written $N \leq_{fi} M$) if for each endomorphism $f : M \to M$ we have $f(N) \leq N$

alpha and omega preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* (written $N \leq_{fi} M$) if for each endomorphism $f : M \to M$ we have $f(N) \leq N$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For each $M \in R$ -Mod and each $N \leq_{fi} M$ we define the preradicals α_N^M and ω_N^M as follows:

alpha and omega preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* (written $N \leq_{fi} M$) if for each endomorphism $f : M \to M$ we have $f(N) \leq N$

For each $M \in R$ -Mod and each $N \leq_{fi} M$ we define the preradicals α_N^M and ω_N^M as follows:

Definition

Let $K \in R$ -Mod. $\alpha_N^M(K) = \sum \{f(N) \mid f \in Hom_R(M, K)\}$

・ロト・日本・日本・日本・日本・日本

alpha and omega preradicals

Definition

Let $M \in R$ -Mod. A submodule N of M is called *fully invariant* (written $N \leq_{fi} M$) if for each endomorphism $f : M \to M$ we have $f(N) \leq N$

For each $M \in R$ -Mod and each $N \leq_{fi} M$ we define the preradicals α_N^M and ω_N^M as follows:

Definition

Let $K \in R$ -Mod.

$$\alpha_N^M(K) = \sum \{ f(N) \mid f \in Hom_R(M, K) \}$$

 $\omega_N^M(K) = \bigcap \{ f^{-1}(N) \mid f \in Hom_R(K, M) \}$

alpha and omega preradicals some properties

Proposition

If $\sigma \in R$ -pr then: $\sigma = \bigvee \{ \alpha_{\sigma M}^{M} \mid M \in R$ -Mod $\} = \bigwedge \{ \omega_{\sigma M}^{M} \mid M \in R$ -Mod $\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

alpha and omega preradicals some properties

Proposition

If
$$\sigma \in R$$
-pr then:
 $\sigma = \bigvee \{ \alpha_{\sigma M}^{M} \mid M \in R$ -Mod $\} = \bigwedge \{ \omega_{\sigma M}^{M} \mid M \in R$ -Mod $\}.$

Proposition

If $\sigma \in R$ -pr and $M, N \in R$ -Mod then: $\sigma(M) = N \iff N \leq_{fi} M$ and $\alpha_N^M \preceq \sigma \preceq \omega_N^M$.

・ロト・西ト・ヨト ・ヨー シック

atoms and coatoms in R-pr

Theorem

R-pr is an atomic and coatomic big lattice.

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

atoms and coatoms in R-pr

Theorem

R-pr is an atomic and coatomic big lattice.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The set of atoms is $\{\alpha_{S}^{ES} | S \in R\text{-simp}\}.$

atoms and coatoms in R-pr

Theorem

R-pr is an atomic and coatomic big lattice.

The set of atoms is $\{\alpha_{S}^{ES} | S \in R\text{-simp}\}.$

The set of coatoms is $\{\omega_l^R | I \text{ is a maximal ideal of } R\}$.

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Definitions

 $\sigma \in R$ -pr is called:

Definitions

 $\sigma \in R$ -pr is called:

• prime if $\sigma \neq 1$ and for any $\tau, \eta \in R$ -pr $\tau \eta \preceq \sigma$ implies $\tau \preceq \sigma$ or $\eta \preceq \sigma$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definitions

- $\sigma \in R$ -pr is called:
 - prime if $\sigma \neq 1$ and for any $\tau, \eta \in R$ -pr $\tau \eta \preceq \sigma$ implies $\tau \preceq \sigma$ or $\eta \preceq \sigma$.
 - **2** *coprime* if $\sigma \neq 0$ and for any $\tau, \eta \in R$ -pr $\sigma \preceq (\tau : \eta)$ implies $\sigma \preceq \tau$ or $\sigma \preceq \eta$.

Definitions

- $\sigma \in R$ -pr is called:
 - *prime* if $\sigma \neq 1$ and for any $\tau, \eta \in R$ -pr $\tau \eta \preceq \sigma$ implies $\tau \preceq \sigma$ or $\eta \preceq \sigma$.
 - 2 *coprime* if $\sigma \neq 0$ and for any $\tau, \eta \in R$ -pr $\sigma \preceq (\tau : \eta)$ implies $\sigma \preceq \tau$ or $\sigma \preceq \eta$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some semiprime if $\sigma \neq 1$ and for any $\tau \in R$ -pr $\tau^2 \preceq \sigma$ implies $\tau \preceq \sigma$.

Definitions

- $\sigma \in R$ -pr is called:
 - *prime* if $\sigma \neq 1$ and for any $\tau, \eta \in R$ -pr $\tau \eta \preceq \sigma$ implies $\tau \preceq \sigma$ or $\eta \preceq \sigma$.
 - **2** *coprime* if $\sigma \neq 0$ and for any $\tau, \eta \in R$ -pr $\sigma \preceq (\tau : \eta)$ implies $\sigma \preceq \tau$ or $\sigma \preceq \eta$.
 - Some semiprime if $\sigma \neq 1$ and for any $\tau \in R$ -pr $\tau^2 \preceq \sigma$ implies $\tau \preceq \sigma$.
 - 3 *semicoprime* if $\sigma \neq 0$ and for any $\tau \in R$ -pr $\sigma \preceq \tau_2$ implies $\sigma \preceq \tau$.
semicoprime preradicals: basic properties

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition

Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition

Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:

() If σ is semicoprime then σ is coprime.

Proposition

- Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:
 - **()** If σ is semicoprime then σ is coprime.
 - If *σ_i* is semicoprime for each *i* ∈ *I* then *V_{i∈I} σ_i* is semicoprime.

Proposition

- Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:
 - **()** If σ is semicoprime then σ is coprime.
 - ② If σ_i is semicoprime for each *i* ∈ *I* then $\bigvee_{i \in I} \sigma_i$ is semicoprime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If σ is semicoprime then $e(\sigma)$ is semicoprime.

Proposition

- Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:
 - **()** If σ is semicoprime then σ is coprime.
 - ② If σ_i is semicoprime for each *i* ∈ *I* then $\bigvee_{i \in I} \sigma_i$ is semicoprime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If σ is semicoprime then $e(\sigma)$ is semicoprime.

Proposition

- Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:
 - **()** If σ is semicoprime then σ is coprime.
 - ② If σ_i is semicoprime for each *i* ∈ *I* then $\bigvee_{i \in I} \sigma_i$ is semicoprime.
 - If σ is semicoprime then $e(\sigma)$ is semicoprime.

 $e(\sigma) = \bigwedge \{ \tau \in R \text{-pr} | \tau \sigma = \sigma \}$ is called the *equalizer* of σ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition

- Let $\sigma \in R$ -pr and $\{\sigma_i\}_{i \in I} \subseteq R$ -pr. Then:
 - **()** If σ is semicoprime then σ is coprime.
 - ② If σ_i is semicoprime for each *i* ∈ *I* then $\bigvee_{i \in I} \sigma_i$ is semicoprime.
 - **If** σ is semicoprime then $e(\sigma)$ is semicoprime.

 $e(\sigma) = \bigwedge \{ \tau \in R \text{-pr} | \tau \sigma = \sigma \}$ is called the *equalizer* of σ . Example For each maximal ideal *I* of *R*, $\alpha_{R/I}^{R/I}$ is a coprime preradical. Therefore $\bigvee \{ \alpha_{R/I}^{R/I} | I \text{ maximal ideal of } R \}$ is semicoprime.

product and coproduct of submodules

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definitions

Let $M \in R$ -Mod and let $K, L \leq_{fi} M$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definitions

Let $M \in R$ -Mod and let $K, L \leq_{fi} M$.

• The *product* of *K* and *L* in *M* is
$$(KL)_M = \alpha_K^M \alpha_L^M (M) = \alpha_K^M (L).$$

Definitions

Let $M \in R$ -Mod and let $K, L \leq_{fi} M$.

The *product* of *K* and *L* in *M* is
$$(KL)_M = \alpha_K^M \alpha_L^M (M) = \alpha_K^M (L).$$

The coproduct of K and L in M is

$$(K :_M L) = (\omega_K^M : \omega_L^M)(M).$$

In other words, $(K :_M L)/K = \omega_L^M(M/K)$

Definitions

Let $M \in R$ -Mod and let $K, L \leq_{fi} M$.

The *product* of *K* and *L* in *M* is
$$(KL)_M = \alpha_K^M \alpha_L^M (M) = \alpha_K^M (L).$$

The coproduct of K and L in M is

$$(K :_M L) = (\omega_K^M : \omega_L^M)(M).$$

In other words, $(K :_M L)/K = \omega_L^M(M/K)$

Definitions

Let $M \in R$ -Mod and let $K, L \leq_{fi} M$.

The *product* of *K* and *L* in *M* is
$$(KL)_M = \alpha_K^M \alpha_L^M (M) = \alpha_K^M (L).$$

2 The *coproduct* of *K* and *L* in *M* is

$$(K :_M L) = (\omega_K^M : \omega_L^M)(M).$$

In other words, $(K :_M L)/K = \omega_L^M(M/K)$

Notation:
$$K^2 = KK$$

 $K_2 = (K : K).$

Definitions

Definitions

Let $M \in R$ -Mod. $N \leq_{fi} M$ is called:

• prime in *M* if $N \neq M$ and for any $K, L \in R$ -Mod $KL \leq N$ implies $K \leq N$ or $L \leq N$.

・ロト・西ト・ヨト・日下 ひゃぐ

Definitions

- prime in *M* if $N \neq M$ and for any $K, L \in R$ -Mod $KL \leq N$ implies $K \leq N$ or $L \leq N$.
- **2** coprime in *M* if $N \neq 0$ and for any $K, L \in R$ -Mod $N \leq (K : L)$ implies $N \leq K$ or $N \leq L$.

Definitions

- prime in M if $N \neq M$ and for any $K, L \in R$ -Mod $KL \leq N$ implies $K \leq N$ or $L \leq N$.
- 2 coprime in M if $N \neq 0$ and for any $K, L \in R$ -Mod $N \leq (K : L)$ implies $N \leq K$ or $N \leq L$.
- Semiprime in *M* if $N \neq M$ and for any $K \in R$ -Mod $K^2 \leq N$ implies $K \leq N$.

Definitions

- *prime* in *M* if $N \neq M$ and for any $K, L \in R$ -Mod $KL \leq N$ implies $K \leq N$ or $L \leq N$.
- 2 coprime in M if $N \neq 0$ and for any $K, L \in R$ -Mod $N \leq (K : L)$ implies $N \leq K$ or $N \leq L$.
- ③ *semiprime* in *M* if *N* ≠ *M* and for any $K \in R$ -Mod $K^2 \leq N$ implies $K \leq N$.
- 3 *semicoprime* in *M* if $N \neq 0$ and for any $K \in R$ -Mod $N \leq K_2$ implies $N \leq K$.

some definitions on primeness for modules

Definitions

 $M \in R$ -Mod is called:

some definitions on primeness for modules

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definitions

 $M \in R$ -Mod is called:

prime if 0 is prime in M.

some definitions on primeness for modules

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definitions

 $M \in R$ -Mod is called:

- prime if 0 is prime in M.
- 2 *coprime* if *M* is coprime in *M*.

some definitions on primeness for modules

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definitions

 $M \in R$ -Mod is called:

- prime if 0 is prime in M.
- 2 *coprime* if *M* is coprime in *M*.
- Semiprime if 0 is semiprime in *M*.

some definitions on primeness for modules

Definitions

 $M \in R$ -Mod is called:

- prime if 0 is prime in M.
- 2 *coprime* if *M* is coprime in *M*.
- Semiprime if 0 is semiprime in *M*.
- Semicoprime if *M* is semicoprime in *M*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

Let $M \in R$ -Mod and let $0 \neq N \leq_{fi} M$. The following conditions are equivalent:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• *N* is semicoprime in *M*.

Theorem

Let $M \in R$ -Mod and let $0 \neq N \leq_{fi} M$. The following conditions are equivalent:

- *N* is semicoprime in *M*.
- α_N^M is a semicoprime preradical.

Theorem

Let $M \in R$ -Mod and let $0 \neq N \leq_{fi} M$. The following conditions are equivalent:

- *N* is semicoprime in *M*.
- α_N^M is a semicoprime preradical.

Theorem

Let $M \in R$ -Mod and let $0 \neq N \leq_{fi} M$. The following conditions are equivalent:

- *N* is semicoprime in *M*.
- α_N^M is a semicoprime preradical.

Theorem

Let $M \in R$ -Mod be such that for each $N \leq_{fi} M$ we have $(\omega_N^M)_2 = \omega_{(N:N)}^M$. If $\sigma \in R$ -pr is semicoprime and $\sigma(M) \neq 0$ then $\sigma(M)$ is semicoprime in M.

comparing three preradicals

Proposition

Let us consider the following preradicals:

▲ロト ▲園 ト ▲画 ト ▲画 ト ▲ 回 ト

comparing three preradicals

Proposition

Let us consider the following preradicals:

•
$$\sigma^{0} = \bigvee \{ \sigma \in \mathbf{R} \text{-pr} \mid \sigma \text{ is semicoprime} \}.$$

comparing three preradicals

Proposition

Let us consider the following preradicals:

comparing three preradicals

Proposition

Let us consider the following preradicals:

•
$$\sigma^{0} = \bigvee \{ \sigma \in \mathbf{R} \text{-pr} \mid \sigma \text{ is semicoprime} \}.$$

2
$$\eta = \bigvee \{ \alpha_{B/I}^{R/I} \mid I \text{ is maximal ideal of } R \}.$$

$$\mathbf{0} \ \nu_{\mathbf{0}} = \bigwedge \{ \tau \in \mathbf{R} \text{-} \mathrm{pr} \mid \tau \text{ is unipotent} \}.$$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

comparing three preradicals

Proposition

Let us consider the following preradicals:

•
$$\sigma^{0} = \bigvee \{ \sigma \in \mathbf{R} \text{-pr} \mid \sigma \text{ is semicoprime} \}.$$

2
$$\eta = \bigvee \{ \alpha_{B/I}^{R/I} \mid I \text{ is maximal ideal of } R \}.$$

$$\mathbf{0} \ \nu_{\mathbf{0}} = \bigwedge \{ \tau \in \mathbf{R} \text{-} \mathrm{pr} \mid \tau \text{ is unipotent} \}.$$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

comparing three preradicals

Proposition

Let us consider the following preradicals:

•
$$\sigma^{0} = \bigvee \{ \sigma \in R \text{-pr} \mid \sigma \text{ is semicoprime} \}.$$

2
$$\eta = \bigvee \{ \alpha_{B/I}^{R/I} \mid I \text{ is maximal ideal of } R \}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\mathbf{0} \quad \nu_{\mathbf{0}} = \bigwedge \{ \tau \in \mathbf{R} \text{-pr} \mid \tau \text{ is unipotent} \}.$$

Then $\eta \preceq \sigma^0 \preceq \nu_0$.

a characterization of rings

Theorem

For a ring *R* the following conditions are equivalent:

• *R* is a finite product of simple rings.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

a characterization of rings

Theorem

For a ring *R* the following conditions are equivalent:

- R is a finite product of simple rings.
- 2 Each coatom of *R*-pr is a radical.

a characterization of rings

Theorem

For a ring *R* the following conditions are equivalent:

・ロト・日本・日本・日本・日本

- R is a finite product of simple rings.
- 2 Each coatom of *R*-pr is a radical.
- I is a semicoprime preradical.

a characterization of rings

Theorem

For a ring *R* the following conditions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- R is a finite product of simple rings.
- 2 Each coatom of *R*-pr is a radical.
- I is a semicoprime preradical.
- \bigcirc _{*R*}*R* is a semicoprime module.
a characterization of rings

Theorem

For a ring *R* the following conditions are equivalent:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- R is a finite product of simple rings.
- 2 Each coatom of *R*-pr is a radical.
- I is a semicoprime preradical.
- \bigcirc _{*R*}*R* is a semicoprime module.

5
$$\sigma^{0} = 1.$$

two operators on *R*-pr

Definition

Let $\tau \in R$ -pr. We define:

two operators on *R*-pr

Definition

Let $\tau \in R$ -pr. We define: $C(\tau) = \bigvee \{ \sigma \in R$ -pr $\mid \sigma \preceq \tau, \sigma \text{ is semicoprime} \}$

two operators on *R*-pr

Definition

Let $\tau \in R$ -pr. We define: $C(\tau) = \bigvee \{ \sigma \in R$ -pr $| \sigma \preceq \tau, \sigma \text{ is semicoprime} \}$ $\overline{\tau} = \bigwedge \{ \rho \in R$ -pr $| \tau \preceq \rho, \rho \text{ is a radical} \}$

・ロト・西ト・西ト・日 シック

two operators on *R*-pr

Definition

Let $\tau \in R$ -pr. We define: $C(\tau) = \bigvee \{ \sigma \in R$ -pr $| \sigma \preceq \tau, \sigma \text{ is semicoprime} \}$ $\overline{\tau} = \bigwedge \{ \rho \in R$ -pr $| \tau \preceq \rho, \rho \text{ is a radical} \}$

Proposition

C

$$C: R$$
-pr $\rightarrow R$ -pr and (): R -pr $\rightarrow R$ -pr are order-preserving assignments.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

two operators on *R*-pr

Definition

Let $\tau \in R$ -pr. We define: $C(\tau) = \bigvee \{ \sigma \in R$ -pr $| \sigma \preceq \tau, \sigma \text{ is semicoprime} \}$ $\overline{\tau} = \bigwedge \{ \rho \in R$ -pr $| \tau \preceq \rho, \rho \text{ is a radical} \}$

Proposition

- C: R-pr $\rightarrow R$ -pr and $\overline{()}: R$ -pr $\rightarrow R$ -pr are order-preserving assignments.
- **2** For each radical ρ we have $\overline{C(\rho)} \leq \rho$.

・ロト・西ト・市・ 市・ うらう

two operators on R-pr

Definition

Let $\tau \in R$ -pr. We define: $C(\tau) = \bigvee \{ \sigma \in R$ -pr $| \sigma \preceq \tau, \sigma \text{ is semicoprime} \}$ $\overline{\tau} = \bigwedge \{ \rho \in R$ -pr $| \tau \preceq \rho, \rho \text{ is a radical} \}$

Proposition

- C: R-pr $\rightarrow R$ -pr and $\overline{()}: R$ -pr $\rightarrow R$ -pr are order-preserving assignments.
- **2** For each radical ρ we have $\overline{C(\rho)} \leq \rho$.
- Solution For each semicoprime preradical σ we have $\sigma \leq C(\overline{\rho})$.

Notation:

R-scp denotes the class of all semicoprime preradicals. *R*-rad denotes the class of all radicals.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Notation:

R-scp denotes the class of all semicoprime preradicals. R-rad denotes the class of all radicals.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

 $\overline{(\)}$: R-scp \rightarrow R-rad and C: R-rad \rightarrow R-scp form a Galois connection between those ordered classes of preradicals.

Notation:

R-scp denotes the class of all semicoprime preradicals. R-rad denotes the class of all radicals.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

 $\overline{(\)}$: *R*-scp \rightarrow *R*-rad and *C* : *R*-rad \rightarrow *R*-scp form a Galois connection between those ordered classes of preradicals.

Corollary

• $C(\overline{)}$ is a closure operator on *R*-scp.

Notation:

R-scp denotes the class of all semicoprime preradicals. R-rad denotes the class of all radicals.

Theorem

 $\overline{(\)}$: *R*-scp \rightarrow *R*-rad and *C* : *R*-rad \rightarrow *R*-scp form a Galois connection between those ordered classes of preradicals.

Corollary

- $C(\overline{)}$ is a closure operator on *R*-scp.
- 2 $\overline{C()}$ is an interior operator on *R*-rad.

some references

- F. Raggi, J. Ríos, R. Fernández-Alonso, H. Rincón, C. Signoret, Semiprime preradicals, Comm. Algebra 37(8), pp 2811-2822 (2009).
- F. Raggi, J. Ríos, R. Fernández-Alonso, H. Rincón, C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 8(1), pp 451-466 (2005).
- F. Raggi, J. Ríos, R. Fernández-Alonso, H. Rincón, C. Signoret, The lattice structure of preradicals, *Comm. Algebra* 30(3), pp 1533-1544, (2002).

(日) (日) (日) (日) (日) (日) (日)