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Proof

Elements of M, Elements of Z°
ap 1100 000---000---000 0
a 0011 000---000---000 0
d} - 1010 000---000---000 0
) 0101 000---000---000 0
b - 1111 0
o 0000 0
o 0000 0
o - 0000 0
i 0000 0
cn 0000 0
do 0011 0
di 0011 0
dir 0011 0
di - 0011 0
disr 0011 0
dn 0011 0
dp 0101 0
d 0101 0
d,_, 0101 0
di - 0101 1
dj 0101 1
d, 0101 1
e - 1111 0

TABLE: The mapping j;. Elements of Z3* are represented as words over Zs. For
the sake of clarity we divided these words into 3 segments of length 4, n+1 and 1
respectively. In the second segment (k — 1)th, kth and (k + 1)th digits are placed
between dots.



Quasivarieties

Quasi-identities look like

(vX) [pr(X) A= A pn(X) = @(X)],

where ¢;(X), ¢(X) are atomic formulas.
Quasivarieties look like
Mod(quasi-identities).

The smallest quasivariety containing a class K (generated by)
equals

Q(K) = SPPy(K)

Quasivariety Q is finitely axiomatizable (finitely based) if
Q = Mod(X) for some finite set X of quasi-identities.



Forbidden substructures

Observation ||

Assume that K is a class of relational structures axiomatized by a
finite set ® of universal sentences. Let n be the maximal number
of variables occurring in sentences from ®. Then for each
relational structure M we have

MeK iff (YN<M)[N <n—NEek] (An)

Observation

Conversely, if the language of K is finite and there exists a finite n
such that (A,) holds for all M, then K is finitely axiomatizable.

Meet of observations {)

An universal class (quasivariety) C of relational structures in a
finite language is finitely axiomatizable if and only if it admits a
finite set of finite forbidden substructures.



Graphs

A graph is a relational structure with one binary symmetric and
irreflexive relation.

Theorem (Negetfil, Pultr '78)

Let IC be a quasivariety generated by a finite number of finite
graphs. Then K is finitely axiomatizable only in the following
cases:

M
[ ]
™
> K = {\ /, ® };
[ J
» K = discrete graphs U {(:/}

» C = {disjoint unions of e

° ando}U{O};

» I = {disjoint unions of complete bipartite graphs} U {O}
[



Antivarieties

Anitivariety is a H™1S-closed elementary class or, equivalently, a
class defined by anti-idetities.
A(K) = the smallest antivariety containing K.

Fact
If A is an antivariety, then A U {loop} is a quasivariety. Moreover,
A is finitely axiomatizable iff A U {loop} does.

Antivariety A admits a finite duality if there is a finite family of
finite structures Oq, ..., O, such that

(YM)[M € A iff Oy,...,0, & A(M)].

Let CSP(K) = A(K)fin-



CSPs

Therem (Atserias, Larose, Loten, Rossman, Tardif '08)

Let M be a finite relational structure. TFAE
» A(M) U {loop} is finitely axiomatizable;
> A(M) is finitely axiomatizable;
» A(M) admits a finite duality;
» CSP(M) is finitely axiomatizable (relative to finite structures);
» CSP(M) admits a finite duality (relative to finite structures);
» Core(M)? dismantles to the diagonal.



Semigroups

The graph of an algebra A = (A, Q) is NOT a graph. It is the
relational structure

G(A) = (A7 {Rw}weﬂ)7

where
(ao, .. .,ak) € R, iff w(ao, .. '7ak71) = ap.

For a class C of algebras let G(C) = {G(A) | A € C}.

Theorem (Gornostaev, Stronkowski '09)

Let C be a class of semigroups possessing a nontrivial member with
a neutral element. Then QG(C) is not finitely axiomatizable.

Corollary

Let C be a class of monoids or groups possessing a nontrivial
member. Then QG(C) is not finitely axiomatizable.



Proof

Recall

Observation |}

Let K be a finitely axiomatizable quasivariety of relational
structures. Then there is a finite n such that for each relational
structure M we have

MeK iff (VWN<M)[N <n—NEeK]
Thus it is enough to construct for each n a model M such that

» M ¢ QG(Semigroups),
» if N < M and |N| < n, then N € QG(C).



Proof

We can do it easily with the aid of the quasi-identity

(Vx,X',y,2,0,0,v) [R(x0,x1,y) A R(x0, X1, )
A R(x1, zo, ug) A R(ug, z1,u1) A+ - A R(Up—1, Zn, un) N R(x0, tn, v)
A R(X{, 20, u(/)) A R(ué,zl, U A A R(uﬁ,_l,z,,, u) — R(X(/), u;,, v)]

i.e. M is given by



Elements of My Elements of 23

a0 1100 000---000---000 0
a 0011 000---000---000 0
al - 1010 000---000---000 0
a) 0101 000---000---000 0
b - 1111 0
¢ 0000 0
o 0000 0
e - 0000 0
it 0000 0
cn 0000 0
do 0011 0
d 0011 0
dis 0011 0
di - 0011 0
i1 0011 0
d, 0011 0
dy 0101 0
A 0101 0
d_, 0101 0
di - 0101 1
o 0101 1
d, 0101 1
e i 1111 0

TABLE: The mapping j;. Elements of Z3* are represented as words over Zs. For
the sake of clarity we divided these words into 3 segments of length 4, n+1 and 1
respectively. In the second segment (k — 1)th, kth and (k + 1)th digits are placed
between dots.



