The character and the pseudo-character in endomorphism rings

Abrudan Horea

A short Introduction

Recall that the character of a point x from the topological space (X, \mathcal{T}) is defined as the smallest number of the form $|\mathcal{B}(x)|$, where $\mathcal{B}(x)$ is a base for (X, \mathcal{T}) in x. This cardinal number is denoted by $\chi(x, (X, \mathcal{T}))$.

Now the character of a topological space (X, \mathcal{T}) is defined as the supremum of the numbers $\chi(x, (X, \mathcal{T}))$ for every $x \in X$. This cardinal is denoted with $\chi((X, \mathcal{T}))$.

A short Introduction

Recall that the character of a point x from the topological space (X, \mathcal{T}) is defined as the smallest number of the form $|\mathcal{B}(x)|$, where $\mathcal{B}(x)$ is a base for (X, \mathcal{T}) in x. This cardinal number is denoted by $\chi(x, (X, \mathcal{T}))$.

Now the character of a topological space (X, \mathcal{T}) is defined as the supremum of the numbers $\chi(x, (X, \mathcal{T}))$ for every $x \in X$. This cardinal is denoted with $\chi((X, \mathcal{T}))$.

We will call the pseudo-character of a point x from a T_1 -space X the smallest cardinal number having the form $|\mathcal{U}|$, where \mathcal{U} is a family of open subsets of X such that $\cap \mathcal{U} = \{x\}$; this cardinal is denoted by $\psi(x, X)$.

The pseudo-character of a T_1 -space is defined as the supremum of all numbers $\psi(x, X)$ for every $x \in X$; this cardinal is denoted by $\psi(X)$.

We will call the pseudo-character of a point x from a T_1 -space X the smallest cardinal number having the form $|\mathcal{U}|$, where \mathcal{U} is a family of open subsets of X such that $\cap \mathcal{U} = \{x\}$; this cardinal is denoted by $\psi(x, X)$.

The pseudo-character of a T_1 -space is defined as the supremum of all numbers $\psi(x, X)$ for every $x \in X$; this cardinal is denoted by $\psi(X)$.

We will study the following questions:

1) How can we express the character of End(A) through the invariants of the group A?

2) How can we express the pseudo-character of End(A) through the invariants of the group A?

3) What are the conditions under which the character of the topological ring $(End(A), \mathcal{T})$ is the same with the pseudo-character?

The Results

Lemma

Let A be an Abelian group, $A = \bigoplus_{i \in I} A_i, A_i \neq 0$ and \mathfrak{m} a cardinal number. If $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$ then $|I| \leq \mathfrak{m}$.

Corollary

If A is a direct sum of cyclic groups, then $\chi(\text{End}(A)) \leq \mathfrak{m}$ if and only if $|A| \leq \mathfrak{m}$.

The Results

Lemma

Let A be an Abelian group, $A = \bigoplus_{i \in I} A_i, A_i \neq 0$ and \mathfrak{m} a cardinal number. If $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$ then $|I| \leq \mathfrak{m}$.

Corollary

If A is a direct sum of cyclic groups, then $\chi(\text{End}(A)) \leq \mathfrak{m}$ if and only if $|A| \leq \mathfrak{m}$.

Corollary

If A is a divisible group and \mathfrak{m} is an infinite cardinal then $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$ if and only if $|A| \leq \mathfrak{m}$.

The Results

Lemma

Let A be an Abelian group, $A = \bigoplus_{i \in I} A_i, A_i \neq 0$ and \mathfrak{m} a cardinal number. If $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$ then $|I| \leq \mathfrak{m}$.

Corollary

If A is a direct sum of cyclic groups, then $\chi(\text{End}(A)) \leq \mathfrak{m}$ if and only if $|A| \leq \mathfrak{m}$.

Corollary

If A is a divisible group and \mathfrak{m} is an infinite cardinal then $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$ if and only if $|A| \leq \mathfrak{m}$.

Proposition

If A is a nonzero group of cardinality $\leq \omega$ and \mathfrak{m} an infinite cardinal number, then $\psi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \chi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \mathfrak{m}$.

Corollary

If A is a torsion group, \mathfrak{m} a cardinal number and $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$, then $|A| \leq 2^{\mathfrak{m}}$.

Proposition

If A is a nonzero group of cardinality $\leq \omega$ and \mathfrak{m} an infinite cardinal number, then $\psi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \chi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \mathfrak{m}$.

Corollary

If A is a torsion group, \mathfrak{m} a cardinal number and $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$, then $|A| \leq 2^{\mathfrak{m}}$.

A group A is called a group of Kulikov's type, if A is the torsion part of the direct product of B_n $(n = 1, 2, \dots)$. B_n is a direct sum of cyclic groups having the same order p^n .

Theorem

Let A be a group of Kulikov's type. Then End(A) is not metrizable.

Proposition

If A is a nonzero group of cardinality $\leq \omega$ and \mathfrak{m} an infinite cardinal number, then $\psi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \chi(\operatorname{End}(\oplus_{\mathfrak{m}} A)) = \mathfrak{m}$.

Corollary

If A is a torsion group, \mathfrak{m} a cardinal number and $\chi(\operatorname{End}(A)) \leq \mathfrak{m}$, then $|A| \leq 2^{\mathfrak{m}}$.

A group A is called a group of Kulikov's type, if A is the torsion part of the direct product of B_n $(n = 1, 2, \dots)$. B_n is a direct sum of cyclic groups having the same order p^n .

Theorem

Let A be a group of Kulikov's type. Then End(A) is not metrizable.

Lemma

Let A be a reduced p-group and \mathfrak{m} an infinite cardinal number. Then the pseudo-character of $\operatorname{End}(A)$ is $\leq \mathfrak{m}$ if and only if the cardinality of every basic subgroup of A is $\leq \mathfrak{m}$.

Corollary

Let A be a torsion group. Then the pseudo-character of End(A) is equal to \aleph_0 if and only if $A = C \oplus D$ where D is a divisible subgroup with $|D| < \aleph_0$ and $C = \oplus C(p)$, every basic subgroup of C(p) being countable.

Lemma

Let A be a reduced p-group and \mathfrak{m} an infinite cardinal number. Then the pseudo-character of $\operatorname{End}(A)$ is $\leq \mathfrak{m}$ if and only if the cardinality of every basic subgroup of A is $\leq \mathfrak{m}$.

Corollary

Let A be a torsion group. Then the pseudo-character of End(A) is equal to \aleph_0 if and only if $A = C \oplus D$ where D is a divisible subgroup with $|D| < \aleph_0$ and $C = \oplus C(p)$, every basic subgroup of C(p) being countable.

Theorem

Let $A = \bigoplus_{p \in \mathbb{P}} A_p$ an infinite torsion group, where A_p is the *p*-primary subgroup of *A*. Fix for every $p \in \mathbb{P}$ the direct decomposition $A_p = S_p \oplus D_p$, where D_p is the maximal divisible subgroup and S_p a reduced subgroup. Then $\psi(\text{End}(A)) \leq \mathfrak{m}$, where \mathfrak{m} is a cardinal number, if and only if $|D_p| \leq \mathfrak{m}$ and for every basic subgroup B_p of S_p we have $|B_p| \leq \mathfrak{m}$.

Remark

If $A = \bigoplus_{i \in I} A_i$ where $0 < |A_i| \le \omega$ and I is infinite, then $\psi(\text{End}(A)) = |I|$.