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theorem for composition series of groups (1870).
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C. Jordan (1970), O. Hölder (1889) Czédli-Schmidt, 2010 1′/19’

What we do now within lattice theory, has an application: na-

mely, we can add a uniqueness part to the classical Jordan-Hölder

theorem for composition series of groups (1870).

Because of lack of time, the details of this application are left

to the audience.

Hint: the subnormal subgroups of a finite (or finite composition

length) group form a dually semimodular lattice by Wielandt

1939.

From now on, we are in a semimodular lattice L.
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Up-and-down projectivity Czédli-Schmidt, 2010 2′/18’

[a, b] /↘ [c, d] iff [a, b]↗ [x, y] and [x, y]↘ [c, d] for some

interval [x, y], that is,
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The main theorem Czédli-Schmidt, 2010 3′/17’

1. Theorem (Main). Assume that L is semimodular, and

C = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1} and

D = {0 = d0 ≺ d1 ≺ · · · ≺ dm = 1}. Then

• n = m, and there is a permutation π of the set {1, . . . , n} such
that the interval [ci−1, ci] is up-and-down projective to the
interval [dπ(i)−1, dπ(i)], for all i. (Jordan-Hölder theorem for
sm lattices + G
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1. Theorem (Main). Assume that L is semimodular, and

C = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1} and

D = {0 = d0 ≺ d1 ≺ · · · ≺ dm = 1}. Then

• n = m, and there is a permutation π of the set {1, . . . , n} such
that the interval [ci−1, ci] is up-and-down projective to the
interval [dπ(i)−1, dπ(i)], for all i. (Jordan-Hölder theorem for
sm lattices + G. Grätzer and J.B. Nation’s improvement);

•
moreover, this permutation π is uniquely determined, and

•
if i, j ∈ {1, . . . , n} and [ci−1, ci] /↘ [dj−1, dj], then j ≤ π(i).

(The 3rd part implies the second one (easy exercise).)
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Only the join is needed! Czédli-Schmidt, 2010 5′/15’

The idea of the proof

• Let [a, b], [x, y], and [c, d] be prime intervals. Then the validity
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Only the join is needed! Czédli-Schmidt, 2010 5′/15’

The idea of the proof

• Let [a, b], [x, y], and [c, d] be prime intervals. Then the validity

of [a, b] ↗ [x, y] and [x, y] ↘ [c, d] depends only on ∨ ! E.g.,

[a, b]↗ [x, y] iff b ∨ x = y (trivial exercise).
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K := [C ∪D]∨ Czédli-Schmidt, 2010 6′/14’

• So, take the join-subsemilattice K generated by C ∪D!
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slim=|w(J(K))| ≤ 2, planar Czédli-Schmidt, 2010 6′/14’
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slim=|w(J(K))| ≤ 2, planar Czédli-Schmidt, 2010 6′/14’
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We get a slim (terminology

from G. Grätzer and E. Knapp) planar semimodular lattice

K, with left boundary chain C and right boundary chain D.

(Straightforward.)
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• (Up-and-down) projectivity between prime intervals is captured

by covering squares.
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(Straightforward; any maximal chain in [a, c] will do.)
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Trajectory, locomotive Czédli-Schmidt, 2010 8′/12’
• Let us call it Locomotive Lemma, because:
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• Let us call it Locomotive Lemma, because:
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The consecutive prime intervals form a trajectory. More preci-
sely: trajectory = class of the equivalence

”
prime” projectivity

described by the Lemma.

Trajectory = railroad of a locomotive. Locomotives will always
go from left to right.
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Uniqueness of trajectories, no fork Czédli-Schmidt, 2010 9′/11’

• Since opposite sides of covering squares (= cells) are uniquely
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Uniqueness of trajectories, no fork Czédli-Schmidt, 2010 9′/11’

• Since opposite sides of covering squares (= cells) are uniquely

determined, each prime interval of K belongs to a unique tra-

jectory. In a trajectory, there is no fork from left to right, neither

from right to left; trajectories never ramify.

We will think that trajectories (locomotives) go from left to right.
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The main traffic rule Czédli-Schmidt, 2010 10′/10’
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(on a trajectory) goes either to the northeast, or to the sou-
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The main traffic rule Czédli-Schmidt, 2010 10′/10’

In each moment, the locomotive

(on a trajectory) goes either to the northeast, or to the sou-

theast.

• But once it goes to the southeast, it cannot turn to the

northeast later.

Indeed, otherwise x would have three upper covers, and slimness

would easily lead to a contradiction (easy exercise).
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The “planar matching” by trajectories Czédli-Schmidt, 2010 11′/9’

• The previous properties of the trajectories guarantee that

matching the (top element of the)
”

departure” prime interval

with the (top element of the)
”

arrival” interval of the locomo-

tive we get the desired π. For K, whence for L. (A new proof

of Grätzer and Nation’s!) This π is called the planar matching.
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Proving the novelty: j ≤ π(i) Czédli-Schmidt, 2010 13′/7’

To show [ci−1, ci] /↘ [dj−1, dj]⇒ j ≤ π(i), assume j 6= π(i).



Proving the novelty: j ≤ π(i) Czédli-Schmidt, 2010 13′/7’

To show [ci−1, ci] /↘ [dj−1, dj]⇒ j ≤ π(i), assume j 6= π(i).

Since K is governed by trajectories that say
”
π(i)” and j 6= π(i),

we know that [ci−1, ci] /↘ [dj−1, dj] holds only in L but not in K.
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The critical (blue) square Czédli-Schmidt, 2010 14′/6’
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s

t

the 

situation

in L:

Denote the joins of ci−1 and ci by dj−1, dj by x, y, a, b. The

situation in L implies (very easy exercise) that a 6= x 6= b. Hence

{x, a, b, y} is a covering square by semimodularity.

14



K∗ := K ∪ {v} Czédli-Schmidt, 2010 15′/5’
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K∗ := K ∪ {v} Czédli-Schmidt, 2010 15′/5’

(Something unusual:) Insert a new element v into K; we get K∗.
Note that v is not in L and K∗ is not a sublattice of L, not

even a join-subsemilattice of L, in general.
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v is the only ramification point in K∗ Czédli-Schmidt, 2010 15′/5’

While the trajectories of K never ramify, the new element per-

mits exactly one ramification (at v).
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The old trajectory is not disturbed Czédli-Schmidt, 2010 16′/4’

The old trajectory (on the left) pays no attention to v. It keeps

going straight to the northeast for a while, then it may turn

to the southeast, and arrives at the right (eastern) border at

[dπ(i)−1, dπ(i)].
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The new one turns to the SE sooner Czédli-Schmidt, 2010 17′/3’

The new trajectory (on the right) turns to the southeast much

sooner; namely, already at v. Since it continues in K, it cannot

turn to the northeast later. So, from v to the right boundary, it

goes to the southeast, and finally stops at [dj−1, dj]
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Sooner the turn, more to the south Czédli-Schmidt, 2010 19′/1’

Since the new trajectory turns to the southeast sooner than the
old one, it reaches the right boundary lower than the old one.
Hence j < π(i),as desired. Q.e.d.
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Since the new trajectory turns to the southeast sooner than the
old one, it reaches the right boundary lower than the old one.
Hence j < π(i),as desired. Q.e.d.
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No uniqueness for a single interval Czédli-Schmidt, 2010 20′/0’

For a single prime interval [ci−1, ci] = [a, b], there is no uniquen-

ess!
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