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B. M. Schein (1992) considered systems of the form (Φ; o, \),
where Φ is a set of functions closed under

the composition ”o” of functions (and hence (Φ, o) is a
function semigroup), and

the set theoretic subtraction ”\” (and hence is a subtraction
algebra in the sense of Abbott (1969)).
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Preliminaries and definitions

Definition of a subtraction algebra

By a subtraction algebra we mean an algebra (X ;−) with a single
binary operation ”-” that satisfies the following identities: for any
x , y , z ∈ X ,

(S1) x − (y − x) = x ;

(S2) x − (x − y) = y − (y − x)

(S3) (x − y)− z = (x − z)− y .

The last identity permits us to omit parentheses in expressions of
the form (x − y)− z .
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An order in a subtraction algebra

The subtraction determines an order relation on X :

a ≤ b if and only if a− b = 0

where 0 = a− a is an element that does not depend on the choice
of a ∈ X . We let

a ∧ b = a− (a− b);

The complement of an element b ∈ [0, a] is a− b;

If b, c ∈ [0, a], then
b ∨ c = (b′ ∧ c ′)′ = a− ((a− b) ∧ (a− c)) =
a− ((a− b)− (((a− b)− (a− c)))).
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Properties of a subtraction algebra

In a subtraction algebra X , the following are true:

(p1) (x − y)− y = x − y .

(p2) x − 0 = x and 0− x = 0.

(p3) (x − y)− x = 0.

(p4) x − (x − y) ≤ y .

(p5) (x − y)− (y − x) = x − y .

(p6) x − (x − (x − y)) = x − y .

(p7) (x − y)− (z − y) ≤ x − z .

(p8) x ≤ y if and only if x = y − w for some w ∈ X .

(p9) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X .

(p10) x , y ≤ z implies that x − y = x ∧ (z − y).
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Definition of an ideal
A nonempty subset A of a subtraction algebra X is called an ideal
of X if it satisfies:

(I1) 0 ∈ A.

(I2) y ∈ A and x − y ∈ A imply x ∈ A for all x , y ∈ A.

Definition of a prime ideal
Let X be a subtraction algebra. A prime ideal of X is defined to be
a proper ideal P of X such that if x ∧ y ∈ P then x ∈ P or y ∈ P.
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Definition and proposition
Let X be a subtraction algebra, A an ideal of X and S a nonempty
subset of X . Set

(A :X S) = {x ∈ X |x ∧ s ∈ A for every s ∈ S}

Then

If S = {s}, then we write (A :X s) instead of (A :X S).

(A :X S) is an ideal of X and is called the residual of A by S .

The annihilator of S in X is the set (0 :X S) and we denote it
by Ann(S).
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Primal ideals

Definition
Let X be a subtraction algebra and let A be an ideal of X . An
element a ∈ X is called prime to A if

a ∧ b ∈ A (b ∈ X ) ⇒ b ∈ A.

Denote by S(A) the set of all elements of X that are not prime to
A, So

S(A) = {a ∈ X |a ∧ b ∈ A for some b ∈ X\A}

.
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Lemma
Let X be a subtraction algebra, A an ideal of X and S a nonempty
subset of X . Then

(1) A ⊆ (A :X S). In particular A ⊆ (A :X x) for every x ∈ X .
(2) x ∈ X is prime to A if and only if A = (A :X x).
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Example1

Let X = {0, x , y , 1} and define ”− ” on X by

− 0 x y 1

0 0 0 0 0
x x 0 x 0
y y y 0 0
1 1 y x 0

It is easy to check that (X ;−) is a subtraction algebra. Then the
operation ∧ on X is as follows:

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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∧ 0 x y 1

0 0 0 0 0
x 0 x 0 x
y 0 0 y y
1 0 x y 1

Now set I = {0, x}. Then I is an ideal of X .

The element x is not prime to I since y ∈ X\I with
x ∧ y = 0 ∈ I .

Also y is prime to I , for if z ∈ X is such that y ∧ z ∈ I , then
y ∧ z = 0. Thus either z = 0 or z = x both lie in X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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Primeness of adjoint ideal

Lemma
Let X be a subtraction algebra and let A be an ideal of X . If S(A)
is a proper ideal of X , then S(A) is a prime ideal of X .
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Definition of a primal ideal

Definition
Let X be a subtraction algebra and let A be an ideal of X .

A is said to be a primal ideal of X provided that S(A) forms
an ideal of X . If S(A) is a proper ideal of X , then it is a prime
ideal of X , called the adjoint prime ideal P of A. In this case
we also say that A is a P-primal ideal of X .

X is called a coprimal subtraction algebra provided that the
zero ideal of X is primal.

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

Definition of a primal ideal

Definition
Let X be a subtraction algebra and let A be an ideal of X .

A is said to be a primal ideal of X provided that S(A) forms
an ideal of X . If S(A) is a proper ideal of X , then it is a prime
ideal of X , called the adjoint prime ideal P of A. In this case
we also say that A is a P-primal ideal of X .

X is called a coprimal subtraction algebra provided that the
zero ideal of X is primal.

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

An example of a primal ideal

Example2

Let X = {0, 1, 2, 3, 4, 5} and define ”− ” on X by

− 0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 0 3 4 3 1
2 2 5 0 2 5 4
3 3 0 3 0 3 3
4 4 0 0 4 0 4
5 5 5 0 5 5 0

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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Then (X ;−) is a subtraction algebra. The operation ∧ on X is as
follows:

∧ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 4 3 4 0
2 0 4 2 0 4 5
3 0 3 0 3 0 0
4 0 4 4 0 4 0
5 0 0 5 0 0 5

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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Set A = {0, 4}. Then A is an ideal of X and:

S(A) = X . So A is a primal ideal of X .

A is not a prime ideal of X since 3 ∧ 2 = 0 ∈ A but neither 3
nor 2 belong to A. Therefore a primal ideal of X need not be
primal. We will prove in a theorem that every prime ideal of
X is primal.

By (1), for an ideal A of a subtraction algebra X , S(A) need
not be a proper ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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Lemma
Let X be a subtraction algebra and A an ideal of X .
(1) If A is proper, then A ⊆ S(A).
(2) If A is a P-primal ideal of X , then A ⊆ P.
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Prime⇒ primal

Theorem
Let X be a subtraction algebra. Then every prime ideal of X is
primal.
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Definition of a zero-divisor

Definition
Let X be a subtraction algebra. An element a ∈ X is called a
zero-divisor of X provided that a ∧ b = 0 for some nonzero element
b ∈ X .

Is Z (X ) an ideal of X?

Let X = {0, x , y , 1} and assume that ”− ” is defined on X as in
Example1. Then:

Z (X ) = {0, x , y}.

Since 1− x = y ∈ X , x ∈ X but 1 /∈ X , so Z (X ) is not an
ideal of X . This example shows that, for a subtraction algebra
X , Z (X ) need not necessarily be an ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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Determining the coprimality via Z (X )

Theorem
Let X be a subtraction algebra. Then X is coprimal if and only if
Z (X ) is an ideal of X .
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Weakly prime ideals

Definition
Let X be a subtraction algebra. An ideal P of X is said to be a
weakly prime ideal of X if whenever 0 6= x ∧ y ∈ P then either
x ∈ P or y ∈ P.
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Prime⇒ weakly prime but not conversely

Example
Let X be a subtraction algebra.
(1) Every prime ideal of X is weakly prime.
(2) Let X = {0, a, b, c , d} be a set with the following Cayley table:

− 0 a b c d

0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 b
c c b a 0 c
d d d d d 0

Then (X ;−) is a subtraction algebra. The operation ∧ on X is as
follows:
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− 0 a b c d

0 0 0 0 0 0
a 0 a 0 a 0
b 0 0 b b 0
c 0 a b c 0
d 0 0 0 0 d

Set P = {0, b}. Then

P is a weakly prime ideal of X since if 0 6= x ∧ y ∈ P, then
x ∧ y = b. One can check that in any cases either x = b or
y = b, that is either x ∈ P or y ∈ P.

c ∧ d = 0 ∈ P while c /∈ P and d /∈ P. Therefore P is not a
prime ideal of X .

This example shows that a weakly prime ideal of X need not
necessarily be prime.

A. Yousefian Darani Some new classes of ideals in subtraction algebras
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− 0 a b c d

0 0 0 0 0 0
a 0 a 0 a 0
b 0 0 b b 0
c 0 a b c 0
d 0 0 0 0 d

Set P = {0, b}. Then

P is a weakly prime ideal of X since if 0 6= x ∧ y ∈ P, then
x ∧ y = b. One can check that in any cases either x = b or
y = b, that is either x ∈ P or y ∈ P.

c ∧ d = 0 ∈ P while c /∈ P and d /∈ P. Therefore P is not a
prime ideal of X .

This example shows that a weakly prime ideal of X need not
necessarily be prime.
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A characterization for weakly prime ideals

Theorem
Let P be a proper ideal of a subtraction algebra X . Then the
following are equivalent:
(i) P is weakly prime.
(ii) For every pair of ideals A and B of X , 0 6= A ∧ B ⊆ P implies
that A ⊆ P or B ⊆ P.
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Definition
Let X be a subtraction algebra and let A be an ideal of X . An
element a ∈ X is called weakly prime to A if 0 6= a ∧ b ∈ A
(b ∈ X ) implies that b ∈ A. We denote by w(A) the set of all
elements of X that are not weakly prime to A.
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Remark
Let A be a proper ideal of a subtraction algebra X .

0 is always weakly prime to A, so 0 /∈ w(A).

If a ∈ X is prime to A, then a is weakly prime to A.
Consequently w(A) ⊆ S(A).

w(0) = ∅ where 0 is the zero ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

Remark
Let A be a proper ideal of a subtraction algebra X .

0 is always weakly prime to A, so 0 /∈ w(A).

If a ∈ X is prime to A, then a is weakly prime to A.
Consequently w(A) ⊆ S(A).

w(0) = ∅ where 0 is the zero ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

Remark
Let A be a proper ideal of a subtraction algebra X .

0 is always weakly prime to A, so 0 /∈ w(A).

If a ∈ X is prime to A, then a is weakly prime to A.
Consequently w(A) ⊆ S(A).

w(0) = ∅ where 0 is the zero ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

Remark
Let A be a proper ideal of a subtraction algebra X .

0 is always weakly prime to A, so 0 /∈ w(A).

If a ∈ X is prime to A, then a is weakly prime to A.
Consequently w(A) ⊆ S(A).

w(0) = ∅ where 0 is the zero ideal of X .

A. Yousefian Darani Some new classes of ideals in subtraction algebras



Seminar List
Preliminaries and definitions

Primal ideals
Weakly prime and weakly primal ideals

2-absorbing and weakly 2-absorbing ideals

Lemma
Let X be a subtraction algebra and let A be an ideal of X . If
P := w(A) ∪ {0} is an ideal of X , then P is a weakly prime ideal
of X .
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Definition of weakly primal ideals

Definition
Let X be a subtraction algebra and let A be an ideal of X . A is
said to be a weakly primal ideal of X provided that
P := w(A) ∪ {0} forms an ideal of X ; this ideal is always a weakly
prime ideal, called the weakly adjoint ideal P of A. In this case we
also say that A is a P-weakly primal ideal of X .
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In this example we show that the concepts ”primal ideal” and
”weakly primal ideal” are different concepts. Indeed we show that
neither imply the other. Let X = {0, 1, 2, 3, 4, 5} and define ”− ”
on X as in the Example2.

Example (Primal ; weakly primal)

Set A = {0, 4}. Then, by Example2, A is a primal ideal of X . It is
easy to see that w(A) = {1, 2, 4}. Set
P = w(A) ∪ {0} = {0, 1, 2, 4}. Since 1 ∈ P, 3− 1 = 0 ∈ P and
3 /∈ P, P is not an ideal of X . So A is not a weakly primal ideal of
X . This example shows that a primal ideal need not be weakly
primal.
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Example (Weakly primal ; primal)

Now set B = {0, 3}. Then B is an ideal of X . Also
S(B) = {0, 1, 3, 4, 5}. Since 1 ∈ S(B), 2− 1 = 5 ∈ S(B) and
2 /∈ S(B), S(B) is not an ideal of X . So B is not a primal ideal of
X . Moreover w(B) = {3}. Hence w(B) ∪ {0} = B. So B is a
weakly primal ideal of X . This example shows that a weakly primal
ideal of X need not be primal.
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2-absorbing and weakly 2-absorbing ideals

Definition
A proper ideal A of a subtraction algebra X is said to be a
2-absorbing (resp. weakly 2-absorbing) ideal if whenever
a, b, c ∈ X with a ∧ b ∧ c ∈ A, (resp. 0 6= a ∧ b ∧ c ∈ A) then
a ∧ b ∈ A or a ∧ c ∈ A or b ∧ c ∈ A.
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We can generalize the concept of 2-absorbing ideals in a
subtraction algebra X to the concept of (n, m)-absorbing ideals.
Suppose that m, n are two positive integers with n > m. We say
that an ideal A of X is a (n, m)-absorbing ideal if whenever
a1, a2, ..., an ∈ X and a1 ∧ a2... ∧ an ∈ A, then there are m of ai ’s
whose meet lies in X . The concept of weakly (m, n)-absorbing
ideals is defined in a similar way.
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Proposition
Let X be a subtraction algebra and assume that A is an ideal of X .
Then

Every 2-absorbing ideal of X is weakly 2-absorbing.

Every prime ideal of X is 2-absorbing.

Every weakly prime ideal of X is weakly 2-absorbing.

A is (n, m)-absorbing if and only if it is (m + 1, m)-absorbing.

If A is (n, m)-absorbing, then it is (n, k)-absorbing for every
positive integer k > n.

A is a prime ideal if and only if it is a (2, 1)-absorbing ideal.

A is a 2-absorbing ideal if and only if it is a (3, 2)-absorbing
ideal.
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Examples of 2-absorbing and weakly 2-absorbing

Theorem
Let X be a subtraction algebra.

If P1 and P2 are distinct prime ideals of X , then P1 ∩ P2 is a
2-absorbing ideal of X .

If P1 and P2 are distinct weakly prime ideals of X , then
P1 ∩ P2 is a weakly 2-absorbing ideal of X .
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Thank you for your
attention.
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