On lattices with a compact top congruence

Gillibert

Here

▶ Given a lattice *L*, denote by Con *L* the set of all congruences of *L*, ordered by inclusion.

Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L.

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L. It is a (∨, 0)-semilattice.

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L. It is a (∨, 0)-semilattice.
- Con_c can be extended to a functor.

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L. It is a (∨, 0)-semilattice.
- Con_c can be extended to a functor. Let f: K → L be a morphism of lattices. Put:

$$\mathsf{Con}_{\mathtt{c}} f \colon \mathsf{Con}_{\mathtt{c}} K \to \mathsf{Con}_{\mathtt{c}} L$$

$$\alpha \mapsto \Theta_{L}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L. It is a (∨, 0)-semilattice.
- Con_c can be extended to a functor. Let f: K → L be a morphism of lattices. Put:

$$\mathsf{Con}_{\mathtt{C}} f \colon \mathsf{Con}_{\mathtt{C}} K \to \mathsf{Con}_{\mathtt{C}} L$$

$$\alpha \mapsto \Theta_{L}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

▶ Given lattices $K \subseteq L$, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L.

- Given a lattice L, denote by Con L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- ▶ Denote by Con_c L the set of all compact (=finitely generated) congruences of L. It is a (∨, 0)-semilattice.
- Con_c can be extended to a functor. Let f: K → L be a morphism of lattices. Put:

$$\mathsf{Con}_{\mathtt{c}} f \colon \mathsf{Con}_{\mathtt{c}} K \to \mathsf{Con}_{\mathtt{c}} L$$

$$\alpha \mapsto \Theta_{L}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

- ► Given lattices K ⊆ L, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L.
- ▶ Equivalently $Con_c f$ is an isomorphism, where $f: K \hookrightarrow L$ is the inclusion map.

▶ Let K be a lattice of cardinality $\leq \aleph_1$,

Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- ▶ Let V be a non-distributive variety of lattices.

- ▶ Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\operatorname{Con_c} K \cong \operatorname{Con_c} L$ (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let $\mathcal V$ be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal V}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal{V}}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)
- ▶ Let *K* be a countable locally finite lattice,

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal{V}}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)
- ▶ Let *K* be a countable locally finite lattice, then *K* has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal{V}}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)
- ► Let *K* be a countable locally finite lattice, then *K* has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to ℵ₁.

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal{V}}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)
- ▶ Let *K* be a countable locally finite lattice, then *K* has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to ℵ₁.
- Let V be a non-distributive variety of lattices.

- Let K be a lattice of cardinality ≤ ℵ₁, there exists a relatively complemented lattice L such that Con_c K ≅ Con_c L (Grätzer, Lakser, and Wehrung, 2000).
- ▶ In particular *L* is congruence-permutable.
- ▶ This cannot be extended to lattices of cardinality \aleph_2 .
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\operatorname{Con_c} F_{\mathcal{V}}(\aleph_2) \cong \operatorname{Con_c} L$. (Růžička, Tůma, and Wehrung, 2007)
- ▶ Let *K* be a countable locally finite lattice, then *K* has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to ℵ₁.
- Let \mathcal{V} be a non-distributive variety of lattices. The lattice $F_{\mathcal{V}}(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).

► Given a lattice L, denote 1_L the congruence that identify everything.

- ► Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1₁ is finitely generated.

- ► Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1₁ is finitely generated.
- ▶ That is Con_c *L* has a largest element.

- ► Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1₁ is finitely generated.
- ▶ That is Con_c *L* has a largest element.
- ▶ Equivalently, there is x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.

- ► Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1₁ is finitely generated.
- ▶ That is Con_c *L* has a largest element.
- ▶ Equivalently, there is x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
- ▶ Given a variety of lattices V, we denote V^b the category of lattices in V with a compact top congruence.

- ► Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1₁ is finitely generated.
- ▶ That is Con_c *L* has a largest element.
- ▶ Equivalently, there is x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
- ▶ Given a variety of lattices V, we denote V^b the category of lattices in V with a compact top congruence.
- ▶ Morphisms in \mathcal{V}^b are morphisms of lattices $f: K \to L$ such that $(\operatorname{Con_c} f)(\mathbf{1}_K) = \mathbf{1}_L$.

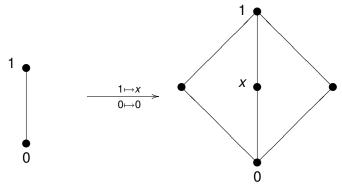
▶ Given a variety of lattices V, denote $V^{0,1}$ the category of bounded lattices in V.

- ▶ Given a variety of lattices V, denote $V^{0,1}$ the category of bounded lattices in V.
- ▶ Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that f(0) = 0 and f(1) = 1.

- ▶ Given a variety of lattices V, denote $V^{0,1}$ the category of bounded lattices in V.
- ▶ Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that f(0) = 0 and f(1) = 1.
- $ightharpoonup \mathcal{V}^{0,1}$ is a subcategory of \mathcal{V}^{b} , itself a subcategory of \mathcal{V} .

- ▶ Given a variety of lattices V, denote $V^{0,1}$ the category of bounded lattices in V.
- ▶ Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that f(0) = 0 and f(1) = 1.
- $ightharpoonup \mathcal{V}^{0,1}$ is a subcategory of \mathcal{V}^{b} , itself a subcategory of \mathcal{V} .
- ▶ In general $V^{0,1}$ is not a full subcategory of V^b .

- ▶ Given a variety of lattices V, denote $V^{0,1}$ the category of bounded lattices in V.
- ▶ Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that f(0) = 0 and f(1) = 1.
- $\triangleright \mathcal{V}^{0,1}$ is a subcategory of \mathcal{V}^{b} , itself a subcategory of \mathcal{V} .
- ▶ In general $\mathcal{V}^{0,1}$ is not a full subcategory of \mathcal{V}^{b} .



▶ Denote $f: \mathbf{2} \to M_3$, the morphism constructed before.

- ▶ Denote $f: \mathbf{2} \to M_3$, the morphism constructed before.
- ▶ $L = \{(x, y_n)_{n < \omega} \in \mathbf{2} \times M_3^{\omega} \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}.$

- ▶ Denote $f: \mathbf{2} \to M_3$, the morphism constructed before.
- ▶ $L = \{(x, y_n)_{n < \omega} \in \mathbf{2} \times M_3^{\omega} \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}.$
- ▶ Con_c L is isomorphic to the $(\lor, 0)$ -semilattice of finite subset of ω with an additional top element.

- ▶ Denote $f: \mathbf{2} \to M_3$, the morphism constructed before.
- ▶ $L = \{(x, y_n)_{n < \omega} \in \mathbf{2} \times M_3^{\omega} \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}.$
- ▶ Con_c L is isomorphic to the $(\lor, 0)$ -semilattice of finite subset of ω with an additional top element.
- ▶ Hence *L* is in \mathcal{M}_3^b but not in $\mathcal{M}_3^{0,1}$.

- ▶ Denote $f: \mathbf{2} \to M_3$, the morphism constructed before.
- ▶ $L = \{(x, y_n)_{n < \omega} \in \mathbf{2} \times M_3^{\omega} \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}.$
- ▶ Con_c L is isomorphic to the $(\lor, 0)$ -semilattice of finite subset of ω with an additional top element.
- ▶ Hence *L* is in \mathcal{M}_3^b but not in $\mathcal{M}_3^{0,1}$.
- ► Here *L* is *condensate* of the arrow *f*.

Questions

Let $\ensuremath{\mathcal{V}}$ be a variety of lattices. Are any of the following statement true ?

Questions

Let $\ensuremath{\mathcal{V}}$ be a variety of lattices. Are any of the following statement true ?

1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $Con_c K \cong Con_c L$.

Questions

Let $\ensuremath{\mathcal{V}}$ be a variety of lattices. Are any of the following statement true ?

- 1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $\operatorname{Con}_{\mathbf{c}} K \cong \operatorname{Con}_{\mathbf{c}} L$.
- 2. All $K \in \mathcal{V}^b$ has a congruence-preserving extension in $\mathcal{V}^{0,1}$.

Questions

Let ${\mathcal V}$ be a variety of lattices. Are any of the following statement true ?

- 1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $\operatorname{Con}_{\mathbf{c}} K \cong \operatorname{Con}_{\mathbf{c}} L$.
- 2. All $K \in \mathcal{V}^b$ has a congruence-preserving extension in $\mathcal{V}^{0,1}$.
 - Moreover if any of those assertion is true, can the construction be made functorial?

Theorem

Theorem

Let $\mathcal V$ be a finitely generated variety of lattices. The following statement are equivalent.

(1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.

Theorem

- (1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.
- (2) Let K be a subdirectly irreducible lattice in V,

Theorem

- (1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.
- (2) Let K be a subdirectly irreducible lattice in V, let x < y in K such that $\Theta_K(x, y) = \mathbf{1}_K$,

Theorem

- (1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.
- (2) Let K be a subdirectly irreducible lattice in V, let x < y in K such that $\Theta_K(x, y) = \mathbf{1}_K$, then x = 0 and y = 1.

Theorem

- (1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.
- (2) Let K be a subdirectly irreducible lattice in V, let x < y in K such that $\Theta_K(x, y) = \mathbf{1}_K$, then x = 0 and y = 1.
- (3) $V^b = V^{0,1}$.

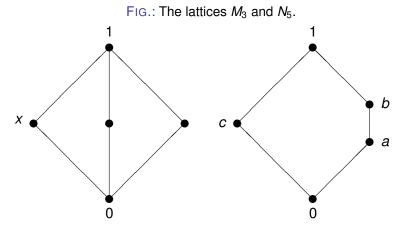
Theorem

- (1) Each countable lattice L in V^b has a congruence-preserving extension in $V^{0,1}$.
- (2) Let K be a subdirectly irreducible lattice in V, let x < y in K such that $\Theta_K(x, y) = \mathbf{1}_K$, then x = 0 and y = 1.
- (3) $V^b = V^{0,1}$.
 - ▶ $(3) \Longrightarrow (1)$ is obvious.

Example

Fig.: The lattices M_3 and N_5 . b а

Example



Notice that N_5 satisfies (2), but M_3 fails (2).

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - Assume (2).

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\mathsf{Con}\, L)$.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha,y/\alpha) = \mathbf{1}_{L/\alpha}$.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = \mathbf{1}_{L/\alpha}$.
 - ▶ So x/α is smaller than every element of L/α .

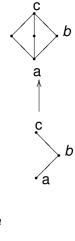
- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = \mathbf{1}_{L/\alpha}$.
 - ▶ So x/α is smaller than every element of L/α .
 - So x is smaller than every element of L.

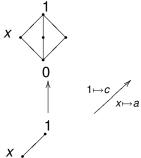
- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = \mathbf{1}_{L/\alpha}$.
 - ▶ So x/α is smaller than every element of L/α .
 - So x is smaller than every element of L. So L has a smallest element x.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = \mathbf{1}_{L/\alpha}$.
 - ▶ So x/α is smaller than every element of L/α .
 - So x is smaller than every element of L. So L has a smallest element x.
 - ▶ Similarly *y* is the largest element of *L*.

- (2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all x < y in K, if $\Theta_K(x, y) = \mathbf{1}_K$ then x = 0 and y = 1.
 - ▶ Assume (2). Let $L \in \mathcal{V}^b$. Let x < y in L such that $\Theta_L(x, y) = \mathbf{1}_L$.
 - ▶ Let $\alpha \in M(\operatorname{Con} L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = \mathbf{1}_{L/\alpha}$.
 - ▶ So x/α is smaller than every element of L/α .
 - So x is smaller than every element of L. So L has a smallest element x.
 - ▶ Similarly *y* is the largest element of *L*.
 - Hence L is bounded.

A diagram of \mathcal{M}_3^b , with no CP-extension in $\mathcal{M}_3^{0,1}$.





A diagram of \mathcal{M}_3^b , with no CP-extension in $\mathcal{M}_3^{0,1}$. and other elements.

A diagram of \mathcal{M}_3^b , with no CP-extension in $\mathcal{M}_3^{0,1}$. and other elements. and other elements.

A diagram of \mathcal{M}_3^b , b we cannot add with no CP-extension in $\mathcal{M}_3^{0,1}$. anything and other elements. and other elements.

There is a diagram in M₃^b that has no congruence-preserving extension into M₃^{0,1}.

- There is a diagram in M₃^b that has no congruence-preserving extension into M₃^{0,1}.
- ▶ Using a *condensate* construction we obtain a countable lattice $L \in \mathcal{M}_3^b$ that has no congruence-preserving extension into $\mathcal{M}_3^{0,1}$.

Theorem

There is a functor $\Psi \colon \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$,

Theorem

There is a functor $\Psi \colon \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\mathsf{Con}_c \circ \Psi \cong \mathsf{Con}_c$.

Theorem

Theorem

There is a functor $\Psi \colon \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\mathsf{Con}_c \circ \Psi \cong \mathsf{Con}_c$. In particular for all $K \in \mathcal{M}_3^b$ there is $L \in \mathcal{M}_3^{0,1}$ such that $\mathsf{Con}_c \ K \cong \mathsf{Con}_c \ L$.

▶ Denote $\mathcal{M}_3^{b\dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b .

Theorem

- Denote M₃^{b†} the full subcategory of finite lattices in M₃^b.
- ► First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.

Theorem

- Denote M₃^{b†} the full subcategory of finite lattices in M₃^b.
- ► First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- ▶ We denote α_L the smallest congruence of L such that L/α_L is distributive.

Theorem

- Denote M₃^{b†} the full subcategory of finite lattices in M₃^b.
- ► First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- ▶ We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let Ψ(L) be the product of $L/α_L$ and all quotient of L isomorphic to M_3 .

Theorem

- Denote M₃^{b†} the full subcategory of finite lattices in M₃^b.
- ► First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- ▶ We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3 .
- ightharpoonup Ψ can be extended on morphisms in $\mathcal{M}_3^{b\dagger}$.

Theorem

- Denote M₃^{b†} the full subcategory of finite lattices in M₃^b.
- ► First we define Ψ on lattices $L ∈ M_3^{b\dagger}$.
- ▶ We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3 .
- ightharpoonup Ψ can be extended on morphisms in $\mathcal{M}_3^{b\dagger}$.
- ▶ Basically only the morphisms $f: \mathbf{2} \to M_3$ can cause problems,

Theorem

- ▶ Denote $\mathcal{M}_3^{b\dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b .
- ► First we define Ψ on lattices $L ∈ M_3^{b\dagger}$.
- ▶ We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3 .
- Ψ can be extended on morphisms in $\mathcal{M}_3^{b\dagger}$.
- ▶ Basically only the morphisms $f: \mathbf{2} \to M_3$ can cause problems, change them to the only possible morphism that preserves bounds.

▶ We have a functor $\Psi \colon \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $Con_c \circ \Psi \cong Con_c$.

- ▶ We have a functor $\Psi \colon \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $\mathsf{Con}_c \circ \Psi \cong \mathsf{Con}_c$.
- ▶ Every $L \in \mathcal{M}_3^b$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.

- ▶ We have a functor $\Psi \colon \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $\mathsf{Con}_c \circ \Psi \cong \mathsf{Con}_c$.
- ▶ Every $L \in \mathcal{M}_3^b$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.
- ▶ Hence we can extend Ψ to a functor $\mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$ that preserves directed colimits.

- ▶ We have a functor $\Psi \colon \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $\mathsf{Con}_c \circ \Psi \cong \mathsf{Con}_c$.
- ▶ Every $L \in \mathcal{M}_3^b$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.
- ▶ Hence we can extend Ψ to a functor $\mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$ that preserves directed colimits.
- ▶ Moreover, as Con_c preserves directed colimits, $Con_c \circ \Psi \cong Con_c$.

That is all!

Thank you for your attention

Have you any questions?