On the equational theory of projection lattices of finite von Neumann factors Christian Herrmann on joint work with Luca Giudici [10] and Martin Ziegler [12]

Jardafest, Praha July 22, 2010

0. Modular (ortho)lattices

We consider *modular lattices* (shortly MLs) - we write a + b for joins and ab for meets - and *modular ortholattices* (shortly MOLs), a subject started by Birkhoff and von Neumann [1]. These have constants 0 and 1 and a unary fundamental operation $x \mapsto x'$ which is an *involution* and, moreover, an *orthocomplementation*

 $x'' = x, \ x \le y \Rightarrow y' \le x'; \ x \oplus x' = 1,$

The principal examples are the lattices L(M) of all submodules of some R-module M and the lattices

 $L(V,\Phi) = \{X, X^{\perp} \mid X \in L(V), \dim X < \infty\}, \ X \mapsto X^{\perp}$

where (V, Φ) is an inner product space. Considering lattice identities $\forall \overline{x}. f(\overline{x}) = g(\overline{x})$, we may assume that $f(\overline{x}) \leq g(\overline{x})$ holds in all lattices. In MOLs it suffices to consider identities of the form $\forall \overline{x}. t(\overline{x}) = 0$ - put t = gf'.

1. Identities in the atomistic case

Proposition 1.1. If L is an atomistic ML or MOL, then $L \models \forall \overline{x}$. $f(\overline{x}) = g(\overline{x})$ if and only if $[0, u] \models \forall \overline{x}$, $f(\overline{x}) = g(\overline{x})$ for all interval subalgebras [0, u] where dim u is at most the number of occurrences of variables in f and g, together.

Here, in the case of MOLs, [0, u] is endowed with the orthocomplement $x^u = x'u$.

Lemma 1.2. In an atomistic ML, if $h(\overline{x})$ is a lattice term with unique occurrence of variables, and if $p \leq h(\overline{a})$ for some atom p, then there is a substitution by atoms such that $p \leq h(\overline{q})$.

Proof. By induction. If $p \leq h_1(\overline{a}_1) + h_2(\overline{a}_2)$ then there are $p_i \leq h_i(\overline{a}_i)$ such that $p \leq p_1 + p_2$ - this is, in essence, the Theorem on Joins in projective spaces. By inductive hypothesis we have $p_i \leq h_i(\overline{q}_i)$ for some substitutions by atoms.

Proof. Prop.1. In the lattice case, assume $f(\overline{a}) < g(\overline{a})$. Then there is $p \leq g(\overline{a}), p \not\leq f(\overline{a})$. Consider $h(\overline{z})$ with unique occurrence and substitution $h(\overline{a}) = g(\overline{a})$. Then by the Lemma there is a substitution by atoms such that $p \leq h(\overline{q})$. Collect all q associated with the same ainto the join $c \leq a$ and let u be the join of all c. Then dim u is small as indicated and, by monotonicity of lattice terms, we have $p \leq g(\overline{c})$ but $p \not\leq f(\overline{c})$ in [0, u].

In the MOL case, we replace $t(\overline{x})$ by its negation normal form and associate with that a lattice term $h(\overline{y}, \overline{z})$ with unique occurrence of variables such that any y stands for a positive occurrence of some x, any z for an occurrence of x'. Now, if $0 < t(\overline{a})$, then $p \le t(\overline{a}) = h(\overline{b}, \overline{c})$ where all b's are a's and all c's are a's. By the Lemma, $p \le h(\overline{q}, \overline{r})$ for some substitution by atoms whence $p \le t(\overline{d})$ for some $\overline{d} \in [0, u], u$ the joins of all q's and r's. Again, dim u is bounded as stated. \Box

Theorem 1.3. Huhn, H., Czédli, Hutchinson. For any division ring D with prime subfield F_p ,

 $\mathsf{Th}_{eq}\{L(V) \mid V \text{ a } D \text{-vector space}\} = \mathsf{Th}_{eq}\{L(F_p^n) \mid n < \infty\}$

and this equational theory is decidable.

Proof. [7]. $L(F_p^n)$ is a sublattice of $L(D^n)$. Any $L(V_D)$ is a sublattice of $L(V_{F_p})$. The latter is atomistic, whence by Prop.1 in the variety generated by the $L(F_p^n)$. This proves that the varieties coincide. Thus, the set of non-valid identities is recursively enumerable. On the other hand, the quasi-variety generated by the $L(V_D)$ is recursively axiomatizable - using Mal'cev's method of axiomatic correspondence. Thus, the equational theory is recursively enumerable, too. A reasonable decision procedure has been provided by Czédli and Hutchinson [3].

For MOLs we define the von Neumann variety

$$\mathcal{N} = \mathsf{HSP}\{L(\mathbb{R}^n) \mid n < \infty\}$$

Theorem 1.4. $\mathcal{N} = \mathsf{HSP}\{L(\mathbb{C}^n) \mid n < \infty\}$ and $\mathsf{Th}_{eq}\mathcal{N}$ is decidable.

Here, we consider the canonical real resp. complex scalar products.

Proof. We have the following embeddings $L(\mathbb{R}^n) \subseteq L(\mathbb{C}^n) \subseteq L(\mathbb{R}^{2n})$. Also, due to Tarksi [22], $\mathsf{Th}L(\mathbb{R}^n)$ is decidable. Now, apply Prop.1. \Box

2. Interpretation of rings via frames

A (von Neumann) *n*-frame is a system a_{ij} $(1 \le i, j \le n)$ of constants and relations such that in a lattice L(M), M a free R-module on generators e_1, \ldots, e_n and R a ring with unit, these relations are satisfied

$$a_{ii} = e_i R, \ a_{ij} = a_{ji} = (e_i - e_j) R$$

and, conversely, any system satisfying the relations is, up to isomorphism, this canoncial one. In particular, the ring R can be interpreted into L(M) via $r \mapsto (e_1 - e_2 r)R$.

- (1) For any modular L with an n-frame, $n \ge 4$, one obtains a ring on $\{x \in L \mid x \oplus a_2 = a_1a_2\}$. Von Neumann [19], mimicking the above.
- (2) There are terms $t_{ij}(\overline{x})$ such that for an \overline{a} in a modular lattice the $t_{ij}(\overline{a})$ form an *n*-frame in the interval $[\prod_{ij} t_{ij}(\overline{a}), \sum_{ij} t_{ij}(\overline{a})]$. Moreover, $t_{ij}(\overline{a}) = a_{ij}$ if \overline{a} is an n-frame, already. G. Bergman and A. Huhn [13].
- (3) For MOLs this extends to *orthogonal n-frames*: $a_{ii} \leq a'_{jj}$ for $i \neq j$ and $\prod_{ij} a_{ij} = 0$. R. Mayet and M. Roddy [16].

3. UNIFORM WORD PROBLEM

A quasi-identity is a first order sentence of the form

$$\forall \overline{x}. \ (\bigwedge_{i=1}^n s_i(\overline{x}) = t_i(\overline{x})) \Rightarrow s(\overline{x}) = t(\overline{x})$$

Solvability of the *uniform word problem* for a class C of algebraic structures means decidability of the set of quasi-identities valid in C. Let Q denote the quasi-variety generated by C, and Q_L the class of lattices embedded into reducts of members of Q.

Theorem 3.1. If, for some field F, $L(F^n) \in Q_L$ for all $n < \infty$, then the uniform word problem for C is unsolvable.

Proof. Let S denote the class of all semigroups, $F^{n \times n}$ the ring of all $n \times n$ -matrices over F, and F_p the prime subfield.

- (1) $L(F^n) \cong \overline{L}(F^{n \times n})$, the lattice of principal right ideals
- (2) $\operatorname{Th}_{\forall}\{F^{n \times n} \mid n < \infty\} = \operatorname{Th}_{\forall}\{F_p^{n \times n} \mid n < \infty\} = \operatorname{Th}_{\forall}\mathcal{S}_{fin}$ considering multiplicative semigroups Lipshitz [15]
- (3) $\mathsf{Th}_{qid}\mathcal{S} \subseteq \Gamma \subseteq \mathsf{Th}_{qid}\mathcal{S}_{fin}$ for no recursive Γ . Gurevich, Lewis [6].
- (4) Interpret $\mathcal{S} \to \text{Rings} \to \text{ML}$ via $F \mapsto F[S]$ and $R \mapsto L$ via frames

for

4. Restricted word problem

The restriced word problem for C considers in each instance a fixed premise $\bigwedge_{i=1}^{n} s_i(\overline{x}) = t_i(\overline{x})$. For a quasi-variety, this amounts to considering a finite presentation. Unsolvability means the existence of some instance with undecidabe decision problem.

Theorem 4.1. Lipshitz, Hutchinson [15, 14]. If $L(M) \in \mathcal{Q}_L$ for some free module M on an infinite basis, then the restricted word problem for C is unsolvable - there is a presentation on 5 lattice generators.

Indeed, any finitely presented semigroup can be interpreted into some $L(M^n)$.

Theorem 4.2. Cohn, McIntyre. There is a finitely presented division ring D with unsolvable word problem

Corollary 4.3. If $L(D^n) \in \mathcal{Q}_L$ for such D and some $n \ge 4$ then the restricted word problem for \mathcal{Q} is unsolvable.

Theorem 4.4. Roddy [21]. The restricted word problem for MOLs is unsolvable - there is a presentation on 3 generators.

This is based on an intricate construction of a division ring as above admitting a scalar product on some $D^n - n = 14$.

5. UNDECIDABLE EQUATIONAL THEORIES

Theorem 5.1. Freese [4]. The equational theory of all modular lattices is undecidable - 5 and even 4 variables suffice.

The proof is based on the above division rings, frames, and an ingenious device allowing to force relations via terms in free modular lattices.

Proposition 5.2. For D as above and $n \ge 3$, $\mathsf{Th}_{eq}L(D^n)$ is undecidable.

Proof. The terms for an *n*-frame will either yield an *n*-frame of $L(D^n)$ or just a single element. In the first case, one has terms giving elements of the ring associated with the frame or else a collapse of the frame. Again, considering relations on those ring elements one has terms enforcing these relations simultaneously - or else a collapse. Also, when applied to elements satisfying the relations, these remain unchanged.

6. Satisfiability problems

Dealing with modular lattices of finite height we consider 0 and 1 as constants.

Lemma 6.1. Let *L* be an *ML* of height *n* with an *n*-frame a_{ij} . For any pair $f(\overline{x}), g(\overline{x})$ of lattice terms one can construct lattice polynomials $f^{-}(\overline{x}), g^{+}(\overline{x})$ with constants a_{ij} such that the following are equivalent

(1) $L \models \exists \overline{x}. f(\overline{x}) < g(\overline{x})$

(2)
$$L \models \exists \overline{x}. f^-(\overline{x}) = 0 \& g^+(\overline{x}) = 1$$

If L admits an involution such that $a_{jj} \leq a'_{ii}$ for $j \neq i$, then one can construct $h(\overline{x}, \overline{y})$ and add

(3) $L \models \exists \overline{x}. h(\overline{x}, \overline{x}') = 1$

Construction and identification of the output polynomials, as well as reconstruction of the input terms can all be done in PTIME.

Proof. Define $b_k = \sum_{i \leq k} a_{ii}$, $f_k^- = a_{kk}(b_{k-1} + f)$, and $f^- = \prod_k f_k^-$. Similarly, for g^+ . Put $h = g(\overline{x})\tilde{f}(\overline{y})$ where \tilde{f} arises from f^- by interchanging + and \cdot and replacing the constants by the corresponding elements of the dual *n*-frame canonically associated with the given *n*-frame. In the case of MOLs this gives rise to a ternary discriminator polynomial on L [9].

Theorem 6.2. Let F be a field and $n \ge 3$.

(i) With each polynomial $p(\overline{x})$ over F one can associate lattice terms $p^{-}(\overline{y})$ and $p^{+}(\overline{y})$ such that

$$F \models \exists \overline{x}. \ p(\overline{x}) = 0 \iff L(F^n) \models \exists \overline{y}. \ p^-(\overline{y}) = 0 \& p^+(\overline{y}) = 1$$

(ii) With any pair $s(\overline{y}), t(\overline{y})$ of lattice terms on can associate polynomials $p_1(\overline{x}), \ldots, p_n(\overline{x})$ with integer coefficients such that

$$L(F^n) \models \exists \overline{y}. \ s(\overline{y}) = 0 \& t(\overline{y}) = 1 \iff F \models \exists \overline{x}. \ p_1(\overline{x}) = \ldots = p_n(\overline{x}) = 0$$

(iii) If F^n admits an inner product Φ then with any ortholattice term $t(\overline{y})$ one can associate integer $p_i(\overline{x})$ such that

$$L(F^n, \Phi) \models \exists \overline{y}. t(\overline{y}) = 1 \iff F \models \exists \overline{x}. p_1(\overline{x}) = \ldots = p_n(\overline{x}) = 0$$

All this can be done in PTIME and does not depend on F for polynomials with integer coefficients.

Here, we conceive the $p(\overline{x})$ primarily as terms. But, as far as solvability is concerned, transition to a linear combination of monomials can be done in PTIME - adding variables. Proof. In (i) use the lattice terms providing an *n*-frame and the interpretation of F into $L(F^n)$. In (ii) and (iii) replace the (ortho)lattice variables by matrices with variables for elements of F and recall the descriptions of joins, meets, and orthocomplements in $\overline{L}(F^{n\times n})$. Solving $t(\overline{y}) = 1$ amounts to capturing the identity matrix.

Corollary 6.3. Let F be a subfield of \mathbb{R} and Φ the canonical scalar product on F^n where $n \geq 3$. Then the following satisfiability problems are polynomially equivalent

$L(F^n)$	Þ	$\exists \overline{x}. \ f(\overline{x}) < g(\overline{x})$	$f \leq g$ lattice terms
$L(F^n)$	Þ	$\exists \overline{x}. \ f(\overline{x}) = 0 \& g(\overline{x}) = 1$	f,g lattice terms
$L(F^n, \Phi)$	Þ	$\exists \overline{x}. \ t(\overline{x}) = 1$	t ortholattice term
F	Þ	$\exists \overline{x}. \ p(\overline{x}) = 0$	p integer polynomial

As remarked by George McNulty, decidability of the latter is an open and controversial question for $F = \mathbb{Q}$ [20]. To get p from the p_i put $p = \sum_i p_i^2$.

7. Real complexity

Henceforth, we consider \mathbb{R}^n and \mathbb{C}^n always with the canonical scalar product Φ .

Corollary 7.1. The decision problems for each single $\mathsf{Th}_{eq}L(\mathbb{R}^n, \Phi)$, $n \geq 3$, als well as for $\mathsf{Th}_{eq}\mathcal{N}$ are polynomially equivalent and $coBP(NP^0_{\mathbb{R}})$ -complete. In particular, they are coNP-hard and in PSPACE.

Here, $BP(NP^0_{\mathbb{R}})$ refers to non-deterministic polynomial time in the Blum-Shub-Smale model of real computation with constants 0, 1, only, and binary input.

Proof. The equational theory of a class \mathcal{C} is just the complement of the set of sentences $\exists \overline{x}. t(\overline{x}) = 1$ satisfiable in some member of \mathcal{C} . Thus, the claim about the $L(\mathbb{R}^n, \Phi)$ follows from Cor.6.3 and the fact that feasability of integer polynomials over \mathbb{R} is known to be $BP(NP^0_{\mathbb{R}})$ -complete cf. [17]. Also, with Prop.1 it follows that $\mathsf{Th}_{eq}\mathcal{N}$ is in $coBP(NP^0_{\mathbb{R}})$. To prove completeness, we interpret feasability of integer polynomials via 3-frames into $L(\mathbb{R}^{3n}, \Phi)$ for all $n \geq 1$ simultaneously: according to $L(\mathbb{R}^{3n}) \cong L((\mathbb{R}^{n\times n})^3)$ we see the x_i as variables for matrices $A_i \in \mathbb{R}^{n\times n}$. Imposing the relations $A_i = A_i^t$ and $A_iA_j = A_jA_i$, which we can enforce via ortholattice terms to be built into the identity $t(\overline{y}) = 1$, we achieve that the A_i are simultaneously diagonalizable, whence from $p(\overline{A}) = 0$ we obtain a solution in \mathbb{R} . The cases 3n + 1 and 3n + 2 are dealt with considering the 3n-part of the frame.

6

8. MOL-REPRESENTATIONS

Given an inner product space (V, Φ) which is an elementary extension of an unitary space, an *e-unitary representation* of an MOL L is a 0lattice embedding $\varepsilon : L \to L(V)$ such that

$$\varepsilon(a') = \varepsilon(a)^{\perp}$$
 for all $a \in L$.

Theorem 8.1. Bruns, Roddy, H. [2, 8, 11]. For any e-unitary representation of an MOL, there is an atomic MOL \tilde{L} which is a sublattice of L(V) and contains both $\varepsilon(L)$ and $L(V, \Phi)$ as sub-OLs.

Proposition 8.2. H., Roddy [8, 11]. $L \in \mathcal{N}$ if L admits an e-unitary representation. For subdirectly irreducibles, the converse holds, too.

Proof. Prop.1 and the fact, that all sections of fixed finite height have the same first order theory. Conversely, by the Jónsson Lemma we have $L \in \mathsf{HSP}_u\{L(\mathbb{C}^n) \mid n < \infty\}$ and show that representability is preserved.

9. *-Regular rings and representations

An associative ring (with or without unit) R is (von Neumann) regular if for any $a \in R$ there is a quasi-inverse $x \in R$ such that axa = a. A *-ring is a ring with an involution * as additional operation:

$$(x+y)^* = x^* + y^*, \ (xy)^* = y^*x^*, \ x^{**} = x.$$

e is a projection if $e = e^* = e^2$. A *-ring is *-regular if it is regular and, moreover, positive: $xx^* = 0$ only for x = 0. Equivalently, for any $a \in R$ there is a (unique) projection *e* such that aR = eR. Examples are the $\mathbb{C}^{n \times n}$ with r^* the adjoint matrix. The projections of a *-regular ring with unit form an MOL $\overline{L}(R)$ where $e \leq f \Leftrightarrow e = ef$ and e' = 1 - e. Now, $e \mapsto eR$ is an isomorphism of $\overline{L}(R)$ onto the ortholattice of principal right ideals of *R* and we may use the same notation for both.

Let (V, Φ) be an elementary extension of a unitary space. Denote by ϕ^* the adjoint of ϕ - if it exists. An *e-unitary representation* of a *-ring R is a ring embedding $\iota : R \to \mathsf{End}(V)$ such that $\iota(r^*) = \iota(r)^*$ for any $r \in R$.

Proposition 9.1. Giudici [5]. If $\iota : R \to End(V)$ is an e-unitary representation of the *-regular ring R, then

 $\varepsilon(eR) = Im\iota(e)$

is an e-unitary representation of the MOL $\overline{L}(R)$ in (V, Φ) .

10. Von Neumann Algebras

A von-Neumann algebra \mathbf{M} is an unital involutive \mathbb{C} -subalgebra of the algebra $\mathcal{B}(H)$ of all bounded operators of a separable Hilbert space H with $\mathbf{M} = \mathbf{M}''$ where $\mathbf{A}' = \{\phi \in \mathcal{B}(H) \mid \phi\psi = \psi\phi \quad \forall\phi \in \mathbf{A}\}$ is the commutant of \mathbf{A} . \mathbf{M} is finite if $rr^* = 1$ implies $r^*r = 1$. For such, the projections of \mathbf{M} form a (continuous) MOL $L(\mathbf{M})$. A finite von-Neumann algebra is a factor if its center is $\mathbb{C} \cdot 1$. Particular examples of finite factors are the algebras $\mathbb{C}^{n \times n}$ of all complex *n*-by-*n*-matrices.

Theorem 10.1. Murray-von-Neumann [18]. Any finite von-Neumann algebra factor is either isomorphic to $\mathbb{C}^{n \times n}$ for some $n < \infty$ (type I_n) or contains for any $n < \infty$ a subalgebra isomorphic to $\mathbb{C}^{n \times n}$ (type II₁).

Theorem 10.2. Murray-von-Neumann [18]. For every finite factor \mathbf{M} , there is a *-regular ring $U(\mathbf{M})$ of unbounded operators on H having \mathbf{M} as *-subring and such that ϕ^* is adjoint to ϕ . Moreover, \mathbf{M} and $U(\mathbf{M})$ have the same projections.

Theorem 10.3. $U(\mathbf{M})$ admits an e-unitary representation.

Proof. By the Compactness Theorem, it suffices to consider countable *-subrings R of $U(\mathbf{M})$. A representation of R is constructed from the given Hilbert space H. Let H_0 be the intersection of all domains of operators $\phi \in R$. Define, recursively, H_{n+1} as the intersection of H_n and all preimages $\phi^{-1}(H_n)$ where $\phi \in R$. $H_{\omega} = \bigcap_{n < \omega} H_n$. Due to Murray and von Neumann, all H_n and H_{ω} are dense in H. It easily follows, that $\varepsilon(\phi) = \phi | H_{\omega}$ defines a representation. \Box

Corollary 10.4. $\mathsf{Th}_{eq}\mathcal{N} = \mathsf{Th}_{eq}L(\mathbf{M})$ for any finite von Neumann algebra factor \mathbf{M} of infinite dimension.

Proof. Observe $L(\mathbf{M}) \cong \overline{L}(U(\mathbf{M}))$ and apply Prop.8.2 and 9.1.

Corollary 10.5. For any finite von Neumann algebra factors \mathbf{M} and \mathbf{N}

$$U(\mathbf{N}) \in \mathsf{HSP}_u U(\mathbf{M}), \ U(\mathbf{N}) \in \mathsf{HSP}_u \{ \mathbb{C}^{n \times n} \mid n < \infty \}$$

and, analogously, for the projection lattices.

Proof. With suitable choice of quasi-inverse, *-regular rings form a congruence distributive variety - the congruence lattice of R is isomorphic to that of $\overline{L}(R)$. The $L(\mathbf{M})$ are simple. Thus, the Jónsson Lemma can be applied.

A question, raised by Connes and still unanswered, asks whether the Banach-space version of this result is true.

References

- G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. vol. 37 (1936), pp. 823-843.
- [2] G. Bruns and M. Roddy, A finitely generated modular ortholattice. Canad. Math. Bull. 35 (1992), no. 1, 29–33.
- [3] G. Czdli and G. Hutchinson A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), no. 3, 269–309.
- [4] R. Freese, Free modular lattices. Trans. Amer. Math. Soc. 261 (1980), no. 1, 81–91.
- [5] L. Giudici, Dintorni del Teorema di Coordinatizatione di von Neumann, Ph.D. thesis, Univ. di Milano, 1995, www.nohay.net/mat/tesi.1995/tesi.ps.gz
- [6] Yu. Gurevich and H.R. Lewis, The word problem for cancellation semigroups with zero, J. Symbolic Logic vol. 49 (1984), pp. 184–191
- [7] C. Herrmann und A. Huhn, Zum Wortproblem f
 ür freie Untermodulverb
 ände, Arch. Math. 26(1975), 450-453
- [8] C. Herrmann and M. Roddy: Proatomic modular ortholattices: Representation and equational theory, *Note di matematica e fisica*, 10 (1999), 55-88
- [9] C. Herrmann, F. Micol, and M. S. Roddy, On n-distributive modular ortholattices, Algebra Universalis vol. 53 (2005), 143–147
- [10] C. Herrmann, On the equational theory of projection lattices of finite von Neumann factors, to appear in J. of Symbolic Logic
- [11] C. Herrmann, Complemented modular lattices with involution and orthogonal geometry, Algebra Univers. 61 (2009) 339–364
- [12] C. Herrmann and M. Ziegler, Expressiveness and Computational Complexity of Geometric Quantum Logic, arxiv.org/abs/1004.1696
- [13] A. P. Huhn, Schwach distributive Verbände I, Acta Sci. Math., vol. 33 (1972), pp. 297–305
- [14] G. Hutchinson, Recursively unsolvable word problems of modular lattices and diagram chasing, J. Algebra, vol. 26 (1973), 385–399
- [15] L. Lipshitz, The undecidability of the word problems for projective geometries and modular lattices, *Trans. Amer. Math. Soc.* vol. 193 (1974), 171–180
- [16] R. Mayet, M.S. Roddy: n-Distributivity in Ortholattices, (Czermak et al. eds.) Contributions to General Algebra vol.5 (1987), 285–294
- [17] K. Meer, C. Michaux: A Survey on Real Structural Complexity Theory, Bulletin of the Belgian Mathematical Society vol.4 (1997), 113–148
- [18] F.J. Murray and J. von Neumann, On rings of operators, Ann. Math., vol. 37 (1936), pp. 116–229
- [19] J. von Neumann, Continuous Geometry, Princeton 1960
- [20] B. Poonen: Characterizing Integers among Rational Numbers with a Universal-Existential Formula, *American Journal of Mathematics* vol.131:3 (2009), 675–682
- [21] M.S. Roddy, On the word problem for orthocomplemented modular lattices, Can. J. Math., vol. 61 (1989), pp. 961-1004
- [22] A. Tarski, A Decision Method for Elementary Algebra and Geometry, RAND Corporation, Santa Monica, Calif. 1948