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0. Modular (ortho)lattices

We consider modular lattices (shortly MLs) - we write a+ b for joins
and ab for meets - and modular ortholattices (shortly MOLs), a subject
started by Birkhoff and von Neumann [1]. These have constants 0 and
1 and a unary fundamental operation x 7→ x′ which is an involution

and, moreover, an orthocomplementation

x′′ = x, x ≤ y ⇒ y′ ≤ x′; x⊕ x′ = 1,

The principal examples are the lattices L(M) of all submodules of some
R-module M and the lattices

L(V,Φ) = {X,X⊥ | X ∈ L(V ), dimX <∞}, X 7→ X⊥

where (V,Φ) is an inner product space. Considering lattice identities
∀x. f(x) = g(x), we may assume that f(x) ≤ g(x) holds in all lattices.
In MOLs it suffices to consider identities of the form ∀x. t(x) = 0 - put
t = gf ′.

1. Identities in the atomistic case

Proposition 1.1. If L is an atomistic ML or MOL, then L |= ∀x. f(x) =
g(x) if and only if [0, u] |= ∀x, f(x) = g(x) for all interval subalgebras

[0, u] where dim u is at most the number of occurrences of variables in

f and g, together.

Here, in the case of MOLs, [0, u] is endowed with the orthocomple-
ment xu = x′u.

Lemma 1.2. In an atomistic ML, if h(x) is a lattice term with unique

occurrence of variables, and if p ≤ h(a) for some atom p, then there is

a substitution by atoms such that p ≤ h(q).

Proof. By induction. If p ≤ h1(a1) + h2(a2) then there are pi ≤ hi(ai)
such that p ≤ p1 + p2 - this is, in essence, the Theorem on Joins in
projective spaces. By inductive hypothesis we have pi ≤ hi(qi) for some
substitutions by atoms. �
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Proof. Prop.1. In the lattice case, assume f(a) < g(a). Then there
is p ≤ g(a), p 6≤ f(a). Consider h( z ) with unique occurrence and
substitution h( a ) = g(a). Then by the Lemma there is a substitution
by atoms such that p ≤ h( q ). Collect all q associated with the same a
into the join c ≤ a and let u be the join of all c. Then dim u is small as
indicated and, by monotonicity of lattice terms, we have p ≤ g(c) but
p 6≤ f(c) in [0, u].

In the MOL case, we replace t(x) by its negation normal form and
associate with that a lattice term h( y , z ) with unique occurrence of
variables such that any y stands for a positive occurence of some x,
any z for an occurence of x′. Now, if 0 < t(a), then p ≤ t(a) = h( b , c )
where all b’s are a’s and all c’s are a′’s. By the Lemma, p ≤ h( q , r )
for some substitution by atoms whence p ≤ t(d) for some d ∈ [0, u], u
the joins of all q’s and r’s. Again, dimu is bounded as stated. �

Theorem 1.3. Huhn, H., Czédli, Hutchinson. For any division ring D

with prime subfield Fp,

Theq{L(V ) | V a D-vector space} = Theq{L(F n
p ) | n <∞}

and this equational theory is decidable.

Proof. [7]. L(F n
p ) is a sublattice of L(Dn). Any L(VD) is a sublattice

of L(VFp
). The latter is atomistic, whence by Prop.1 in the variety

generated by the L(F n
p ). This proves that the varieties coincide. Thus,

the set of non-valid identities is recursively enumerable. On the other
hand, the quasi-variety generated by the L(VD) is recursively axiomati-
zable - using Mal’cev’s method of axiomatic correspondence. Thus, the
equational theory is recursively enumerable, too. A reasonable decision
procedure has been provided by Czédli and Hutchinson [3]. �

For MOLs we define the von Neumann variety

N = HSP{L(Rn) | n <∞}

Theorem 1.4. N = HSP{L(Cn) | n <∞} and TheqN is decidable.

Here, we consider the canonical real resp. complex scalar products.

Proof. We have the following embeddings L(Rn) ⊆ L(Cn) ⊆ L(R2n).
Also, due to Tarksi [22], ThL(Rn) is decidable. Now, apply Prop.1. �

2. Interpretation of rings via frames

A (von Neumann) n-frame is a system aij (1 ≤ i, j ≤ n) of constants
and relations such that in a lattice L(M), M a free R-module on gen-
erators e1, . . . , en and R a ring with unit, these relations are satisfied
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for

aii = eiR, aij = aji = (ei − ej)R

and, conversely, any system satisfying the relations is, up to isomor-
phism, this canoncial one. In particular, the ring R can be interpreted
into L(M) via r 7→ (e1 − e2r)R.

(1) For any modular L with an n-frame, n ≥ 4, one obtains a ring
on {x ∈ L | x⊕ a2 = a1a2}. Von Neumann [19], mimicking the
above.

(2) There are terms tij(x) such that for an a in a modular lattice
the tij(a) form an n-frame in the interval [

∏
ij tij(a),

∑
ij tij(a)].

Moreover, tij(a) = aij if a is an n-frame, already. G. Bergman

and A. Huhn [13] .
(3) For MOLs this extends to orthogonal n-frames: aii ≤ a′jj for

i 6= j and
∏

ij aij = 0. R. Mayet and M. Roddy [16].

3. Uniform word problem

A quasi-identity is a first order sentence of the form

∀x. (

n∧

i=1

si(x) = ti(x)) ⇒ s(x) = t(x)

Solvability of the uniform word problem for a class C of algebraic struc-
tures means decidability of the set of quasi-identities valid in C. Let Q
denote the quasi-variety generated by C, and QL the class of lattices
embedded into reducts of members of Q.

Theorem 3.1. If, for some field F , L(F n) ∈ QL for all n < ∞, then

the uniform word problem for C is unsolvable.

Proof. Let S denote the class of all semigroups, F n×n the ring of all
n× n-matrices over F , and Fp the prime subfield.

(1) L(F n) ∼= L(F n×n), the lattice of principal right ideals
(2) Th∀{F

n×n | n < ∞} = Th∀{F
n×n
p | n < ∞} = Th∀Sfin consid-

ering multiplicative semigroups Lipshitz [15]
(3) ThqidS ⊆ Γ ⊆ ThqidSfin for no recursive Γ. Gurevich, Lewis [6].
(4) Interpret S → Rings → ML via F 7→ F [S] and R 7→ L via

frames

�
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4. Restricted word problem

The restriced word problem for C considers in each instance a fixed
premise

∧n

i=1
si(x) = ti(x). For a quasi-variety, this amounts to consid-

ering a finite presentation. Unsolvability means the existence of some
instance with undecidabe decision problem.

Theorem 4.1. Lipshitz, Hutchinson [15, 14]. If L(M) ∈ QL for some

free module M on an infinite basis, then the restricted word problem

for C is unsolvable - there is a presentation on 5 lattice generators.

Indeed, any finitely presented semigroup can be interpreted into some
L(Mn).

Theorem 4.2. Cohn, McIntyre. There is a finitely presented division

ring D with unsolvable word problem

Corollary 4.3. If L(Dn) ∈ QL for such D and some n ≥ 4 then the

restricted word problem for Q is unsolvable.

Theorem 4.4. Roddy [21]. The restricted word problem for MOLs is

unsolvable - there is a presentation on 3 generators.

This is based on an intricate construction of a division ring as above
admitting a scalar product on some Dn - n = 14.

5. Undecidable equational theories

Theorem 5.1. Freese [4]. The equational theory of all modular lattices

is undecidable - 5 and even 4 variables suffice.

The proof is based on the above division rings, frames, and an in-
genious device allowing to force relations via terms in free modular
lattices.

Proposition 5.2. For D as above and n ≥ 3, TheqL(Dn) is undecid-

able.

Proof. The terms for an n-frame will either yield an n-frame of L(Dn) or
just a single element. In the first case, one has terms giving elements of
the ring associated with the frame or else a collapse of the frame. Again,
considering relations on those ring elements one has terms enforcing
these relations simultaneously - or else a collapse. Also, when applied
to elements satisfying the relations, these remain unchanged. �
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6. Satisfiability problems

Dealing with modular lattices of finite height we consider 0 and 1 as
constants.

Lemma 6.1. Let L be an ML of height n with an n-frame aij. For any

pair f(x), g(x) of lattice terms one can construct lattice polynomials

f−(x), g+(x) with constants aij such that the following are equivalent

(1) L |= ∃x. f(x) < g(x)
(2) L |= ∃x. f−(x) = 0 & g+(x) = 1

If L admits an involution such that ajj ≤ a′ii for j 6= i, then one can

construct h(x, y) and add

(3) L |= ∃x. h(x, x′) = 1

Construction and identification of the output polynomials, as well as

reconstruction of the input terms can all be done in PTIME.

Proof. Define bk =
∑

i≤k aii, f
−
k = akk(bk−1 + f), and f− =

∏
k f

−
k .

Similarly, for g+. Put h = g(x)f̃(y) where f̃ arises from f− by in-
terchanging + and · and replacing the constants by the corresponding
elements of the dual n-frame canonically associated with the given n-
frame. In the case of MOLs this gives rise to a ternary discriminator
polynomial on L [9]. �

Theorem 6.2. Let F be a field and n ≥ 3.

(i) With each polyonmial p(x) over F one can associate latttice

terms p−(y) and p+(y) such that

F |= ∃x. p(x) = 0 ⇔ L(F n) |= ∃y. p−(y) = 0 & p+(y) = 1

(ii) With any pair s(y), t(y) of lattice terms on can associate poly-

nomials p1(x), . . . , pn(x) with integer coefficients such that

L(F n) |= ∃y. s(y) = 0 & t(y) = 1 ⇔ F |= ∃x. p1(x) = . . . = pn(x) = 0

(iii) If F n admits an inner product Φ then with any ortholattice term

t(y) one can associate integer pi(x) such that

L(F n,Φ) |= ∃y. t(y) = 1 ⇔ F |= ∃x. p1(x) = . . . = pn(x) = 0

All this can be done in PTIME and does not depend on F for polyno-

mials with integer coefficients.

Here, we conceive the p(x) primarily as terms. But, as far as solv-
ability is concerned, transition to a linear combination of monomials
can be done in PTIME - adding variables.
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Proof. In (i) use the lattice terms providing an n-frame and the inter-
pretation of F into L(F n). In (ii) and (iii) replace the (ortho)lattice
variables by matrices with variables for elements of F and recall the de-
scriptions of joins, meets, and orthocomplements in L(F n×n). Solving
t(y) = 1 amounts to capturing the identity matrix. �

Corollary 6.3. Let F be a subfield of R and Φ the canonical scalar

product on F n where n ≥ 3. Then the following satisfiability problems

are polynomially equivalent

L(F n) |= ∃x. f(x) < g(x) f ≤ g lattice terms

L(F n) |= ∃x. f(x) = 0 & g(x) = 1 f, g lattice terms

L(F n,Φ) |= ∃x. t(x) = 1 t ortholattice term

F |= ∃x. p(x) = 0 p integer polynomial

As remarked by George McNulty, decidability of the latter is an open
and controversial question for F = Q [20]. To get p from the pi put
p =

∑
i p

2
i .

7. Real complexity

Henceforth, we consider Rn and Cn always with the canonical scalar
product Φ.

Corollary 7.1. The decision problems for each single TheqL(Rn,Φ),
n ≥ 3, als well as for TheqN are polynomially equivalent and coBP (NP 0

R
)-

complete. In particular, they are coNP-hard and in PSPACE.

Here, BP (NP 0
R
) refers to non-deterministic polynomial time in the

Blum-Shub-Smale model of real computation with constants 0, 1, only,
and binary input.

Proof. The equational theory of a class C is just the complement of the
set of sentences ∃x. t(x) = 1 satisfiable in some member of C. Thus,
the claim about the L(Rn,Φ) follows from Cor.6.3 and the fact that
feasability of integer polynomials over R is known to be BP (NP 0

R
)-

complete cf. [17]. Also, with Prop.1 it follows that TheqN is in
coBP (NP 0

R
). To prove completeness, we interpret feasability of integer

polynomials via 3-frames into L(R3n,Φ) for all n ≥ 1 simultaneously:
according to L(R3n) ∼= L((Rn×n)3) we see the xi as variables for ma-
trices Ai ∈ Rn×n. Imposing the relations Ai = At

i and AiAj = AjAi,
which we can enforce via ortholattice terms to be built into the iden-
tity t(y) = 1, we achieve that the Ai are simultaneously diagonalizable,
whence from p(A) = 0 we obtain a solution in R. The cases 3n+1 and
3n+ 2 are dealt with considering the 3n-part of the frame. �
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8. MOL-representations

Given an inner product space (V,Φ) which is an elementary extension
of an unitary space, an e-unitary representation of an MOL L is a 0-
lattice embedding ε : L→ L(V ) such that

ε(a′) = ε(a)⊥ for all a ∈ L.

Theorem 8.1. Bruns, Roddy, H. [2, 8, 11]. For any e-unitary repre-

sentation of an MOL, there is an atomic MOL L̃ which is a sublattice

of L(V ) and contains both ε(L) and L(V,Φ) as sub-OLs.

Proposition 8.2. H., Roddy [8, 11]. L ∈ N if L admits an e-unitary

representation. For subdirectly irreducibles, the converse holds, too.

Proof. Prop.1 and the fact, that all sections of fixed finite height have
the same first order theory. Conversely, by the Jónsson Lemma we
have L ∈ HSPu{L(Cn) | n < ∞} and show that representability is
preserved. �

9. ∗-regular rings and representations

An associative ring (with or without unit) R is (von Neumann) reg-

ular if for any a ∈ R there is a quasi-inverse x ∈ R such that axa = a.
A ∗-ring is a ring with an involution ∗ as additional operation:

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, x∗∗ = x.

e is a projection if e = e∗ = e2. A ∗-ring is ∗-regular if it is regular and,
moreover, positive: xx∗ = 0 only for x = 0. Equivalently, for any a ∈ R

there is a (unique) projection e such that aR = eR. Examples are the
Cn×n with r∗ the adjoint matrix. The projections of a ∗-regular ring
with unit form an MOL L(R) where e ≤ f ⇔ e = ef and e′ = 1 − e.
Now, e 7→ eR is an isomorphism of L(R) onto the ortholattice of prin-
cipal right ideals of R and we may use the same notation for both.

Let (V,Φ) be an elementary extension of a unitary space. Denote by
φ∗ the adjoint of φ - if it exists. An e-unitary representation of a ∗-ring
R is a ring embedding ι : R → End(V ) such that ι(r∗) = ι(r)∗ for any
r ∈ R.

Proposition 9.1. Giudici [5]. If ι : R → End(V ) is an e-unitary

representation of the ∗-regular ring R, then

ε(eR) = Im ι(e)

is an e-unitary representation of the MOL L(R) in (V,Φ).
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10. Von Neumann algebras

A von-Neumann algebra M is an unital involutive C-subalgebra of
the algebra B(H) of all bounded operators of a separable Hilbert space
H with M = M′′ where A′ = {φ ∈ B(H) | φψ = ψφ ∀φ ∈ A} is
the commutant of A. M is finite if rr∗ = 1 implies r∗r = 1. For such,
the projections of M form a (continuous) MOL L(M). A finite von-
Neumann algebra is a factor if its center is C · 1. Particular examples
of finite factors are the algebras Cn×n of all complex n-by-n-matrices.

Theorem 10.1. Murray-von-Neumann [18]. Any finite von-Neumann

algebra factor is either isomorphic to Cn×n for some n < ∞ (type In)
or contains for any n <∞ a subalgebra isomorphic to Cn×n (type II1).

Theorem 10.2. Murray-von-Neumann [18]. For every finite factor M,

there is a ∗-regular ring U(M) of unbounded operators on H having M

as ∗-subring and such that φ∗ is adjoint to φ. Moreover, M and U(M)
have the same projections.

Theorem 10.3. U(M) admits an e-unitary representation.

Proof. By the Compactness Theorem, it suffices to consider countable
∗-subrings R of U(M). A representation of R is constructed from the
given Hilbert space H . Let H0 be the intersection of all domains of
operators φ ∈ R. Define, recursively, Hn+1 as the intersection of Hn

and all preimages φ−1(Hn) where φ ∈ R. Hω =
⋂

n<ω Hn. Due to
Murray and von Neumann, all Hn and Hω are dense in H . It easily
follows, that ε(φ) = φ|Hω defines a representation. �

Corollary 10.4. TheqN = TheqL(M) for any finite von Neumann

algebra factor M of infinite dimension.

Proof. Observe L(M) ∼= L(U(M)) and apply Prop.8.2 and 9.1. �

Corollary 10.5. For any finite von Neumann algebra factors M and

N

U(N) ∈ HSPuU(M), U(N) ∈ HSPu{Cn×n | n <∞}

and, analogously, for the projection lattices.

Proof. With suitable choice of quasi-inverse, ∗-regular rings form a con-
gruence distributive variety - the congruence lattice of R is isomorphic
to that of L(R). The L(M) are simple. Thus, the Jónsson Lemma can
be applied. �

A question, raised by Connes and still unanswered, asks whether the
Banach-space version of this result is true.
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