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1. Preliminaries
By the classical Nielsen-Schreier theorem (see,

for example, [11] ), every subgroup of a free group
is itself free. This fact stimulated a strong interest
in establishing the analogs of the Nielsen-Schreier
theorem in different varieties of algebras (for some
activity in this direction one may consult, for
instance, [3] ). As a result, Schreier varieties of
algebras, namely varieties in which any subalgebra
of any free algebra is itself free, emerged. Varieties
of all groups, all abelian groups, all abelian groups
of prime exponent, varieties of all Lie algebras over
fields, as well as varieties of all nonassociative
algebras over fields are all examples of Schreier
varieties. However, in homological algebra,
projective algebras — algebras which are retracts
of free algebras — play a very special and
important role. Therefore, combining the concepts
of free and projective algebra, one naturally comes
up with the concept of a p-Schreier variety — a
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variety whose projective algebras are all free.
Perhaps the most well-known results concerning
p-Schreier varieties are the following: the category
of modules over a local ring is a p-Schreier variety,
i.e., the homological result that every projective
module over a local ring is free, (see, for example,
Corollary 26.7 in [1] , or Theorem 19.29 in [9] ),
originally proved by Kaplansky; and a confirmation
of Serre’s famous conjecture that the category of
modules over a polynomial ring Rx1, x2,… , xn
over a field R is a p-Schreier variety, independently
proved by D. Quillen and A. Suslin in 1976.

Remark-Short Historical Notes (Lam T. Y., Serr’s
Problem on Projective Modules, Springer, 2006):

“ “Serre’s Conjecture”, for the most part of the
second half of the 20th century, referred to the
famous statement made by J.-P. Serre in 1955, to
the effect that one did not know if finitely
generated projective modules were free over a
polynomial ring Kx1, x2,… , xn, where K is a field.
This statement was motivated by the fact that the
affine scheme defined by Kx1, x2,… , xn is the
algebro-geometric analogue of the affine n-space
over K. In topology, the n-space is contractible, so
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there only trivial bundels over it. Would the
analogue of the latter also hold for the n-space in
algebraic geometry? Since algebraic vector bundels
over Spec Kx1, x2,… , xn correspond to finitely
generated projective modules over Kx1, x2,… , xn,
the question was tantamount to whether such
projective modules were free, for any base field K.

It was quite clear that Serre intended his
statement as an open problem in the
sheaf-theoretical framework of algebraic geometry,
which was just beginning to emerge in the
mid-1950s. Nowhere in his published writings had
Serre speculated, one way or another, upon the
possible outcome of his problem.”

Also, mention the Bass’ result on big projectives.

Theorem (Bass’ Theorem). Not finitely generated
projective modules over Noetherian commutative
integral domains are free.

In this talk, we discuss p-Schreier varieties in the
context of semimodules over semirings, implicitly
studied in [4] , [13] , and [8] .

Recall ([2] ) that a semiring is an algebra
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R,, , 0, 1 such that the following conditions are
satisfied:

(1) R,, 0 is a commutative monoid with
identity element 0;

(2) R, , 1 is a monoid with identity element 1;
(3) Multiplication is distributive over addition

from both sides;
(4) 0r  0  r0 for all r ∈ R.
A semiring R, which is not a ring, very often is

called a proper semiring; and a semiring R is
zerosumfree if the following is true: ∀
a,b ∈ Ra  b  0  a  0 & b  0.

As usual, a left R-semimodule over the semiring
R is a commutative monoid M,, 0M together with
a scalar multiplication r,m  rm from R  M to
M which satisfies the following identities for all
r, r ′∈ R and m,m ′∈ M:

(1) rr
′

m  rr
′

m;
(2) rm  m

′

  rm  rm
′

;
(3) r  r

′

m  rm  r
′

m;
(4) 1m  m;
(5) r0M 0M 0m.
Right semimodules over R and homomorphisms

between semimodules are defined in the standard
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manner. From now on, let M be the variety of
commutative monoids, MR and RM denote the
categories of right and left semimodules with the
classes of objects |MR| and |RM|, respectively, over a
semiring R. As usual (see, for example, Chapter 17
of [2] ), if R is a semiring, then in the category RM,
a free (left) semimodule ∑i∈IRi,Ri≅ RR, i ∈ I, with a
basis set I is a direct sum (a coproduct) of I copies
of RR. A semimodule RP ∈ |RM| is projective if for
any surjective homomorphism f : M  N between
left semimodules M,N ∈ |RM|, and any
R-homomorphism g : P  N, there exists an
R-homomorphism h : P  M such that f ∘ h  g.
Of course, we are free to use the obvious
right-sided analogs of the notions we have just
introduced.

.

2. Division semirings over which all semimodules are projec
A subsemimodule M of a semimodule

M ∈ |MR| is called a projection of M (onto M) if
M is the image of an idempotent endomorphism
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 : M  M; and one has the following general,
almost obvious, observation in a semimodule
context.

Proposition 2.1. A semimodule PR∈ |MR| is
projective iff it is isomorphic to a projection of
some free semimoduleFR∈ |MR|. 

From this observation readily follows

Corollary 2.2. For any multiplicatively idempotent
element e ∈ R of a semiring R, the semimodule
eRR is projective. 

It is well known (see, for instance, Statement 2.1
in [14] ) that division rings are the only rings over
which all modules are free, and therefore,
categories of all modules over division rings
obviously are p-Schreier varieties. In contrast to
division rings, we show that all semimodules over a
division semiring are projective iff the semiring, in
fact, is a division ring.
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Theorem 2.3. For a division semiring R the
following conditions are equivalent:

(1) All (right, or left) R-semimodules are free.
(2) All (right, or left) R-semimodules are

projective.
(3) R is a division ring. 

3. p-Schreier varieties of semimodules over additively -reg

First consider a variety of semimodules over an
additively idempotent semiring R. In this case, it is
clear that the additive reduct R,, 0, i.e., the
commutative monoid R,, 0, of the semiring R is,
in fact, a semilattice with zero 0, and we have the
following important observation.

Proposition 3.1. A category MR of right
semimodules over an additively idempotent
semiring R is not a p-Schreier variety. 
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As usual, for given semirings R and S, an
R-S-semimodule A—in symbols RAS—is a
commutative monoid which is both a left
R-semimodule and a right S-semimodule, with
always ras  ras; a bisemimodule
homomorphism f : RAS RBS is a monoid
homomorphism f : A  B with rfas  fras
always, and RMSA,B denotes the set of all
bisemimodule homomorphisms from A to B.
Clearly, all R-S-semimodules together with
bisemimodule homomorphisms form the category
RMS of R-S-semimodules. In [8] the construction
of and the results on the tensor product bifunctor,
originally introduced in [7] , were considered in the
bisemimodule setting; and among other facts, in
Theorem 3.3 of [8] was shown that for any
semirings R,S,T, any R-S-bisemimodule RBS
∈ |RMS|, the functor MSB,− : TMS  TMR is a right
adjoint to the functor − ⊗ RB : TMR TMS, i.e.,
− ⊗ RB MSB,−; and for any T-R-bisemimodule
TAR ∈ |TMR|, the functor TMA,− : TMS RMS is a
right adjoint to the functor A ⊗R− : RMS TMS, i.e.,
A ⊗R−  TMA,−.

Furthermore, recall two more functors introduced
in [8] . Namely, given any semirings R, S and a
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semiring homomorphism  : R  S, any right
S-semimodule BS may be considered as a right
R-semimodule by pullback along , that is by
defining b  r  br for any b ∈ B, r ∈ R. The
resulting R-semimodule is written #B, and it is
easy to see that the assignments B  #B are
obviously raised to the restriction functor #:MS 

MR. The restriction functor # for left semimodules
is similarly defined.

In particular, the restriction functor #: SM RM,
applied to the left S-semimodule SS, gives the
R-S-bisemimodule RSS #S. Then, tensoring by
#S, one has the extension functor #:
− ⊗R#S  − ⊗RS : MR MS, and by Proposition
4.1 of [8] , we have a natural adjunction #: MR
MS: #, i.e., #  #. Then, the following
observation will prove to be useful.
Proposition 3.2. Let  : R  S be a semiring
homomorphism with a projective right
R-semimodule #S ∈MR. If the category MS of right
semimodules over a semiring S is not a p-Schreier
variety, then MR is not a p-Schreier variety, too.


Recall (see, for example, [5] ) that a commutative
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monoid S,, 0 is called -regular (or an
epigroup) if every its element has a power in some
subgroup of S. Using Clifford representations of
commutative inverse monoids (see, for example,
Theorem 3.2.1 of [5] ), it is easy to show that the
last condition is equivalent to the condition that for
any a ∈ S there exist a natural number n and an
element x ∈ S such that na  x  na  na. A
semiring R is called additively -regular iff its
additive reduct R,, 0 is a -regular monoid.
Then, it is clear that a semiring R is additively
-regular iff for any a ∈ R there exist a natural
number n and an element x ∈ S such that
na  x  na  na. Note that the element x in the last
equation can be chosen to be mutually inverse with
the element na, i.e., na  x  na  na and
x  na  x  x. Indeed, if na  x  na  na for an
element x ∈ S, then one can immediately verify
that na and x  na  x are mutually inverse.
Moreover, as all our semirings contain a
multiplicative identity 1, we can just define an
additively -regular semiring as a semiring R for
which there exist a natural number n and an
element x ∈ R such that n1 and x are mutually
inverse, i.e., n1  x  n1  n1 and x  n1  x  x.
Note that the class of additively -regular semirings



11

is sufficiently abundant — it includes the classes of
associative rings, additively regular (particularly,
additively idempotent) semirings, finite and locally
finite semirings (semirings whose finitely generated
subsemirings are finite), for example. Also, the
categories of semimodules over additively
-regular semirings are certainly of interest, and
some recent homological results about them can be
found in [6] . Anyway, our next result concerns the
categories of semimodules over additively
-regular semirings, extends Proposition 3.1 to the
categories of semimodules over additively
-regular semirings, and solves Problem 1 of [8] .

Theorem 3.3. A category MR of right semimodules
over a proper additively -regular semiring R is not
a p-Schreier variety. 

Corollary 3.4. A category MR of right semimodules
over an additively -regular semiring R is a
p-Schreier variety iff MR is actually a p-Schreier
variety of right modules over a ring R. 
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The next result straightforwardly follows from
Corollary 3.4 and, in fact, extends Theorem 5.7 of
[8] to polynomial semirings over additively
-regular semirings.

Corollary 3.5. The categories of right (left)
semimodules over the polynomial semirings
Rx1, x2,… , xn over proper additively -regular
semirings R are not p-Schreier varieties. 

4. Varieties of semimodules over cancellative division semir

Following [2] , a semiring R is called cancellative
if its additive reduct R,, 0 is a cancellative
monoid, i.e., a  b  a  c  b  c for any a, b
and c in R.

Theorem 4.1. The categories of semimodules over
cancellative division semirings are p-Schreier
varieties. 

We conclude the paper with the following variation
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of Problem 2 of [8] .

Problem. Are the categories of semimodules over
polynomial semirings Rx1, x2,… , xn over
cancellative semifields R p-Schreier varieties?
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