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Basic definitions

A digraph will be a directed graph with loops allowed, i.e.
the relational structure G = (V, E) with E C V2.

Given a graph, we can define the algebra of its idempotent
polymorphisms Pol G.

A polymorphism m : V3 — V is Maltsev if for all x,y € V
we have

m(x,y,y) =x m(x,x,y)=y.

A polymorphism M : V3 — V is a majority if for all
x,y € V we have

M(y,x,x) = M(x,y,x) = M(y, x,x) = x.
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T A digraph will be a directed graph with loops allowed, i.e.
el the relational structure G = (V, E) with E C V2.

Given a graph, we can define the algebra of its idempotent
polymorphisms Pol G.

A polymorphism m : V3 — V is Maltsev if for all x,y € V
we have

m(x,y,y)=x m(x,x,y)=y.

A polymorphism M : V3 — V is a majority if for all
x,y € V we have

M(y,x,x) = M(x,y,x) = M(y, x,x) = x.



Maltsev = majority

We will call a digraph G Maltsev resp. having a majority if
Pol G contains a Maltsev resp. majority polymorphism.
In general algebras, having Maltsev operation does not
imply having majority (consider the group Z; x Zj).

However, we show that if a digraph is Maltsev then it does
have a majority.

From now on we will assume that G is has a Maltsev
operation m and is smooth.
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We will call a digraph G Maltsev resp. having a majority if
Pol G contains a Maltsev resp. majority polymorphism.

In general algebras, having Maltsev operation does not
imply having majority (consider the group Z; x Zj).
However, we show that if a digraph is Maltsev then it does
have a majority.

From now on we will assume that G is has a Maltsev
operation m and is smooth.



Rectangularity

e Let x,y,x',y’ be vertices of G and let

(5y), (<), (X y) € E.

e Now apply the Maltsev polymorphism m and we get .
o ...that (x,y’) € E as well.

e We say that E is rectangular.
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Rectangularity

Let x,y, x’,y’ be vertices of G and let
(. ¥), (X', y"), (X, y) € E.
Now apply the Maltsev polymorphism m and we get ...

...that (x,y’) € E as well.

We say that E is rectangular.



R* and R~

{ue V(G)

e For vin V, we will denote by vT the vertex set
:(v,u) € E(G)} by v~ the vertex set
{ve V(G) : (u,

(u,v) € E(G)}.

e For u, v vertices of G, we write uRTv if u™ = vt and
uR vifu =v .
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For v in V, we will denote by v the vertex set
The R* and {ve V(G):(v,u) € E(G)} by v~ the vertex set
R™ relations
{ve V(G): (u,v) € E(G)}.
e For u, v vertices of G, we write uRTv if uT = vt and
uR vifu =v.
X

Y

e In the picture, we have x™ = y ™ therefore xRTy.



R™ and R~ are nice

e As E is rectangular, we obtain the following:
e The relations R and R~ are equivalences on V.

e The mapping ¢ : E — E* is a bijection from the set of
equivalence classes of R to the set of equivalence classes

of R™.
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The graphs G and G~

Given G, we define the graph G whose vertices are the

equivalence classes of Rt and (U, V) € E(G™) iff there
exist vertices u € U,v € V with (u,v) € E(G).
We define G~ similarly.

A little thought gives us that G* and G~ are isomorphic.
It turns out that if G is Maltsev then sois G*.
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The graphs G* and G~

Given G, we define the graph G whose vertices are the
equivalence classes of RT and (U, V) € E(G™) iff there
exist vertices u € U, v € V with (u,v) € E(G).

We define G~ similarly.
A little thought gives us that G* and G~ are isomorphic.
It turns out that if G is Maltsev then so is GT.



Proof by induction

e We are now ready for a proof by induction.

Assume that G is the smallest Maltsev graph without a
majority operation.

If [V(GT)| = |V(G)| then G is a graph of a permutation

and we win.

e Else...
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o If |V(GT)| =|V(G)| then G is a graph of a permutation
and we win.
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Proof by induction

We are now ready for a proof by induction.

Assume that G is the smallest Maltsev graph without a
majority operation.

If [V(GT)| = |V(G)| then G is a graph of a permutation
and we win.

Else. ..



Extending the majority

e Else, we have a majority operation M™ on G™ and M~ on
G~ which we can extend to M on G by demanding that

[/\/l(x,y,z)]R+ o M+([X]R+7 [y]R+7 [Z]R+)
[M(X‘/y? Z)]R* o Mﬁ([X]Rfv [y]R*7 [Z]R*)

e Examining R and R~, we discover that such an M

always exists and is a majority polymorphism of G.

«O>r «Fr «=>»

«E)»



Maltsev
digraphs have
a majority
polymorphism

Alexandr
Kazda

How to obtain
a majority

Extending the majority

e Else, we have a majority operation M™ on G™ and M~ on
G~ which we can extend to M on G by demanding that

[I\/l(xayvz)]/'?+ = M+([X]R+7 [y]R+7 [Z]R+)
[M(X7y7z)]R* = Mﬁ([X]R*J [y]R*J [Z]R*)



Maltsev
digraphs have
a majority
polymorphism

Alexandr
Kazda

How to obtain
a majority

Extending the majority

e Else, we have a majority operation M™ on G™ and M~ on
G~ which we can extend to M on G by demanding that

[I\/l(Xayvz)]R+ = M+([X]R+7 [y]R+7 [Z]R+)
[M(X7y7z)]R* = Mﬁ([X]R*J [y]R*J [Z]R*)

e Examining R™ and R~, we discover that such an M
always exists and is a majority polymorphism of G.



CSP complexity

If G is a graph, add constants (=names of vertices) to the
language of G and consider the problem CSP(G,).
P...

If G is Maltsev then we already know that CSP(G.) is in

... however, if G has both Maltsev and majority then
CSP(G,) is even easier: solvable in deterministic

logspace.

logarithmic space (a result by V. Dalmau and B. Larose).
Therefore we have G Maltsev = CSP(G,) is solvable in
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language of G and consider the problem CSP(G,).
e If G is Maltsev then we already know that CSP(G.) is in
Conclusions P ..
e ...however, if G has both Maltsev and majority then

CSP(Gc) is even easier: solvable in deterministic
logarithmic space (a result by V. Dalmau and B. Larose).
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If G is a graph, add constants (=names of vertices) to the
language of G and consider the problem CSP(G,).

If G is Maltsev then we already know that CSP(G,.) is in

Conclusions P ..

e ...however, if G has both Maltsev and majority then
CSP(Gc) is even easier: solvable in deterministic
logarithmic space (a result by V. Dalmau and B. Larose).
Therefore we have G Maltsev = CSP(G,) is solvable in
logspace.



Open problems

Is it possible to generalize the result to the case when G
has several edge relations?

What other implications of the type “G has t then G
has s” hold in graphs but not for general algebras?

e Maybe some such implications hold for all finitely
presented algebras?

It would also be interesting to estimate the number of
Maltsev graphs on n vertices.
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Open problems

Is it possible to generalize the result to the case when G
has several edge relations?

What other implications of the type “G has t then G
has s” hold in graphs but not for general algebras?
Maybe some such implications hold for all finitely
presented algebras?

It would also be interesting to estimate the number of
Maltsev graphs on n vertices.



Thanks for your attention.
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