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A term t(x1, . . . , xn) is

I idempotent if t(x , . . . , x) ≈ x ;

I a Taylor term if it is idempotent and, for any j ≤ n;

t(�1,�2, . . . ,�n) ≈ t(41,42, . . . ,4n),

where �i ’s and 4i ’s are either x or y , but �j is x while 4j is y ;

I weak near-unanimity if it is idempotent and

t(y , x . . . , x) ≈ t(x , y , x , . . . , x) ≈ · · · ≈ t(x , . . . , x , y)

Theorem (Maróti and McKenzie)
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Theorem (Maróti and McKenzie)

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 2 / 20



A term t(x1, . . . , xn) is

I idempotent if t(x , . . . , x) ≈ x ;

I a Taylor term if it is idempotent and, for any j ≤ n;

t(�1,�2, . . . ,�n) ≈ t(41,42, . . . ,4n),

where �i ’s and 4i ’s are either x or y , but �j is x while 4j is y ;

I weak near-unanimity if it is idempotent and

t(y , x . . . , x) ≈ t(x , y , x , . . . , x) ≈ · · · ≈ t(x , . . . , x , y)
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Let V be a locally finite variety then TFAE:

I V has a Taylor term;

I V has a weak near-unanimity term.
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t(y , x . . . , x) ≈ t(x , y , x , . . . , x) ≈ · · · ≈ t(x , . . . , x , y)

Theorem (Maróti and McKenzie)

Let f be an n-ary function on a finite set satisfying identities of a Taylor
term. By composing and identifying coordinates a function satisfying the
weak near-unanimity identities can be produced from f .
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A term t(x1, . . . , xn) is

I cyclic if it is idempotent and t(x1, . . . , xn) ≈ t(x2, . . . , xn, x1).

Theorem (Barto, Kozik)

For a finite algebra A TFAE:

I A has a Taylor term;

I A has a cyclic term;

I A has a cyclic term of arity p, for every prime p > |A|.
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Part I



We start slowly:

Lemma

Let A be a finite idempotent algebra. Then there exists a term t such that
for any B ⊆ A and any b ∈ SgA(B) there exists b1, . . . , bn ∈ B such that
t(b1, . . . , bn) = b.

I the term t(x1, . . . , xn) works for (B, c) if there are b1, . . . , bn ∈ B
such that

t(b1, . . . , bn) = c

I for two terms t(x1, . . . , xn) and s(x1, . . . , xm) the term

s(t(x1, . . . , xn), . . . , t(xnm−n+1, . . . , xnm))

works for (B, c) given t(x1, . . . , xn) or s(x1, . . . , xm) work for (B, c).
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Definition (VBD-absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B ≤ A is VBD-
absorbing if there exists a term t(x1, . . . , xn) such that

t(a1, . . . , an) ∈ B whenever {a1, . . . , an} ∩ B 6= ∅

Lemma (Barto)

Let A be a finite idempotent algebra with a Taylor term then:

I A has a proper VBD-absorbing subalgebra, or

I there is a term t(x1, . . . , xn) (a magic term) such that, for any
b, c ∈ A and any j ≤ n there are a1, . . . , aj−1, aj+1, . . . , an such that:

t(a1, . . . , aj−1, b, aj+1, . . . , an) = c .
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I blue is a subuniverse that can be obtained
from s(x1, . . . , xn) with b at position j ;

I we define a new term
T (s(x1, . . . , xn), . . . , s(xnm−n+1, . . . , xnm))

I blue can be obtained from the new term
with b at position j ;

I T1(x , y) := T (x , . . . ) ≈ T (y , . . . )

I blue is not VBD-absorbing, so T1(b, c) = d

I if b is blue then d can be obtained directly

I but if b is not blue then d can be obtained
as well since T1(b, c) = T (c , . . . )

I using previous lemma we can obtain a
bigger subuniverse.
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Definition (Absorbing subalgebra)

Let A be a finite idempotent algebra. The subalgebra B ≤ A is
absorbing (and write B C A) if there exists a term t(x1, . . . , xn) such that

t(a1, . . . , an) ∈ B whenever |{ i : ai /∈ B}| ≤ 1.

Definition

A set R ⊆ A× B is linked if R ◦ R−1 ◦ R ◦ · · · ◦ R−1︸ ︷︷ ︸
n

= B2 for some n.

Theorem (Absorption theorem)

Let A ≤s B× C be algebras with a Taylor term, and let A ⊆ B × C be
linked. Then:

I A = B× C, or

I B or C has a proper absorbing subalgebra
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Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
both on the red side

I by lemma we can find b2 and b3 s.t.
t(b1, b2, b3) = b4

I this implies edge from a4 to b4

I since b4 was arbitrary we get more edges

I and can extend blue

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 9 / 20



Special case:

I elements that arrow everything on red side
are blue

I blue is a subuniverse of blue side

I blue is not absorbing so t(a1, a2, a3) = a4

for the magic term t(x1, x2, x3).

I b1 is fixed and b4 is arbitrary
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The general case:

I we can assume that A−1 ◦ A = B2

I blue is a subuniverse of red side

I and we restrict to blue for now

I inside this new set we can find absorbing
subuniverse blue

I and consider its neighbours on blue side

I but the left blue absorbs blue side

I therefore blue is adjacent to whole blue side

I now we are in simple case

I and therefore have more edges

I looking from right to left we have a
situation from simple case again and we are
done
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Part II



The goal:

I A digraph is a pair G = (V ,E ) where E ⊆ V × V

I A digraph G = (V ,E ) is smooth if E is subdirect in V × V ;

I A smooth, connected digraph G = (V ,E ) has algebraic length 1 if

Rn ◦ R−n ◦ Rn ◦ · · · ◦ R−n︸ ︷︷ ︸
n

= V 2 for some n;

I A smooth digraph has algebraic length 1 if one of its connected
components does.

Theorem (Smooth)

Let E ≤S B× B be algebras with Taylor term such that (B,E ) has
algebraic length 1. Then (b, b) ∈ E for some b ∈ B.

But sometimes we need a more specific b. . .
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to be more specific:

Theorem (Smooth)

Let E ≤S B× B be algebras with Taylor term such that (B,E ) has
algebraic length 1. Then (b, b) ∈ E for some b ∈ B and, in fact, we can
find (b, b)

I in every connected component of algebraic length 1 in (B,E );

I in some minimal absorbing subuniverse in such a component (if there
is one).
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Case of an absorbing set (connected):

I blue is an absorbing subuniverse

I so is its forward neighbourhood

I so is its forward neighbourhood

I backward neighbourhood of blue is the
whole graph and we stop

I to find a cycle in blue we choose an
arbitrary element of blue

I since backward neighbourhood of blue is
the whole graph we can find a new element
in blue with arrow from the old one

I repeating this step we obtain a cycle inside
blue

I all elements in smooth graph inside blue
form a new and better blue
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Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 16 / 20



Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 16 / 20



Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 16 / 20



Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 16 / 20



Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence

Marcin Kozik and Libor Barto (Kraków) Second look at cyclic terms Prague, June 2010 16 / 20



Case of an no absorbing set (connected):

I if E is the set of edges, then E ◦ E is dark
blue

I take a minimal n such that:

E n ◦ E−n ◦ E n ◦ · · · ◦ E−n︸ ︷︷ ︸
n

= B2

I note that E n is linked an subdirect
subuniverse of B× B

I since there are no absorbing subalgebras of
B we get E n = B × B

I for big enough k

E n−1 ◦ E−(n−1) ◦ E n−1 ◦ · · · ◦ E−(n−1)︸ ︷︷ ︸
k

is a congruence

I and it is not the full congruence
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Continued:

I suppose E ◦ E ◦ E = B × B

I choose an arbitrary element

I we can find another element congruent wrt

E 2 ◦ E−2 ◦ E 2 ◦ · · · ◦ E−2︸ ︷︷ ︸
k

I therefore congruence class of the element
contains a smooth digraph

I lets take only the elements from this
smooth digraph

I element from inside is congruent to the
element from outside

I and again

I and we obtained a reduction to the inside
the congruence block
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Part III



In this section we prove the main theorem of this paper. As every cyclic term is a Taylor term Theorem will follow immediately when we prove:

Theorem

Let A be a finite algebra in a Taylor variety and let p be a prime such that p > |A|. Then A has a p-ary cyclic term operation.

The remainder of this section is devoted to the proof of this theorem.
We fix a prime number p, we fix a Taylor variety V and we consider a minimal counterexample to the theorem with respect to the size of A. Thus A is a finite algebra in V, p > |A|, and for all B ∈ V with |B| < |A|, B has a cyclic term of arity p i.e., by Lemma , every cyclic subuniverse of Bp contains a constant tuple.
An easy reduction proving the following claim can be found in (its proof follows the lines of the proof of Corollary ).

Claim

A is simple.

From Lemma it follows that there exists a cyclic subalgebra R of Ap containing no constant tuple. Let Rk , k = 1, 2, . . . , p denote the projection of R to the first k coordinates, that is
Rk = {(a0, a1, . . . , ak−1) : (a0, . . . , ap−1) ∈ R}.

Note that, from the cyclicity of R, it follows that for any i we have
Rk = {(ai , ai+1, . . . , ai+k−1) : (a0, . . . , ap−1) ∈ R},

where indices are computed modulo p. In next claim we show that R is subdirect in Ap:

Claim

R1 = A.

Proof.

The projection of R to any coordinate is a subalgebra of A. From cyclicity of R it follows that all projections are equal, say to B. B is a subuniverse of A and if it is a proper subset of A, then R ≤S Bp contains a constant tuple by the minimality assumption, a contradiction.

We will prove the following two claims by induction on n = 1, 2, . . . , p. Note that for n = 1 both claims are valid and that property (P1) for n = p contradicts the absence of a constant tuple in R.

(P1) There exists I // A such that In // Rn.
(P2) If I1, . . . , In // A and (I1 × · · · × In) ∩ Rn 6= ∅, then I1 × · · · × In // Rn.

We assume that (P1) and (P2) hold for some n ∈ {1, . . . , p − 1} and we aim to prove these properties for n + 1. We fix I // A such that In // Rn guaranteed by (P1). Let
S = {((a0, . . . , an−1), an) : (a0, . . . , an) ∈ Rn+1}

and let S denote the subalgebra of An+1 with universe S . Thus S is basically Rn+1, but we look at it as a (subdirect) product of two algebras Rn and A: S ≤S Rn × A.
The aim of next few claims is to show that S is linked. First we show, that it is enough to have a “fork”.

Claim

If there exist a ∈ Rn and b, b′ ∈ A, b 6= b′ such that (a, b), (a, b′) ∈ S , then S is linked.

Proof.

Let k = |A|. We define a binary relation ∼ on A by putting b ∼ b′ if and only if there exist tuples a1, . . . , ak ∈ Rn and elements b = c0, c1, . . . , ck = b′ ∈ A such that for every i ∈ {1, 2, . . . , k} we have
(ai , ci−1), (ai , ci ) ∈ S .

It is clearly reflexive and symmetric. It is also transitive as we have chosen k big enough. It follows immediately form the definition that ∼ is a subuniverse of A2.
Therefore ∼ is a congruence of A. Moreover, from the assumption of the claim it follows that ∼ is not the smallest congruence (as b ∼ b′ for b 6= b′). Since A is simple, ∼ is the full relation on A and therefore S is linked.

The next claim shows that S is linked in case that A has no proper absorbing subuniverses.

Claim

If I = A then S is linked.

Proof.

From (P1) we have Rn = An. If there are (a0, . . . , ap−1), (b0, . . . , bp−1) ∈ R such that ai 6= bi for some i and a0 = b0, a1 = b1, . . . , an−1 = bn−1, then, by cyclically shifting these tuples, we obtain a′0 = b′0, . . . , a′n−1 = b′n−1, but an 6= bn — a fork and Claim proves that S is linked.
In the other case, tuples in R are determined by the first n projections, thus |R| = |Rn| = |A|n. Consider the mapping σ : R → R sending a tuple (a0, . . . , ap−1) ∈ R to its cyclic shift (a1, . . . , ap−1, a0) ∈ R. Clearly, σ is a permutation of R satisfying σp = id. Now p is a prime number and |R| = |A|n is not divisible by p (as p > |A|), therefore σ has a fixed point — a constant tuple, a contradiction.

The harder case is when I 6= A. We need two more auxiliary claims.

Claim

If I 6= A then there exists J // A such that I 6= J and (I n × J) ∩ Rn+1 6= ∅.

Proof.

Observe that I p ∩ R is a cyclic subuniverse of Ip without a constant tuple. Therefore I p ∩ R is empty. On the other hand I n ∩ R 6= ∅ by (P1), so that there exists a greatest number k , n ≤ k < p, such that (I k × Ap−k) ∩ R is nonempty. Consider the set

X = {a : (a0, . . . , ak−1, a) ∈ Rk+1, a0, . . . , ak−1 ∈ I}.

It is easy to check that X is an absorbing subuniverse of A. As I k+1 ∩ R is empty, X is disjoint from I . Let J be a minimal absorbing subuniverse of X. We have J // A (as J // X / A), I 6= J and (I k × J) ∩ Rk+1 6= ∅. We take a tuple in R whose projection to the first (k + 1) coordinates lies in I k × J, and shift it (k − n) times to the left (recall that k − n ≥ 0). This tuple shows that (I n × J) ∩ Rn+1 is nonempty.

Similarly we can show that there exists a minimal absorbing subalgebra J′ of A distinct from I such that (J ′ × I n) ∩ Rn+1 is nonempty.
We consider the following two subsets of A× A.

F = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1}

E = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1 & ci ∈ I ∀i}

Let V1 and V2 denote the projections of E to the first and the second coordinate, so that E ⊆S V1 × V2.

Claim

E is a linked subuniverse of A2 and V1,V2 / A.

Proof.

It is straightforward to check that E and F are subuniverses of A2, that E / F and that V1,V2 / A, where E,F denote the subalgebras of A2 with universes E ,F and V1,V2 denote the subalgebras of A with universes V1,V2. From Claim we know that F ≤S A× A.
Similarly as in the proof of Claim we will show that F is linked. Let k = |A| and let us define a congruence ∼ on A by putting b ∼ b′ if and only if there are a1, a2, . . . , ak , b = b0, b1, . . . , bk = b′ ∈ A such that for all i ∈ {1, 2, . . . , k}

(ai , bi−1), (ai , bi ) ∈ F .

The proof that ∼ is a congruence follows exactly as in Claim .
Take an arbitrary tuple (a0, . . . , ap−1) ∈ R. As p is a prime greater than |A| we can find indices i , j such that ai = aj and ai+n 6= aj+n (indices computed modulo p) as otherwise there would be a constant tuple in R. The pairs (ai , ai+n) and (aj , aj+n) are in F (by shifting (a0, . . . , ap−1)), therefore ∼ is not the smallest congruence. Since A is simple, ∼ is the full congruence on A, thus F is linked. By Corollary .(i), E is linked as well.

Now we can finally show that S is linked.

Claim

S is linked.

Proof.

From Claim and the remark following it we know that (a, b′), (a′, b) ∈ E for some a, b ∈ I , a′ ∈ J ′, b′ ∈ J, J, J ′ // A, I 6= J, I 6= J ′. As E is linked, we can find elements a = c0, c1, . . . , c2i = a′ such that c0, c2, . . . , c2i ∈ V1, c1, c3, . . . , c2i−1 ∈ V2 and (c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j = 0, 1, . . . , i − 1. By Corollary .(v) (used for E ≤S V1 × V2) we can assume that all the elements c0, . . . c2i lie in minimal absorbing subuniverses of V1 or V2 (which are also minimal absorbing
subuniverses of A, since V1,V2 / A). It follows that there exist w ∈W // V1 and u ∈ U // V2, v ∈ V // V2 such that (w , u), (w , v) ∈ E , U 6= V . Therefore there exist a1, . . . , an−1, a

′
1, . . . , a

′
n−1 ∈ I such that (w , a1, . . . , an−1, u), (w , a′1, . . . , a

′
n−1, v) ∈ Rn+1.

From the induction hypotheses (P2) we know that W × I n−1 // Rn. Also V // A and ((W × I n−1)× V ) ∩ S) 6= ∅. By Corollary .(ii), ((W × I n−1)× V ) ∩ T ≤S (W × I n−1)× V . In particular, there exists v ′ ∈ V such that (w , a1, . . . , an−1, v
′) ∈ Rn+1. Now recall that (w , a1, . . . , an−1, u) ∈ Rn+1 and observe that u and v ′ are distinct, since they lie in different minimal absorbing subuniverses. Then S is linked by Claim .

We are ready to prove (P2) for n + 1.

Claim

(P2) holds for n + 1.

Proof.

Let I1, . . . , In+1 be absorbing subalgebras of A such that (I1 × · · · × In+1) ∩ Rn+1 6= ∅. Now S is a linked subdirect subuniverse of Rn × A, I1 × · · · × In is a minimal absorbing subuniverse of Rn (from the induction hypotheses (P2)), In+1 // A and ((I1 × · · · × In)× In+1) ∩ S 6= ∅. By Corollary .(iii), (I1 × · · · × In)× In+1 is a minimal absorbing subuniverse of S and thus I1 × · · · × In+1 is a minimal absorbing subuniverse of Rn+1.

To prove (P1) for n + 1 we define a digraph on Rn by putting
((a0, . . . , an−1), (a1, . . . , an)) ∈ E

whenever (a0, . . . , an) ∈ Rn+1. We want to apply Theorem to obtain a loop in the digraph G = (Rn,E ) in a minimal absorbing subuniverse of Rn.
Observe that E is a subuniverse of R2

n. Next we show that I n is contained in a weak component of G.

Claim

Any two elements of I n are in the same weak component of the digraph G.

Proof.

The set X = {x : (a0, . . . , an−1, x) ∈ Rn+1, a0, . . . , an−1 ∈ I} is an absorbing subuniverse of A. Let X0 be a minimal absorbing subuniverse of the algebra X with universe X . We have found X0 /A such that (I n ×X0)∩Rn+1 6= ∅. Similarly we can find X1,X2, . . . ,Xn−1 such that (I n−i ×X0×X1× · · · ×Xi )∩Rn+1 6= ∅ for all i = 0, 1, . . . , n− 1. From (P2) for n + 1 (Claim ) it follows that I n−i ×X0×X1× · · · ×Xi ⊆ Rn+1 for all i . Now choose arbitrary elements xi ∈ Xi and take any tuple
(b0, . . . , bn−1) ∈ I n. Since, for all i = 0, 1, . . . , n − 1, the tuple (bi , . . . , bn−1, x0, x1, . . . , xi ) belongs to Rn+1, the vertices (bi , . . . , bn−1, x0, . . . , xi−1) and (bi+1, . . . , bn−1, x0, . . . , xi ) are in the same weak component of G. Therefore the vertex (b0, . . . , bn−1), which was an arbitrarily chosen vertex in I n, is in the same weak component as the vertex (x0, . . . , xn−1).

The last assumption of Theorem is proved in the next claim.

Claim

The weak component of G containing I n has algebraic length 1.

Proof.

As E is connected, we reason as in the proof of Claim 7, to get b = c0, c1, . . . , c2i , b in minimal absorbing subuniverses of A such that b ∈ I , and (c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j = 0, . . . , i − 1 and (c2i , b) ∈ E . Property (P2) for n + 1 (Claim ) proves that (c2j , b, . . . , b, c2j+1), (c2j+2, b, . . . , b, c2j+1) ∈ Rn+1 for all j = 0, . . . , i − 1 and (c2i , b, . . . , b, b) ∈ Rn+1. Which gives rise to a (1, j)-fence connecting, in G, the tuple (b, . . . , b) to the tuple (c2i , b, . . . , b) (as c0 = b). As
((c2i , b, . . . , b), (b, . . . , b)) ∈ E we showed that the algebraic length of the weak component containing I n is one.

By Theorem there exists a loop inside a minimal absorbing subuniverse K of Rn. Since the projection J of K to the first coordinate is a minimal absorbing subuniverse of A, we actually get an element a ∈ J // A such that (a, . . . , a) ∈ Rn+1. Now (P1) follows from (P2) and the proof of Theorem is concluded.
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