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language L is in class NP

m

∃ a proof system R(x, y):

1. u ∈ L iff ∃v R(u, v)

2. R(x, y) is p-time decidable

which is p-bounded:

3. R(u, v) −→ ∃w (|w| ≤ |u|c ∧ R(u, w))
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Basic example: 3SAT

satisfiable 3CNF formulas

C1 ∧ . . . ∧ Ck

with each clause Ci having 3 literals, e.g.

Ci : (xr ∨ xs ∨ xt)
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Theorem (Cook’71)

3SAT is NP-complete: every other problem

in the class can be polynomially reduced to

3SAT.

In particular,

P = NP iff 3SAT ∈ P
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coNP: complements of languages from NP

Observation

ϕ /∈ 3SAT iff ¬ϕ ∈ TAUT

A consequence of Cook’s theorem:

NP = coNP iff TAUT ∈ NP
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Conjecture

NP 6= coNP

which implies also NP 6= P.

Propositional proof complexity:

Show that no proof system for TAUT can be

p-bounded.

[Cook’s program]
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A shift to algebra:

replace TAUT by a *natural* coNP-complete

problem and study proof systems for it.

Examples

• unsolvable polynomial systems over a finite

field

• 0-1-unsolvable systems of integer linear in-

equalities

[has a more geometric flavor]

• aux.: Dehn function and lengths-of-proofs

function, model theory, ...
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Fix a finite prime field Fp.

Polynomial system:

fi = 0 , for i = 1, . . . , k

where

• fi ∈ Fp[x1, . . . , xn]

• fi’s include all polynomials

x
p
j − xj
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Nullstellensatz provides a natural proof system

for showing the unsolvability:

{fi = 0}i has no solution in Fp

m

{fi = 0}i has no solution in F acl
p

m

for some {gi}i:
∑

i

gi · fi = 1 .

An NS-proof: any such tuple (g1, . . . , gk)
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A subtle point: how can we verify in p-time an

alleged NS-proof?

Polynomial Identity Testing

Decide if

f = g

holds in Fp[x1, . . . , xn].

Fact

If f, g are given by general terms, it is not

known if PIT can be done in p-time (yes, if

randomization is used).

A simple special case which is OK:

polynomial = an explicit sum of monomials
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Note that then:

size ∼ ndeg

super-polynomial size ⇔ unbounded degree

The task

Find an unsolvable polynomial system

{fi = 0}i

of bounded degree requiring NS-proofs of un-

bounded degree, i.e.

max
i

deg(fi)

is bounded by a constant independent of n, k

while

max
i

deg(gi)

is unbounded as n, k → ∞.
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A general context from algebraic geometry:

the effective NS of Brownawell, Kollar, ...

(late ’80s)

Examples given that require exponential de-

gree (in n) NS-proofs over an algebraically closed

field.

When equations x
p
j − xj = 0 are added these

bounds collapse to a constant.

Note In our case the degree is a priori at most

(p − 1)n.
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Fix q ≥ 2 s.t. q 6≡ 0 (mod p), and any N ≥ 2

s.t. N 6≡ 0 (mod q).

The (N, q)-system. Variables:

xe, for e ⊆ [N ] := {1, . . . , N} s.t. |e| = q

equations:

• x2
e − xe = 0

• xe · xf = 0, if e ⊥ f which abbreviates

e 6= f ∧ e ∩ f 6= ∅

• (1 −
∑

e:i∈e xe) = 0, any i ∈ [N ].

A potential solution would define a q-partition

of [N ]: unsolvable .

12



Theorem (Beame, Impagliazzo, K., Pitassi,

Pudlák ’96)

The (N, q) system has no bounded degree NS-

proofs.

Later improved to Nǫ degree lower bound by

(Buss, Impagliazzo, K., Pudlák, Razborov, Sgall

’97)
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The (N, q)-system is an example of a symmet-

ric polynomial system:

Informal definition

• there is a parameter N ≥ 2 determining the

system

• variables are indexed by bounded size struc-

tures with universes inside [N ]

here simply subsets e ⊆ [N ] of size q

• every permutation π of [N ] induces a per-

mutation of the variables and hence maps

equations into equations

xe · xf 7→ xπ(e) · xπ(f)

• the system is invariant under all such maps

if e ⊥ f then also π(e) ⊥ π(f)
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Ajtai: a work on symmetric systems of linear

equations over Fp

(uses the characteristic-free representation the-

ory of SN of James)

Key example

Fix d ≥ 2 and let Ld(N) be the system of linear

equations for coefficients of a degree ≤ d NS-

proof (g1, . . .) for the (N, q)-system.

Observation

Ld(N) is symmetric. In particular, the variables

are indexed by monomials of degree at most d,

i.e. by ≤ d-tuples of subsets of [N ] of size q.
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Theorem (Ajtai ’94)

For any symmetric system of linear equations

L(N) there is an ℓ ≥ 1 such that for N >> 0

the solvability of L(N) in Fp depends only on

the remainder

N mod pℓ .

Observation

In any remainder class mod pℓ we can find N

divisible by q. For such N :

• the (N, q)-system has a solution

• and hence no Ld(N) has a solution, i.e.

there are no degree ≤ d NS-proofs.
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Generalizing a bit Ajtai’s work in the direction

of the definability of generators for submoduli

of tabloid moduli (Fp[SN ]-moduli with Young

tableaux) I proved (K. ’00 and ’01) that

• a lower bound Ω(logN) for NS-proofs can

be, in fact, deduced

• this whole theory applies to a stronger proof

system PC (next slide) and gives there

Ω(log logN) degree lower bounds

• a a model-theoretic criterion for symmet-

ric polynomial systems can be formulated

implying such lower bounds

(the existence of a first-order structure with

certain properties in terms of an abstract

Euler characteristic in the sense of Schanuel)
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Polynomial calculus PC

The NS proof system witnesses the triviality

of the ideal 〈fi〉i ”statically”: it produces at

once a linear expression for 1 in terms of the

generators.

The PC proof system deduces the triviality

”sequentially”: it proves gradually the mem-

bership of more and more polynomials in the

ideal using two rules:

f g

f + g

and

f

h · f
, any h ∈ Fp[x]

until 1 is derived.
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Observation

The minimal PC-degree is at most the minimal

NS-degree.

Theorem (K. ’01)

The degree of PC proofs of the (N, q)-systems

is at least log logN .

Earlier lower bound (Razborov ’98)

An N/2 lower bound for the degree of PC-

proofs for another polynomial system (encod-

ing PHP).
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A yet stronger proof system F :

• uses arbitrary terms to represent polynomi-

als

• uses equational logic over the commutative

ring axioms to derive new terms from initial

terms (elements of the polynomial system)

For F we cannot define the size in terms of

the degree as for NS and PC: we want a lower

bound for the total number of symbols in all

terms in a proof.

Open problem

Prove a super-polynomial lower bound on the

size of F-proofs.

Sad fact

Only quadratic lower bound is known.
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A broader perspective

We aim at

• NP 6= coNP, i.e. proof-hardness

which implies

• P 6= NP, i.e. computational-hardness.

No reason to shy away from using a suitable

computational hardness hypothesis!
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A form of hardness hypothesis

”Every Boolean circuit performing

a specific task must be large.”

Examples

• P 6= NP if circuits solving SAT must be

super-polynomial

• P = BPP if circuits solving some problem

in E must be exponential

• PRNG exists if circuits computing factor-

ing with a non-negligible success must be

super-polynomial
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Task (hope)

Extract some computational information from

a proof of unsolvability of a polynomial system.

Example

of an idea which works for systems weaker than

F:

feasible interpolation

(K. early 90s, then Razborov, and Bonet-Pitassi-

Raz, and K.-Pudlák, and ....)
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To simplify assume p = 2.

Consider an unsolvable system

fi(x, y) = 0 and gj(x, z) = 0

where

x = (x1, . . . , xn)

are the only common variables.

Definition

U := {a ∈ {0,1}n | {fi(a, y) = 0}i is solvable }

V := {a ∈ {0,1}n | {gj(a, z) = 0}j is solvable }

Facts

U ∩ V = ∅

and any pair of disjoint NP-sets can be defined

in this way, by a system of total size nO(1).
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Theorem Assume P is a degree d NS-proof of

the unsolvability of the system and that U∪V =

{0,1}n.

Then there is a polynomial time algorithm de-

ciding for an input a ∈ {0,1}n whether a ∈ U

or a ∈ V .

Claim One of the systems

{fi(a, y) = 0}i or {gj(a, z) = 0}j

has a degree d NS-proof.

Proof-claim

Substitute x := a in P . It becomes an NS-

proof of unsolvability of

{fi(a, y) = 0, gj(a, z) = 0}i,j .

As a belongs to either U or V , one can further

substitute in P for either y to satisfy the f-

system, or for z to to satisfy the g-system.
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The algorithm

Given an input a ∈ {0,1}n, look for a solution

of the linear system for coefficients of polyno-

mials in degree d NS-proofs for

{fi(a, y) = 0}i and {gj(a, z) = 0}j .

One of them has a solution and this gives the

answer.
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Hardness hypothesis

Hard to separate pairs of disjoint NP-sets ex-

ists.

RSA example

U : encryptions of bit 0

V : encryptions of bit 1

Summary

One derives a degree lower bound for NS from

the security of RSA.
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Remarks

(1)

An analogous theory exists for many proof sys-

tems, and there are generalizations proposed

that - it is hoped - may work also for F .

(2)

It is consistent with the present knowledge that

the proof system F is optimal: no other proof

system has a super-polynomial speed-up.

In such a case it would hold

NP 6= coNP iff F is not p-bounded.

Hence it may only take to prove a lower bound

for equational logic to ... .
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