Ganna Kudryavtseva

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

June 22, 2010

$\mathcal J\text{-}\mathsf{trivial}$ monoids

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A monoid S is called \mathcal{J} -trivial if the Green's relation \mathcal{J} on it is the trivial relation, that is $a\mathcal{J}b$ implies a = b for any $a, b \in S$, or, equivalently all \mathcal{J} -classes of S are one-element. The class of finite \mathcal{J} -trivial monoids is closed with respect to taking finite direct products, finite submonoids and homomorphic images, that is it forms a *finite variety* (quasivariety) of monoids. Examples:

- C_n the monoid of all order-preserving and extensive maps from {1,..., n} into itself.
- R_n the monoid of reflexive relations of the set {1,..., n}, which we consider as a monoid of boolean matrices with diagonal entries equal to 1.
- U_n the submonoid of R_n consisting of the upper triangular matrices.

Straubing's Theorem

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Theorem (Straubing, 1980)

Let M be a finite monoid. The following conditions are equivalent:

- *M* is *J*-trivial.
- *M* divides C_n for some *n*.
- *M* divides \mathcal{R}_n for some *n*.
- *M* divides U_n for some *n*.

Positively ordered semigroups

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A partial order \leq on a semigroup S is called a *positive order* if

• it is compatible with the multiplication on S, that is,

 $a \ge b$ implies $ac \ge bc$ and $ca \ge cb$ for $a, b, c \in S$;

• $a \ge ab$, $a \ge ba$ for all $a, b \in S$.

If S is a monoid than the latter condition is equivalent to the condition that S satisfies the identity $x \le 1$. If S is equipped with a positive order \le then S is called a *positively ordered* semigroup.

If S is a positively ordered semigroup then S is $\mathcal J\text{-trivial}.$ The converse in not true.

Positively ordered semigroups

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A partial order \leq on a semigroup S is called a *positive order* if

• it is compatible with the multiplication on S, that is,

 $a \ge b$ implies $ac \ge bc$ and $ca \ge cb$ for $a, b, c \in S$;

• $a \ge ab$, $a \ge ba$ for all $a, b \in S$.

If S is a monoid than the latter condition is equivalent to the condition that S satisfies the identity $x \le 1$. If S is equipped with a positive order \le then S is called a *positively ordered* semigroup.

If S is a positively ordered semigroup then S is $\mathcal J\text{-trivial}.$ The converse in not true.

Theorem (Straubing and Thérien, 1988)

A finite monoid is J-trivial if and only if it is a divisor of a finite positively ordered monoid.

Positively ordered semigroups

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A partial order \leq on a semigroup S is called a *positive order* if

• it is compatible with the multiplication on S, that is,

 $a \ge b$ implies $ac \ge bc$ and $ca \ge cb$ for $a, b, c \in S$;

• $a \ge ab$, $a \ge ba$ for all $a, b \in S$.

If S is a monoid than the latter condition is equivalent to the condition that S satisfies the identity $x \le 1$. If S is equipped with a positive order \le then S is called a *positively ordered* semigroup.

If S is a positively ordered semigroup then S is $\mathcal J\text{-trivial}.$ The converse in not true.

Theorem (Straubing and Thérien, 1988)

A finite monoid is J-trivial if and only if it is a divisor of a finite positively ordered monoid.

Some definitions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Let X be a poset.

A transformation φ of X is called *order-preserving* if $a \ge b$ implies $a\varphi \ge b\varphi$, and *extensive* if $a\varphi \ge a$ for all $a, b \in X$.

- OE(X) the monoid of all order-preserving and extensive transformations of *X*.
- OE_{chains} and OE_{posets} the classes of monoids embeddable into OE(X) for some linearly ordered set X or some poset X, respectively.

Let X be a set.

- *R*(*X*) the monoid of all reflexive binary relations over *X*.
- \mathcal{R} the class of monoids which can be embedded into $\mathcal{R}(X)$ for some X.

Some definitions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Let X be a poset.

A transformation φ of X is called *order-preserving* if $a \ge b$ implies $a\varphi \ge b\varphi$, and *extensive* if $a\varphi \ge a$ for all $a, b \in X$.

- *OE*(*X*) the monoid of all order-preserving and extensive transformations of *X*.
- OE_{chains} and OE_{posets} the classes of monoids embeddable into OE(X) for some linearly ordered set X or some poset X, respectively.

Let X be a set.

- *R*(*X*) the monoid of all reflexive binary relations over *X*.
- *R* the class of monoids which can be embedded into *R*(*X*) for some *X*.

More definitions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A reflexive binary relation \sim over a poset X is called *upper-triangular* if $a \sim b$ implies $b \geq a$.

- *U*(X) the monoid of all reflexive binary relations over X.
- U_{posets} and U_{chains} the classes of monoids which can be embedded into U(X) for some poset X or some chain X, respectively.

All the monoids above are positively ordered with the anti-inclusion relation.

Volkov (2004) proved that \mathcal{R}_n , \mathcal{U}_n and \mathcal{OE}_n satisfy the same set of identities.

More definitions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva A reflexive binary relation \sim over a poset X is called *upper-triangular* if $a \sim b$ implies $b \geq a$.

- U(X) the monoid of all reflexive binary relations over X.
- *U*_{posets} and *U*_{chains} the classes of monoids which can be embedded into *U*(*X*) for some poset *X* or some chain *X*, respectively.

All the monoids above are positively ordered with the anti-inclusion relation.

Volkov (2004) proved that \mathcal{R}_n , \mathcal{U}_n and \mathcal{OE}_n satisfy the same set of identities.

Semigroups of languages

Monoids of languages, monoids of reflexive relations and ordered monoids

subsemigroup of the power monoid $P(A^*)$. Let λ denote the empty word. We denote by $P_1(A^*)$ the submonoid of $P(A^*)$ consisting of all

Let A be an alphabet. A semigroup of languages over A is a

languages which contain λ . We call such languages *positive* languages.

The monoid $P_1(A^*)$ is positively ordered with the reversed inclusion relation, that is $C \leq B$ if and only if $C \supseteq B$. Notation: \mathcal{PL} — the class of all semigroups of positive languages over A. \mathcal{FL} — the class of all finite submonoids of $P(A^*)$. Observation. $\mathcal{FL} \subseteq \mathcal{PL}$.

Semigroups of languages

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Lo Kudryavtseva W

Let A be an alphabet. A semigroup of languages over A is a subsemigroup of the power monoid $P(A^*)$. Let λ denote the empty word.

We denote by $P_1(A^*)$ the submonoid of $P(A^*)$ consisting of all languages which contain λ . We call such languages *positive languages*.

The monoid $P_1(A^*)$ is positively ordered with the reversed inclusion relation, that is $C \leq B$ if and only if $C \supseteq B$. Notation: \mathcal{PL} — the class of all semigroups of positive languages over A. \mathcal{FL} — the class of all finite submonoids of $P(A^*)$. **Observation.** $\mathcal{FL} \subset \mathcal{PL}$.

Semigroups of languages as power semigroups of the complement of an ideal

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva Let S be a subsemigroup of $P_1(A^*)$ and I an ideal of A^* . Then the map $L \mapsto L \cup I$ is homomorphism from S to $P_1(A^*)$. It is one-to-one if and only if for every $L, M \in S, L \neq M$, the set $((L \setminus M) \cup (M \setminus L)) \setminus I$ is not empty.

Let $I \neq A^*$ be an ideal of A^* . Then $\lambda \notin I$. Let $P_1(A^* \setminus I)$ be the subset of $P(A^* \setminus I)$ consisting of all subsets of $A^* \setminus I$ containing λ . To turn it into a semigroup we define the multiplication on it as follows: for $A, B \in P_1(X^* \setminus I)$ we set

 $A \cdot B = \{ab : a \in A, b \in B \text{ and } ab \in A^* \setminus I\}.$

Denote the semigroup $(P_1(A^* \setminus I), \cdot)$ by $P'_1(A^* \setminus I)$.

Semigroups of languages as power semigroups of the complement of an ideal

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva Let *S* be a subsemigroup of $P_1(A^*)$ and *I* an ideal of A^* . Then the map $L \mapsto L \cup I$ is homomorphism from *S* to $P_1(A^*)$. It is one-to-one if and only if for every $L, M \in S, L \neq M$, the set $((L \setminus M) \cup (M \setminus L)) \setminus I$ is not empty. Let $I \neq A^*$ be an ideal of A^* . Then $\lambda \notin I$. Let $P_1(A^* \setminus I)$ be the subset of $P(A^* \setminus I)$ consisting of all subsets of $A^* \setminus I$ containing λ . To turn it into a semigroup we define the multiplication on it as follows: for $A, B \in P_1(X^* \setminus I)$ we set

$$A \cdot B = \{ab : a \in A, b \in B \text{ and } ab \in A^* \setminus I\}.$$

Denote the semigroup $(P_1(A^* \setminus I), \cdot)$ by $P'_1(A^* \setminus I)$.

Semigroups of factor-words

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva If *w* is a word, then S(w) denotes the set of factor-words of *w*. Let $w_j, j \in J$, be non-empty words. Let $I(w_j, j \in J) = A^* \setminus (\bigcup_{j \in J} S(w_j))$. $I = I(w_j, j \in J)$ is an ideal of A^* . Denote the semigroup $P'_1(X^* \setminus I)$ by $P'_1(w_j, j \in J)$. **Example.** The elements of $P'_1(xy)$ are $\{\lambda\}$, $\{\lambda, x\}$, $\{\lambda, y\}$, $\{\lambda, xy\}$, $\{\lambda, x, y\}$, $\{\lambda, x, xy\}$, $\{\lambda, x, xy\}$, $\{\lambda, x, xy\}$, $\{\lambda, x, y, xy\}$.

Theorem

- Any semigroup of positive languages is isomorphic to some subsemigroup of P'₁(w_i, i ∈ I).
- Any finite semigroup of languages is isomorphic to some $P'_1(w)$, such that all letters of w are pairwise different.

The connection of \mathcal{OE}_{posets} with \mathcal{PL} and \mathcal{U}_{posets}

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Theorem

1
$$\mathcal{U}_{posets} \subseteq \mathcal{OE}_{posets}$$
.

2
$$\mathcal{PL} \subseteq \mathcal{U}_{posets}$$
.

 Every semigroup from OE_{posets} is a factor-semigroup of some semigroup from PL.

Remark. Item 3 was first published by Vernitski (2008). **Illustration of 2.** S = S(xzy, ztxz).

Proof of 3

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva Let \leq be a positive order on S. Let S' be the set disjoint with S, which has the same cardinality as S, and let $': S \rightarrow S'$ be a fixed bijection. For $s \in S$ by L_s denote the set of all languages L over S' satisfying the following conditions:

- $\lambda \in L$,
- if $s_1's_2'\ldots s_k'\in L$ for some $k\geq 1$ then $s_1s_2\cdots s_k\leq s$ in S,
- L contains some word $s'_1 s'_2 \dots s'_k$ such that $s'_1 s'_2 \dots s'_k = s$ in S.

Let $T = \bigcup_{s \in S} L_s$. T is a semigroup and the map sending all elements of L_s to s is an onto homomorphism from T to S.

Two more economic constructions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva **Construction A.** Let $S \in O\mathcal{E}(X)$, X a poset, and $\varphi \in S$. K_{φ} — the set of all such relations \sim over X that for all $x \in X$:

$$x \sim x, \, x \sim x\varphi$$
 (1)

...

$$\text{ if } x \sim y \text{ then } x \leq y \leq x\varphi.$$

Set $T = \bigcup_{\varphi \in S} K_{\varphi}$. Obviously, $T \subset \mathcal{U}(X)$. Define $\alpha : T \to S$: for $\sim \in T$ set $\sim \alpha = \varphi$, where $\varphi \in S$ is such that $\sim \in K_{\varphi}$. Then T is a semigroup and α is an onto homomorphism. **Construction B.** Let $\varphi \in S$. By K'_{φ} denote the set of all such relations \sim that for all $x \in X$ (1), (2) hold, and, in addition:

for at least one chain C between x and $x\varphi : x \sim y$ for all $y \in C$.

Set $R = \bigcup_{\varphi \in S} K'_{\varphi}$. Define $\beta : R \to S$ in the same manner as α above. Then R is a semigroup and β is an onto homomorphism.

Two more economic constructions

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva **Construction A.** Let $S \in O\mathcal{E}(X)$, X a poset, and $\varphi \in S$. K_{φ} — the set of all such relations \sim over X that for all $x \in X$:

$$x \sim x, \, x \sim x\varphi$$
 (1)

...

$$f x \sim y \text{ then } x \leq y \leq x\varphi.$$
 (2)

Set $T = \bigcup_{\varphi \in S} K_{\varphi}$. Obviously, $T \subset \mathcal{U}(X)$. Define $\alpha : T \to S$: for $\sim \in T$ set $\sim \alpha = \varphi$, where $\varphi \in S$ is such that $\sim \in K_{\varphi}$. Then T is a semigroup and α is an onto homomorphism. **Construction B.** Let $\varphi \in S$. By K'_{φ} denote the set of all such relations \sim that for all $x \in X$ (1), (2) hold, and, in addition:

for at least one chain C between x and $x\varphi : x \sim y$ for all $y \in C$.

Set $R = \bigcup_{\varphi \in S} K'_{\varphi}$. Define $\beta : R \to S$ in the same manner as α above. Then R is a semigroup and β is an onto homomorphism.

Ganna Kudryavtseva

Corollary

Let X be a linearly ordered set. Then the semigroup $O\mathcal{E}(X)$ can be embedded into U(X).

Remark. Let X be a linearly ordered set. If we take $S = O\mathcal{E}(X)$ then Construction B outputs an isomorphism between $O\mathcal{E}(X)$ and the subsemigroup R of $\mathcal{U}(X)$ of all *consistent* upper-triangular reflexive binary relations on X, that is such upper-triangular reflexive relations ~ that $x \sim y$ implies $x \sim z$ for all $x \leq z \leq y$.

Finite semigroups of languages

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Theorem

$$\mathcal{FL} = \mathcal{U}^{f}_{chains}.$$

It is enough to show that the semigroup $\mathcal{P}'_1(w)$, where $w = a_1 a_2 \dots a_n$ and all its letters are different, is isomorphic to \mathcal{U}_{n+1} . Let $w = a_1 a_2 \dots a_n$ and let $A \in \mathcal{P}'_1(w)$. We define $A' \in \mathcal{U}_{n+1}$:

$$\mathcal{A}'_{ij} = \left\{ egin{array}{ll} 1, & ext{if } i=j ext{ or } a_i \cdots a_{j-1} \in \mathcal{A}, \ 0, & ext{otherwise}. \end{array}
ight.$$

This map is an isomorphism.

Finite semigroups of languages

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva

Corollary

Any semigroup in $\mathcal{OE}_{posets}^{f}$ can be covered by a semigroup in \mathcal{FL} .

Remark. The claim of Corollary 7 was first proved by Vernitski (2008). In our construction the covering semigroup is over the alphabet of the cardinality |X|. In the case when X is a chain our homomorphism is one-to-one.

Consistent semigroups

Monoids of languages, monoids of reflexive relations and ordered monoids

Ganna Kudryavtseva Call $A \in \mathcal{P}'_1(w)$ consistent if from $u \in A$ it follows that all factor-words of u are also in A. Call a subsemigroup of $\mathcal{P}'_1(w)$ consistent if all its elements are consistent. Call a boolean upper-triangular matrix $A \in \mathcal{U}_n$ consistent, if from $A_{ij} = 1$ with j > i it follows that $A_{kl} = 1$ for any $i \leq k \leq l \leq j$. Call a subsemigroup of \mathcal{U}_n consistent if all its elements are consistent.

Theorem

Let *S* be a finite semigroup. The following statements are equivalent:

1 $S \in \mathcal{OE}^{f}_{chains}$.

2 S is isomorphic to a consistent subsemigroup of some $\mathcal{P}'_1(w)$.

3 *S* is isomorphic to a consistent subsemigroup of \mathcal{U}_{chains}^{f} .

Ganna Kudryavtseva Suppose S is a non-consistent subsemigroup of some $\mathcal{P}'_1(w)$. It is natural to ask if it is possible to find another word u such that S is isomorphic to a consistent subsemigroup of $\mathcal{P}'_1(u)$. This question is equivalent to the asking if the inclusion $\mathcal{OE}^f_{chains} \subseteq \mathcal{FL}$ is strict. The answer is negative. Therefore, in the following chain of inclusions

$$\mathcal{OE}_{chains}^{f} \subseteq \mathcal{U}_{chains}^{f} = \mathcal{FL} \subseteq \mathcal{R}^{f} \subseteq \mathcal{OE}_{posets}^{f}.$$
 (3)

the first inclusion is strict.

Problem. Are the remaining inclusions strict?

Ganna Kudryavtseva Suppose S is a non-consistent subsemigroup of some $\mathcal{P}'_1(w)$. It is natural to ask if it is possible to find another word u such that S is isomorphic to a consistent subsemigroup of $\mathcal{P}'_1(u)$. This question is equivalent to the asking if the inclusion $\mathcal{OE}^f_{chains} \subseteq \mathcal{FL}$ is strict. The answer is negative. Therefore, in the following chain of inclusions

$$\mathcal{OE}_{chains}^{f} \subseteq \mathcal{U}_{chains}^{f} = \mathcal{FL} \subseteq \mathcal{R}^{f} \subseteq \mathcal{OE}_{posets}^{f}.$$
 (3)

the first inclusion is strict.

Problem. Are the remaining inclusions strict?

Ganna Kudryavtseva

Thank you for your attention!!!