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J -trivial monoids

A monoid S is called J -trivial if the Green’s relation J on it is
the trivial relation, that is aJ b implies a = b for any a, b ∈ S ,
or, equivalently all J -classes of S are one-element.
The class of finite J -trivial monoids is closed with respect to
taking finite direct products, finite submonoids and
homomorphic images, that is it forms a finite variety
(quasivariety) of monoids.
Examples:

Cn — the monoid of all order-preserving and extensive
maps from {1, . . . , n} into itself.

ℛn — the monoid of reflexive relations of the set
{1, . . . , n}, which we consider as a monoid of boolean
matrices with diagonal entries equal to 1.

Un — the submonoid of ℛn consisting of the upper
triangular matrices.
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Straubing’s Theorem

Theorem (Straubing, 1980)

Let M be a finite monoid. The following conditions are
equivalent:

M is J -trivial.

M divides Cn for some n.

M divides ℛn for some n.

M divides Un for some n.
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Positively ordered semigroups

A partial order ≤ on a semigroup S is called a positive order if

it is compatible with the multiplication on S , that is,
a ≥ b implies ac ≥ bc and ca ≥ cb for a, b, c ∈ S ;

a ≥ ab, a ≥ ba for all a, b ∈ S .

If S is a monoid than the latter condition is equivalent to the
condition that S satisfies the identity x ≤ 1. If S is equipped
with a positive order ≤ then S is called a positively ordered
semigroup.
If S is a positively ordered semigroup then S is J -trivial. The
converse in not true.

Theorem (Straubing and Thérien, 1988)

A finite monoid is J-trivial if and only if it is a divisor of a finite
positively ordered monoid.
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Some definitions

Let X be a poset.
A transformation ' of X is called order-preserving if a ≥ b
implies a' ≥ b', and extensive if a' ≥ a for all a, b ∈ X .

Oℰ(X ) — the monoid of all order-preserving and
extensive transformations of X .

Oℰchains and Oℰposets — the classes of monoids
embeddable into Oℰ(X ) for some linearly ordered set X or
some poset X , respectively.

Let X be a set.

ℛ(X ) — the monoid of all reflexive binary relations over
X .

ℛ — the class of monoids which can be embedded into
ℛ(X ) for some X .
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More definitions

A reflexive binary relation ∼ over a poset X is called
upper-triangular if a ∼ b implies b ≥ a.

U(X ) — the monoid of all reflexive binary relations over
X .

Uposets and Uchains — the classes of monoids which can be
embedded into U(X ) for some poset X or some chain X ,
respectively.

All the monoids above are positively ordered with the
anti-inclusion relation.
Volkov (2004) proved that ℛn, Un and Oℰn satisfy the same
set of identities.
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Semigroups of languages

Let A be an alphabet. A semigroup of languages over A is a
subsemigroup of the power monoid P(A∗).
Let � denote the empty word.
We denote by P1(A∗) the submonoid of P(A∗) consisting of all
languages which contain �. We call such languages positive
languages.
The monoid P1(A∗) is positively ordered with the reversed
inclusion relation, that is C ≤ B if and only if C ⊇ B.
Notation: Pℒ — the class of all semigroups of positive
languages over A. ℱℒ — the class of all finite submonoids of
P(A∗).
Observation. ℱℒ ⊂ Pℒ.
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Semigroups of languages as power semigroups of
the complement of an ideal

Let S be a subsemigroup of P1(A∗) and I an ideal of A∗. Then
the map L 7→ L ∪ I is homomorphism from S to P1(A∗). It is
one-to-one if and only if for every L,M ∈ S , L ∕= M, the set(
(L ∖M) ∪ (M ∖ L)

)
∖ I is not empty.

Let I ∕= A∗ be an ideal of A∗. Then � ∕∈ I . Let P1(A∗ ∖ I ) be
the subset of P(A∗ ∖ I ) consisting of all subsets of A∗ ∖ I
containing �. To turn it into a semigroup we define the
multiplication on it as follows: for A,B ∈ P1(X ∗ ∖ I ) we set

A ⋅ B = {ab : a ∈ A, b ∈ B and ab ∈ A∗ ∖ I}.

Denote the semigroup (P1(A∗ ∖ I ), ⋅) by P ′1(A∗ ∖ I ).
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Semigroups of factor-words

If w is a word, then S(w) denotes the set of factor-words of w .
Let wj , j ∈ J, be non-empty words. Let
I (wj , j ∈ J) = A∗ ∖

(
∪j∈JS(wj)

)
.

I = I (wj , j ∈ J) is an ideal of A∗. Denote the semigroup
P ′1(X ∗ ∖ I ) by P ′1(wj , j ∈ J).
Example. The elements of P ′1(xy) are {�}, {�, x}, {�, y},
{�, xy}, {�, x , y}, {�, x , xy}, {�, y , xy}, {�, x , y , xy}.

Theorem

Any semigroup of positive languages is isomorphic to some
subsemigroup of P ′1(wi , i ∈ I ).

Any finite semigroup of languages is isomorphic to some
P ′1(w), such that all letters of w are pairwise different.
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The connection of Oℰposets with Pℒ and Uposets

Theorem

1 Uposets ⊆ Oℰposets .

2 Pℒ ⊆ Uposets .

3 Every semigroup from Oℰposets is a factor-semigroup of
some semigroup from Pℒ.

Remark. Item 3 was first published by Vernitski (2008).
Illustration of 2. S = S(xzy , ztxz).

⎛⎜⎜⎝
1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠⊕
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 1 0
0 1 0 0 1
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
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Proof of 3

Let ≤ be a positive order on S . Let S ′ be the set disjoint with
S , which has the same cardinality as S , and let ′ : S → S ′ be a
fixed bijection. For s ∈ S by Ls denote the set of all languages
L over S ′ satisfying the following conditions:

� ∈ L,

if s ′1s ′2 . . . s
′
k ∈ L for some k ≥ 1 then s1s2 ⋅ ⋅ ⋅ sk ≤ s in S ,

L contains some word s ′1s ′2 . . . s
′
k such that s ′1s ′2 . . . s

′
k =

s in S .

Let T = ∪s∈SLs . T is a semigroup and the map sending all
elements of Ls to s is an onto homomorphism from T to S .
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Two more economic constructions

Construction A. Let S ∈ Oℰ(X ), X a poset, and ' ∈ S .
K' — the set of all such relations ∼ over X that for all x ∈ X :

x ∼ x , x ∼ x' (1)

if x ∼ y then x ≤ y ≤ x'. (2)

Set T = ∪'∈SK'. Obviously, T ⊂ U(X ). Define � : T → S :
for ∼∈ T set ∼ � = ', where ' ∈ S is such that ∼∈ K'.
Then T is a semigroup and � is an onto homomorphism.
Construction B. Let ' ∈ S . By K ′' denote the set of all such
relations ∼ that for all x ∈ X (1), (2) hold, and, in addition:

for at least one chain C between x and x' : x ∼ y for all y ∈ C .

Set R = ∪'∈SK ′'. Define � : R → S in the same manner as �
above. Then R is a semigroup and � is an onto
homomorphism.
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Corollary

Let X be a linearly ordered set. Then the semigroup Oℰ(X )
can be embedded into U(X ).

Remark. Let X be a linearly ordered set. If we take
S = Oℰ(X ) then Construction B outputs an isomorphism
between Oℰ(X ) and the subsemigroup R of U(X ) of all
consistent upper-triangular reflexive binary relations on X , that
is such upper-triangular reflexive relations ∼ that x ∼ y implies
x ∼ z for all x ≤ z ≤ y .
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Finite semigroups of languages

Theorem

ℱℒ = U f
chains .

It is enough to show that the semigroup P ′1(w), where
w = a1a2 . . . an and all its letters are different, is isomorphic to
Un+1. Let w = a1a2 . . . an and let A ∈ P ′1(w). We define
A′ ∈ Un+1:

A′ij =

{
1, if i = j or ai ⋅ ⋅ ⋅ aj−1 ∈ A,
0, otherwise.

This map is an isomorphism.
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Finite semigroups of languages

Corollary

Any semigroup in Oℰ fposets can be covered by a semigroup in
ℱℒ.

Remark. The claim of Corollary 7 was first proved by Vernitski
(2008). In our construction the covering semigroup is over the
alphabet of the cardinality ∣X ∣. In the case when X is a chain
our homomorphism is one-to-one.
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Consistent semigroups

Call A ∈ P ′1(w) consistent if from u ∈ A it follows that all
factor-words of u are also in A. Call a subsemigroup of P ′1(w)
consistent if all its elements are consistent. Call a boolean
upper-triangular matrix A ∈ Un consistent, if from Aij = 1 with
j > i it follows that Akl = 1 for any i ≤ k ≤ l ≤ j . Call a
subsemigroup of Un consistent if all its elements are consistent.

Theorem

Let S be a finite semigroup. The following statements are
equivalent:

1 S ∈ Oℰ fchains .

2 S is isomorphic to a consistent subsemigroup of some
P ′1(w).

3 S is isomorphic to a consistent subsemigroup of U f
chains .
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A problem

Suppose S is a non-consistent subsemigroup of some P ′1(w). It
is natural to ask if it is possible to find another word u such
that S is isomorphic to a consistent subsemigroup of P ′1(u).
This question is equivalent to the asking if the inclusion
Oℰ fchains ⊆ ℱℒ is strict. The answer is negative.
Therefore, in the following chain of inclusions

Oℰ fchains ⊆ U f
chains = ℱℒ ⊆ ℛf ⊆ Oℰ fposets . (3)

the first inclusion is strict.
Problem. Are the remaining inclusions strict?
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The last frame

Thank you
for your attention!!!


