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How did it all start

• Early 1970s: Erdös, Fried, Hajnal and Milner - congruences
in tournaments, simple tournaments

• Congruence classes, simple extensions (finite case: Erdös,
Hajnal and Milner, infinite: Moon)

Groupoid definition
Müller, Nešetřil and Pelant: Either tournaments or algebras?
(Discrete Math, 1975) : Is the variety finitely based? An infinite
independent set of identities is given.
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• "I think I heard of the middle guy"
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Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs

Also: Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also:

Coffee, cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee,

cigarettes and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes

and brains.



Basic tools

Birkhoff’s theorem
A locally finite variety V is finitely based iff V = Vk for some k.

Figuring out the three-variable equations (2-semilattices plus
one):

xx ≈ x

xy ≈ yx

x(xy) ≈ xy

and
x(yz) ≈ [(xy)(yz)][(xz)(yz)]

and a quasiequation

xy ≈ xz ≈ x→ x(yz) ≈ x

Represent algebras in the variety as graphs
Also: Coffee, cigarettes and brains.



Advanced tools

None work for this problem.



Advanced tools

None work for this problem.



The construction

SI groupoid which is almost a tournament.

Using whiteboard as
I don’t know how to draw in LaTeX.

Theorem
The variety generated by tournaments is not finitely based.
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The end?

So, should we stop here? After all, we solved the problem.

Problem
Is every finite tournament finitely based?

Two-operation representation is congruence distributive, so
Baker’s theorem kicks in. Here we are not so lucky.

Willard’s theorem (improved version by Kearnes and
Willard)
A locally finite variety V which generates a congruence
meet-semidistributive residually [strictly] finite variety is finitely
based.

Problem
Does every finite tournament generate a residually finite variety?
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Subdirectly irreducible finite tournaments

Have to go to whiteboard again, I still haven’t learned how to
draw in LaTeX.
So, we can bound the sizes of subdirectly irreducible
tournaments which are in the variety generated by a finite
tournament.

Problem
Is every subdirectly irreducible algebra in the variety generated
by tournaments already a tournament?

Equivalently, we have a syntactical reformulation:

Problem
Is the variety generated by tournaments equal to the
quasivariety generated by tournaments?
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Partial results

Theorem
Every simple algebra in the variety generated by tournaments is
a tournament.

Tools needed: Coffee, cigarettes, brains and a little tame
congruence theory.

Theorem
Every subdirectly irreducible algebra in the variety generated by
tournaments which has at most one incomparable pair is a
tournament.

Tools needed: Jarda-style persistence.
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The end??

Well, are we finally done? Nope.

Problem
Is the variety generated by tournaments inherently nonfinitely
based?

Tools for INFB:

• In special cases which look like semigroups - avoidable
words, Sapir’s theorem.

• For graph-like things, Baker-McNulty-Werner spiral idea.
• When all else fails, try syntax.

Another Birkhoff’s theorem
A locally finite variety V is inherently nonfinitely based iff Vk is
not locally finite for all k.
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Very partial results

Trying Sapir-like methods doesn’t seem to work, tournaments
are far from semigroups.
What about the spiral?

Ježek’s theorem
T 3 is not locally finite.

But strongly connected tournaments with more than three
elements have diagonals. So we couldn’t go on.
We tried syntax, to use Birkhoff’s theorem directly. We failed.
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Connections with CSP

Bulatov and Jeavons proved CSP dichotomy for tournaments in
an early demonstration of the power of algebraic method for
CSP.
This got generalized in two directions:

Bulatov’s theorem
2-semilattices have a finite relational width.

This is the nicest bounded width proof (as NU is too easy and
special) and a template for many other which followed (CD(3)
and CD(4), for example), till Barto and Kozik had to invent a
lot of completely new ideas to tackle the general case.
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Connections with CSP - continued

Another Bulatov’s theorem
The CSP dichotomy holds for conservative algebras.
Equivalently, the list-homomorphism problem admits dichotomy.

This monster of a proof is practically unreadable but luckily
both Barto and Bulatov have managed major simplifications
recently. It remains one of the peak CSP dichotomy theorems to
this day (not following from more general results).
and SOMEBODY WAKE LIBOR UP!!!
while reading Miklos’ thesis in preparation for this talk I found
the following (Lemma 5.2):

Lemma
Let A ≤sd B×C, where B and C are strongly connected
algebras in T . If there exists c ∈ C such that B × {c} ⊆ A, then
A = B × C.
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while reading Miklos’ thesis in preparation for this talk I found
the following (Lemma 5.2):

Lemma
Let A ≤sd B×C, where B and C are strongly connected
algebras in T . If there exists c ∈ C such that B × {c} ⊆ A, then
A = B × C.
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