Algebras with few subpowers are finitely related

Erhard Aichinger, Peter Mayr, Ralph McKenzie

CAUL, Lisbon, Portugal JKU Linz, Austria stein@cii.fc.ul.pt

Praha, June 2010

Aichinger, Mayr, McKenzie (CAUL, Lisbon, Algebras with few subpowers are fin. relatec

Algebras

What is the number of algebras on a finite set?

On A finite, $|A| \ge 2$, there are:

- ω distinct finitary operations,
- 2^{ω} distinct algebraic structures.

Many, like the Boolean lattice $\langle A, \wedge, \vee, \neg \rangle$ and the Boolean ring $\langle A, +, \cdot, 1 \rangle$, have the same term functions. They are **term equivalent**.

Fact

On A finite, there are:

- ω term inequivalent algebras if |A| = 2 (Post, 1941),
- 2^{ω} term inequivalent algebras if $|A| \ge 3$ (Yanov, Muchnik, 1959).

Question (McKenzie, Rosenberg 1988)

How many finite, term inequivalent algebras generate a congruence permutable (CP) variety?

Clones of term functions

Definition

 $\operatorname{Clo}(\mathsf{A})$...all finitary term functions on an algebra $\mathsf{A} := \langle \mathsf{A}, \mathsf{F} \rangle$

Remark

 $Clo(\mathbf{A})$ contains all finitary projections on A and is closed under composition. Such a set of functions is called a **clone** on A.

Example

$$\begin{aligned} &\operatorname{Clo}(\mathbb{Z}_5,+)\ldots(x_1,x_2,x_3)\mapsto 2x_1+3x_2\\ &\operatorname{Clo}(\{0,1\},\wedge,\vee)\ldots(x_1,x_2,x_3)\mapsto (x_1\wedge x_2)\vee x_3 \end{aligned}$$

伺 ト イヨト イヨト

Relations

Describing functions by invariant relations

$\mathbb{S}(\mathbf{A})$... subuniverses of \mathbf{A}

Fact

- Every $f \in Clo(\mathbf{A})$ preserves every $R \in S(\mathbf{A}^n)$.
- ② If A is finite and $f : A^k \to A$ preserves every $R \in S(\mathbf{A}^n)$ for every $n \in \mathbb{N}$, then $f \in Clo(\mathbf{A})$.

Definition

 $R \subseteq A^n \dots$ n-ary relation $\mathcal{R} \dots$ set of finitary relations on A $\operatorname{Pol}(\mathcal{R}) \dots$ functions that preserve every $R \in \mathcal{R}$ (polymorphisms) A (resp. $\operatorname{Clo}(A)$) is finitely related if \exists finite \mathcal{R} : $\operatorname{Clo}(A) = \operatorname{Pol}(\mathcal{R})$.

Theorem (Baker, Pixley, 1975)

Lattices (more general, algebras with NU-term) are finitely related.

Are Malcev algebras finitely related?

Theorem (Malcev, 1954) $\mathbb{HSP}(\mathbf{A})$ is CP iff $\exists m \in Clo_3(\mathbf{A}) \ \forall x, y \in A$:

$$m(x, y, y) = m(y, y, x) = x$$
 (Malcev term).

Example

For a group
$$\langle G, +, -, 0 \rangle$$
 consider $m(x, y, z) := x - y + z$.

Question (McKenzie, Rosenberg 1988, Idziak 1999)

Let C be a clone with Malcev operation on a finite set. Is C fin. related? Verified in special cases, eg. Idziak 1999, Bulatov 2001, Kearnes, Szendrei 2005, Aichinger, Mudrinski 2008, M 2008.

2009: Yes, if C contains all constants (Aichinger, to appear Proc. AMS).

An overview of Malcev conditions

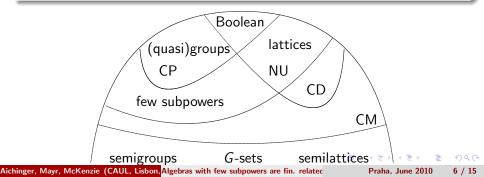
Definition

A, finite, has **few subpowers** if \exists polynomial $p \forall n \in \mathbb{N}$: $|\mathbb{S}(\mathbf{A}^n)| \leq 2^{p(n)}$.

The set $\mathbf{A} := \langle A, \emptyset \rangle$ has many subpowers, $|\mathbb{S}(\mathbf{A}^n)| = 2^{|A|^n}$.

Fact (Idziak, Markovic, McKenzie, Valeriote, Willard, 2007)

If **A** has few subpowers, then $CSP(\mathbf{A})$ is tractable.



The result

Theorem (Aichinger, M, McKenzie, manuscript 2009)

Every finite algebra with few subpowers is finitely related.

This applies to algebras with Malcev term and generalizes the Baker-Pixley Theorem for algebras with NU-term.

Corollary

On A finite, there exist at most countably many term inequivalent algebras with few subpowers (in particular, with Malcev term).

How to represent functions on a group

Let *C* be a clone on
$$A := \{0, ..., n-1\}$$
.
 $\leq_{lex} ...$ lexicographical order on A^k
 $f \in C_k$ jumps to *c* at $\bar{a} \in A^k$ if $\forall \bar{x} <_{lex} \bar{a} : f(\bar{x}) = 0$ and $f(\bar{a}) = c$.

Lemma 1

Let $G \subseteq C_k$ such that $\forall f \in C_k \forall \bar{a} \in A^k \forall c \in A$: if f jumps to c at \bar{a} , then $\exists g \in G$ that jumps to c at \bar{a} . If C contains a group operation +, then G generates C_k as subgroup of $\langle A, + \rangle^{A^k}$.

Problem: What is the connection between jumpy functions in C_k and C_l ?

Embedding order on words

Definition

```
\bar{a}, \bar{b} \in A^+ \dots words over A
\bar{a} \leq_E \bar{b} if \bar{b} is obtained from \bar{a} by inserting letters after their first occurence in \bar{a}.
```

Example

```
hedgo \leq_E hedgehog
an \not\leq_E ant
```

Lemma 2 (cf. Higman's Theorem, 1952)

Let A finite. Then $\langle A^+, \leq_E \rangle$ is partially ordered with (DCC) and without infinite antichains (i.e., well partially ordered).

Ordering jumps

Lemma 3

Let *C* be a clone on
$$\{0, ..., n-1\}$$
.
If $f \in C$ jumps to *c* at \overline{b} , then $\forall \overline{a} \leq_E \overline{b} \exists f' \in C$ that jumps to *c* at \overline{a} .

Example

Let
$$\bar{a} := (h, e, d, g, o), \ \bar{b} := (h, e, d, g, \frac{e}{h}, o, \frac{e}{g}).$$

$$f'(x_1, x_2, x_3, x_4, x_5) := f(x_1, x_2, x_3, x_4, x_2, x_1, x_5, x_4)$$

satisfies $f'(\bar{a}) = f(\bar{b})$. If $(x_1, x_2, x_3, x_4, x_5) <_{lex} \bar{a}$, then $(x_1, x_2, x_3, x_4, x_2, x_1, x_5, x_4) <_{lex} \bar{b}$ and $f'(x_1, x_2, x_3, x_4, x_5) = 0$.

A finite representation of all jumps

Let C be a clone on $A := \{0, \ldots, n-1\}$. For $c \in A$, let

$$\lambda(c) := \{ ar{a} \in A^+ \mid \
ot \exists f \in C \colon f \text{ jumps to } c \text{ at } ar{a} \}.$$

- $\lambda(c)$ is upward closed wrt. \leq_E (Lemma 3).
- 2 λ(c) is determined by its finitely many minimal elements (Lemma 2).
 3 Then

$$m := \max_{c \in A} \{ |\bar{a}| \mid \bar{a} \text{ is minimal wrt. } \leq_E \text{ in } \lambda(c) \}$$

is finite.

- 4 緑 6 4 日 6 4 日 6 - 日

Generating clones

C_m determines C

Recall

$$\begin{split} \lambda(c) &= \{ \overline{a} \in A^+ \mid \ \ \nexists f \in C : f \text{ jumps to } c \text{ at } \overline{a} \} \\ m &= \max_{c \in A} \{ |\overline{a}| \mid \overline{a} \text{ is minimal wrt. } \leq_E \ \text{ in } \lambda(c) \} \end{split}$$

Claim

If C contains a group operation, then C is equal to the greatest clone Don A with $D_m = C_m$ (Note $C \subseteq D = \operatorname{Pol}(\{C_m\})$).

1 If $\overline{b} \in \lambda(c)$, then $\exists \overline{a} \in \lambda(c)$: $\overline{a} \leq_F \overline{b}$ and $|\overline{a}| \leq m$ (Lemma 3). Since $D_m = C_m$, $\exists f \in D$ that jumps to c at \bar{a} (or at \bar{b}).

Conversely, all jumps in D are already witnessed in C.

3 Hence C = D (Lemma 1), and C is finitely related.

Edge terms

Combining NU and Malcev operations

Definition

For $k \ge 2$, $t: A^{k+1} \to A$ is a *k*-edge operation if for all $x, y \in A$

$$t\begin{pmatrix} y & y & x & x & \cdots & x \\ y & x & y & x & & x \\ x & x & x & y & & x \\ \vdots & & & \ddots & \vdots \\ x & x & x & x & \cdots & y \end{pmatrix} = \begin{pmatrix} x \\ x \\ x \\ \vdots \\ x \end{pmatrix}.$$

Example

If f is k-NU, then $t(x_1, \ldots, x_{k+1}) := f(x_2, \ldots, x_k)$ is k-edge. t is a 2-edge operation iff m(x, y, z) := t(y, x, z) is Malcev.

Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2008) A finite algebra **A** has few subpowers iff **A** has an edge term.

Aichinger, Mayr, McKenzie (CAUL, Lisbon, Algebras with few subpowers are fin. related

Praha, June 2010 13 / 15

How to represent functions on an algebra with few subpowers

Let *C* be a clone on $A := \{0, \ldots, n-1\}$. (*c*, *d*) is a **splitting pair at** $\bar{a} \in A^m$ in C_m if $\exists f, g \in C_m \forall \bar{x} <_{lex} \bar{a}$: $f(\bar{x}) = g(\bar{x})$ and $(f(\bar{a}), g(\bar{a})) = (c, d)$.

Lemma (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard, 2008) Let C be a clone with k-edge term t, let $G \subseteq C_m$ such that $\forall T \subseteq A^m, |T| < k : G|_T = C_m|_T$, and $\forall \overline{a} \in A^m$: every splitting pair at \overline{a} in C^m is a splitting pair at \overline{a} in G.

Then G generates C_m as subalgebra of $\langle A, t \rangle^{A^m}$.

Problems

Question

- Given a clone C with Malcev operation on A, finite. Find a relation R such that C = Pol({R}).
 Possible in special cases by "constructive pre-AMM proofs".
- Given functions f₁,..., f_n on A and a relation R on A, finite.
 Is Clo((A, f₁,..., f_n)) = Pol({R}) decidable?
- (Valeriote) Let A finite in a CM variety with Clo(A) finitely related. Does A have few subpowers?
 Barto, 2009: Yes, if HSP(A) is CD (Zadori's conjecture).