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The Lattice of Equational Theories

The set of all equational theories of signature ∆ is lattice-ordered
by set-inclusion. We denote the resulting lattice by L∆.

A signature is a function that associates with operation symbols
their (finite!) ranks.

An equational theory is a set of equations of some one signature
that is closed with respect to logical consequence.
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A signature is small just in case it provides only operation symbols
of rank at one and it provides at most one operation symbol of
rank one.

A signature is large exactly when it is not small.

A signature is strictly large if and only if it provides at least one
operation symbol of rank at least two.
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What We Knew Before Time Began

Birkhoff Told Us in 1935
The lattice L∆ is an algebraic lattice whose top element is
compact and whose compact elements are exactly the finitely
axiomatizable equational theories.

Folklore
If the signature provides only operation symbols of rank 0 (i.e.
only constant symbols), then L∆ is isomorphic to the lattice of all
equivalence relations on the set of these constant symbols.

Jan Kalicki Told Us in 1955
The lattice L∆ has at least 2ℵ0 maximal elements, if the signature
is strictly large.



What We Knew Before Time Began

Birkhoff Told Us in 1935
The lattice L∆ is an algebraic lattice whose top element is
compact and whose compact elements are exactly the finitely
axiomatizable equational theories.

Folklore
If the signature provides only operation symbols of rank 0 (i.e.
only constant symbols), then L∆ is isomorphic to the lattice of all
equivalence relations on the set of these constant symbols.

Jan Kalicki Told Us in 1955
The lattice L∆ has at least 2ℵ0 maximal elements, if the signature
is strictly large.



What We Knew Before Time Began

Birkhoff Told Us in 1935
The lattice L∆ is an algebraic lattice whose top element is
compact and whose compact elements are exactly the finitely
axiomatizable equational theories.

Folklore
If the signature provides only operation symbols of rank 0 (i.e.
only constant symbols), then L∆ is isomorphic to the lattice of all
equivalence relations on the set of these constant symbols.

Jan Kalicki Told Us in 1955
The lattice L∆ has at least 2ℵ0 maximal elements, if the signature
is strictly large.



What We Knew Before Time Began

Birkhoff Told Us in 1935
The lattice L∆ is an algebraic lattice whose top element is
compact and whose compact elements are exactly the finitely
axiomatizable equational theories.

Folklore
If the signature provides only operation symbols of rank 0 (i.e.
only constant symbols), then L∆ is isomorphic to the lattice of all
equivalence relations on the set of these constant symbols.

Jan Kalicki Told Us in 1955
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More Prehistorical Stuff

Jacobs and Schwabauer Gave us in 1964
a complete description of L∆ in the case when the signature has
just one operation symbol and that one is unary. This lattice is
distributive and has exactly 2 maximal elements.
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Results from the Beginning of History

Jarda in 1968
In a large signature every nontrivial equational theory lies above at
least 2ℵ0 other equational theories.

Jarda in 1969
Jarda supplies descriptions of all the lattices L∆ in the case when
∆ is a finite small signature.

Bol’bot in 1970
extends Kalicki’s work to show that in a strictly large signature
given any proper equational theory T there are 2ℵ0 maximal
equational theories that do not include T .
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Jarda in 1970 and, independently Stan Burris 1971

Counted completely the number of maximal equational theories in
every signature.

Ralph McKenzie Told Us in 1971

Proved that (the multiplicity type of) the signature ∆ could be
recovered from the isomorphism type of the lattice L∆.

Ralph McKenzie Told Us in 1971

That the join irreducible elements of L∆ were exactly the
essentially one-based equational theories.
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Ralph McKenzie Told Us in 1971

That several equational theories were elementarily definable
elements of the appropriate lattices L∆. Among these were

1. the equational theory of lattices,

2. the equational theory of distributive lattices,

3. the equational theory of groups,

4. the equational theory of semigroups,

5. the equational theory of commutative groupoids,

6. the equational theory of commutative semipgroups, and

7. the equational theory of Boolean algebras.
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Stan Burris Told Us in 1971
That the lattice of all equivalence relations on a countably infinite
set is embeddable, as an interval, into L∆ provided ∆ is a large
signature. The same applies to the lattice of equivalence relations
on any finite set.

Jarda Told Us in 1976
The any algebraic lattice with only countably many compact
elements is isomorphic to an interval in L∆, if the signature ∆ is
large.
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Elementary Properties of L∆

Ralph McKenzie Told Us in 1971

That certain sets of the form {T} where definable by elementary
formulas in the appropriate lattices L∆.

The results of Burris and of Jarda about embedding lattices in L∆

as intervals can be construed has definability results using
parameters. McKenzie’s result about essentially one-based
equational theories can also be regarded as an elementary
definability result.

Burris and Sankappanavar Told Us in 1975

That the elementary theory of L∆ is hereditarily undecidable, if ∆
is a large signature.
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Suppose ∆ is a large signature. As Stan Burris observed in 1971, it
follows from his results by a theorem of Sachs that the equational
theory of L∆ is the same as the equational theory of the class of
all lattices. Thoralf Skolem proved that the equational theory of
lattices is decidable in 1920.



How Undecidable in the Elementary Theory of L∆?

A Question
Let ∆ be a large signature. Where, along the spectrum from the
decidable equational theory of L∆ to the hereditarily undecidable
elementary theory of L∆, does undecidability enter?
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Some Folk Wisdom

An infinite structure A that has a rich assortment of subsets that
can be defined by elementary formulas is likely to have an
undecidable elementary theory.

An infinite structure A that has a wide assortment of
automorphisms is not likely to have rich assortment of definable
subsets.

Tackling our Question

First show that the infinite lattice L∆ has a skimpy supply of
automorphisms and a rich supply of elementarily definable subsets.
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Jarda on L∆: Automorphisms and Definable Subsets

Between 1981 and 1986, Jarda, in a tour de force, produced a four
part paper which included the following theorems:

Theorem 0
The set of one-based equational theories is definable in L∆, for
any signature ∆.

Theorem 1
The set of finitely based equational theories is definable in L∆, for
any signature ∆.
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Jarda on L∆: Automorphisms and Definable Subsets

Theorem 2
The lattice L∆ has no nonobvious automorphisms, for any
signature ∆ with two exceptions. The exceptions are the signature
just supplying one unary operation symbol and the signature
supplying one unary operation symbol and one constant symbol.

Theorem 3
The orbit of any finitely based equational theory is definable in
L∆, for any signature ∆.
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Proving L∆ has an Undecidable Elementary Theory

Jarda’s Theorem 3, Redux
Suppose ∆ is a finite signature. There is an effective procedure
which associates with each finite set Σ of equations an elementary
formula ΘΣ(x) in one free variable x so that ΘΣ(x) defines in L∆

the orbit of the equational theory based on Σ.



Strategy 0: Use a Finitely Based Undecidable Equational
Theory

Assume each of the following about the finite set Σ of equations:

I The equational theory based on Σ is fixed by each
automorphism of L∆.

I The equational theory based on Σ is undecidable.

Then

Σ ` s ≈ t if and only if L∆ |= ∀x∀y [Θs≈t(x)&ΘΣ(y) =⇒ x ≤ y ] ,

and therefore the elementary theory of L∆ is undecidable.
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Strategy 0: Use a Finitely Based Undecidable Equational
Theory

Let Σ be the set of equational axioms for the variety of modular
lattices. In 1980, Ralph Freese showed that even the set of
equations in no more than five variables that are true in all
modular lattices is undecidable. By 1983, Christian Herrmann even
reduced the number of variables to 4. Meanwhile, Jarda, has told
us what all the automorphisms of L∆ are and it is easy to see that
the equational theory of modular lattices is fixed by each
automorphism.

Surely in every finite large signature there is a finitely based
undecidable equatonal theory which is fixed by each automorphism
of L∆. Some one prove this please!
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Then Γ is a base for the equational theory based on Σ if and only if

L∆ |= ∀x [ΘΣ(x) =⇒ ΘΓ(x)] ,

and therefore the elementary theory of L∆ is undecidable.
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Strategy 1: Use a Finitely Based Base Undecidable
Equational Theory

In 1966 Peter Perkins showed that in every finite large signature
the largest equational theory is base undecidable. This is theory is
evidently finitely based and is fixed by every automorphism of L∆.
In this case, the formulas we need can be simplified to

∀x∀y [ΘΓ(x) =⇒ y ≤ x ]



Question
How complicated are those formulas ΘΓ(x)?

Answer
Horrifyingly complicated, but not too bad.
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Due Diligence on the Theorem of Burris and
Sankappanavar

The proof of Burris and Sankappanavar relied on a 1963 result of
Lavrov that held that the ∃∗∀∗ theory of two equivalence relations
is strongly undecidable. Using a clever construction and following
the Rabin-Scott Method, Burris and Sankappanavar actually
proved that the ∀∗∃∗∀∗∃∗∀∗ theory of L∆ is hereditarily
undecidable, if ∆ is a large signature.



We will say that a set Λ of elementary sentences (of the signature
of lattice theory) is strongly undecidable provided U is undecidable
whenever U ⊆ Λ and U includes all the validities that belong to Λ.



Our Best Result to Date

Theorem
The ∀∗∃∗∀∗ theory of L∆ is strongly undecidable, whenever ∆ is a
large signature.



The proof of this theorem is very easy. We put together the
following ingredients:

1. In 1963 Ershov and Taitslin proved the ∃∗∀∗ theory of finite
graphs in strongly undecidable.

2. In 1983, Jim Schmerl used the result of Ershov and Taitslin to
prove that the ∃∗∀∗ theory of finite lattices is strongly
undecidable.

3. In 1976, Jarda proved that every finite lattice is definable
using parameters in L∆ for all large signatures.

4. The Rabin-Scott Method, using the work of Schmerl and
Jarda finishes the proof.
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Jarda finishes the proof.
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A Barrier to Doing Better

The Use of Relational Signatures

The route to the undecidability results of Burris and
Sankappanavar, and the route I just described involve elementary
languages with relation symbols. It has long been known that the
∀∗∃∗ validities in such signatures are decidable. So it is difficult to
see how such arguments can produce strongly undecidable theories
of this low a complexity.
The two routes through Jarda’s work on definability in L∆ hit a
similar barrier. Jarda’s treats L∆ as a lattice-ordered set rather
than a lattice.

There is some hope that by using operation symbols rather than
relation symbols that lower quantifier complexity can be achieved.
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Two Open Problems

Hilbert’s Tenth Problem for L∆

Suppose that ∆ is a finite large signature. Is there an algorithm
that, upon input of a finite set Σ of equations in the signature of
lattices with 1 and 0, will determine whether Σ has a solution in
L∆?

Another Problem
Suppose that ∆ is finite large signature. Is the ∃∗ theory of L∆

undecidable?
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