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Power algebra

Definition

A - a set
℘(A) - the family of all non-empty subsets of A

For any n-ary operation ω : An → A we define the complex
operation ω : ℘(A)n → ℘(A) in the following way:

ω(A1, . . . ,An) := {ω(a1, . . . , an) | ai ∈ Ai},

where ∅ 6= A1, . . . ,An ⊆ A.
The power (complex or global) algebra of an algebra (A,Ω) is the
algebra (℘(A),Ω).
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Power algebras of groupoids

Theorem (J.Jezek)

For every groupoid (A, ·) there exists an idempotent groupoid (B, ·)
(x · x = x) such that (A, ·) can be embedded into (℘(℘(B)), ·).

On the other hand, there are groupoids that cannot be embedded
into (℘(B), ·) for any idempotent groupoid (B, ·).
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Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.
An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.
An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.
An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.

An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.
An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Varieties of power algebras

V - an arbitrary variety

℘(V) := HSP({(℘(A),Ω) | (A,Ω) ∈ V})

V ⊆ ℘(V), because

(A,Ω) ∼= ({{a} | a ∈ A},Ω) ¬ (℘(A),Ω)

We call a term t linear, if every variable occurs in t at most once.
An identity t = u is called linear, if both terms t and u are linear.

Theorem (G.Gratzer, H.Lakser)

Let V be a variety. The variety ℘(V) satisfies precisely those
identities resulting through identification of variables from the
linear identities true in V.

Pilitowska, Zamojska Free modals



Idempotent law

Definition

An algebra (A,Ω) is idempotent, if it satisfies the following law:

ω(x , . . . , x) = x

for every n-ary ω ∈ Ω.

It means that each singleton is a subalgebra

An idempotent law is satisfied in the variety ℘(V) if and only if it
is a consequence of linear identities true in V.

Theorem

The power algebra (℘(A),Ω) of an idempotent algebra (A,Ω) is
idempotent if and only if each non-empty subset B ⊆ A is a
subalgebra of (A,Ω).
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Idempotent law

Example

The power algebra (℘(A),Ω) is idempotent if

(A, ·) - a left zero-semigroup (groupoid determined by the
identity xy = x)

(A, ·) - an equivalence algebra: groupoid with the
multiplication defined as follows:

x · y =

{
x , if (x , y) ∈ α ⊆ A× A,
y , otherwise

(A, ·) - a tournament: a commutative groupoid in which for
any a, b ∈ A, a · b = a or a · b = b

V - a variety of idempotent algebras
Idempotent algebras in ℘(V) forms a (proper) subvariety.
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Extended power algebras

By adding ∪ to the set of basic operations we obtain the extended
power algebra (℘(A),Ω,∪).

The algebra (℘fin(A),Ω,∪) of all finite non-empty subsets of A is a
subalgebra of the extended power algebra (℘(A),Ω,∪).
Complex operations distribute over the union ∪, i.e. for each n-ary
operation ω ∈ Ω and non-empty subsets A1, . . . ,Ai , . . . ,An,Bi ⊆ A

ω(A1, . . . ,Ai ∪ Bi , . . . ,An) =

ω(A1, . . . ,Ai , . . . ,An) ∪ ω(A1, . . . ,Bi , . . . ,An),

for any 1 ¬ i ¬ n.
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Extended power algebras

Lemma (Monotonicity Lemma)

Let A1, . . . ,An, B1, . . . ,Bn be non-empty subsets of A and let
ω ∈ Ω be an n-ary complex operation over A. If Ai ⊆ Bi for each
1 ¬ i ¬ n, then ω(A1, . . . ,An) ⊆ ω(B1, . . . ,Bn).

Lemma (Convexity Lemma)

Let ∅ 6= Aij ⊆ A for 1 ¬ i ¬ n, 1 ¬ j ¬ r . Then

ω(A11, . . . ,An1) ∪ . . . ∪ ω(A1r , . . . ,Anr ) ⊆

ω(A11 ∪ . . . ∪ A1r , . . . ,An1 ∪ . . . ∪ Anr ),

for each n-ary complex operation ω ∈ Ω.
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Modals

Definition

A modal is an algebra (M,Ω,+) such that

(M,+) is a (join) semilattice

the operations ω ∈ Ω distribute over +

(M,Ω) is a mode - idempotent and entropic algebra

Definition

An algebra (M,Ω) is entropic if any two of its operation commute.
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Examples of modals

distributive lattices

dissemilattices - algebras (M, ·,+) with two semilattice
structures (M, ·) and (M,+) in which the operation ·
distributes over the operation +

the algebra (R, I 0,max) defined on the set of real numbers,
where I 0 is the set of the following binary operations:

p : R× R→ R; (x , y) 7→ (1− p)x + py ,

for each p ∈ (0, 1) ⊂ R
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Fundamental properties of modals

Monotonicity Lemma
Convexity Lemma

Lemma (Sum-Superiority Lemma)

For each n-ary basic operation ω ∈ Ω and elements
x1, . . . , xn ∈ M, one has

ω(x1, . . . , xn) ¬ x1 + . . .+ xn.

Theorem

Let (A,Ω) be an idempotent algebra. The power algebra (℘(A),Ω)
is idempotent if and only if for each n-ary basic operation ω ∈ Ω
and subsets A1, . . . ,An ∈ ℘(A)

ω(A1, . . . ,An) ⊆ A1 ∪ . . . ∪ An.
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Power algebras of modes

The entropic law may also be expressed by means of (linear)
identities:

ω(φ(x11, . . . , xn1), . . . , φ(x1m, . . . , xnm)) =

φ(ω(x11, . . . , x1m), . . . , ω(xn1, . . . , xnm)),

for every n-ary ω ∈ Ω and m-ary φ ∈ Ω.

Power algebras of modes preserve entropic law, but very rarely they
are again modes.
Extended power algebras of modes needn’t be modals.
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Congruences of the extended power algebra

ρ, α- congruences of the extended power algebra (℘(M),Ω,∪) of a
mode (M,Ω):

X ρ Y ⇔ there exist terms t and s such that

X ⊆ t(Y ,Y , . . . ,Y ) and Y ⊆ s(X ,X , . . . ,X )

X α Y ⇔ 〈X 〉Ω = 〈Y 〉Ω,

where 〈X 〉Ω denotes the subalgebra of (M,Ω) generated by X
The relation ρ is the least element in the set Conid (℘(M)), of all
congruence relations γ on the extended power algebra
(℘(M),Ω,∪), such that the quotient (℘(M)/γ,Ω) is idempotent.

ρ|℘fin(M) = α|℘fin(M)
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ρ, α- congruences of the extended power algebra (℘(M),Ω,∪) of a
mode (M,Ω):

X ρ Y ⇔ there exist terms t and s such that

X ⊆ t(Y ,Y , . . . ,Y ) and Y ⊆ s(X ,X , . . . ,X )

X α Y ⇔ 〈X 〉Ω = 〈Y 〉Ω,

where 〈X 〉Ω denotes the subalgebra of (M,Ω) generated by X
The relation ρ is the least element in the set Conid (℘(M)), of all
congruence relations γ on the extended power algebra
(℘(M),Ω,∪), such that the quotient (℘(M)/γ,Ω) is idempotent.

ρ|℘fin(M) = α|℘fin(M)
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Representation theorem for modals

Theorem

Let (M,Ω) be a mode. The quotient algebra (℘(M)/α,Ω,∪) is
isomorphic to the modal (MS ,Ω,+) of all non-empty subalgebras
of (M,Ω) and the quotient algebra (℘fin(M)/α,Ω,∪) is isomorphic
to the modal (MP,Ω,+) of all finitely generated subalgebras.

Theorem (Power representation Theorem)

Let (M,Ω,+) be a modal generated by a set X . Then
(M,Ω,+) ∈ HS(℘(〈X 〉Ω),Ω,∪).

Corollary

Each modal (M,Ω,+) generated by a set X is a homomorphic
image of (〈X 〉ΩP,Ω,+).
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Thank you for your attention!
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