Power representation of modals

Agata Pilitowska Anna Zamojska-Dzienio

Faculty of Mathematics and Information Science, Warsaw University of Technology

Prague, 23 June 2010

A - a set $\wp(A)$ - the family of all non-empty subsets of A

₫▶ ◀

A - a set $\wp(A)$ - the family of all non-empty subsets of A For any n-ary operation $\omega : A^n \to A$ we define the complex operation $\omega : \wp(A)^n \to \wp(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\},\$$

where $\emptyset \neq A_1, \ldots, A_n \subseteq A$.

A - a set $\wp(A)$ - the family of all non-empty subsets of A For any n-ary operation $\omega : A^n \to A$ we define the complex operation $\omega : \wp(A)^n \to \wp(A)$ in the following way:

$$\omega(A_1,\ldots,A_n):=\{\omega(a_1,\ldots,a_n)\mid a_i\in A_i\},\$$

where $\emptyset \neq A_1, \ldots, A_n \subseteq A$. The power (complex or global) algebra of an algebra (A, Ω) is the algebra $(\wp(A), \Omega)$.

Theorem (J.Jezek)

For every groupoid (A, \cdot) there exists an idempotent groupoid (B, \cdot) $(x \cdot x = x)$ such that (A, \cdot) can be embedded into $(\wp(\wp(B)), \cdot)$.

Theorem (J.Jezek)

For every groupoid (A, \cdot) there exists an idempotent groupoid (B, \cdot) $(x \cdot x = x)$ such that (A, \cdot) can be embedded into $(\wp(\wp(B)), \cdot)$. On the other hand, there are groupoids that cannot be embedded into $(\wp(B), \cdot)$ for any idempotent groupoid (B, \cdot) .

 $\ensuremath{\mathcal{V}}$ - an arbitrary variety

æ

 $\ensuremath{\mathcal{V}}$ - an arbitrary variety

$$\wp(\mathcal{V}) := \mathrm{HSP}(\{(\wp(A), \Omega) \mid (A, \Omega) \in \mathcal{V}\})$$

æ

 $\ensuremath{\mathcal{V}}$ - an arbitrary variety

$$\wp(\mathcal{V}) := \mathrm{HSP}(\{(\wp(A), \Omega) \mid (A, \Omega) \in \mathcal{V}\})$$

 $\mathcal{V} \subseteq \wp(\mathcal{V})$, because

$$(A, \Omega) \cong (\{\{a\} \mid a \in A\}, \Omega) \leqslant (\wp(A), \Omega)$$

 $\ensuremath{\mathcal{V}}$ - an arbitrary variety

$$\wp(\mathcal{V}) := \mathrm{HSP}(\{(\wp(A), \Omega) \mid (A, \Omega) \in \mathcal{V}\})$$

 $\mathcal{V} \subseteq \wp(\mathcal{V})$, because

$$(A, \Omega) \cong (\{\{a\} \mid a \in A\}, \Omega) \leqslant (\wp(A), \Omega)$$

We call a term *t linear*, if every variable occurs in *t* at most once.

 $\ensuremath{\mathcal{V}}$ - an arbitrary variety

$$\wp(\mathcal{V}) := \mathrm{HSP}(\{(\wp(A), \Omega) \mid (A, \Omega) \in \mathcal{V}\})$$

 $\mathcal{V} \subseteq \wp(\mathcal{V})$, because

$$(A, \Omega) \cong (\{\{a\} \mid a \in A\}, \Omega) \leqslant (\wp(A), \Omega)$$

We call a term *t linear*, if every variable occurs in *t* at most once. An identity t = u is called *linear*, if both terms *t* and *u* are linear. $\ensuremath{\mathcal{V}}$ - an arbitrary variety

$$\wp(\mathcal{V}) := \mathrm{HSP}(\{(\wp(A), \Omega) \mid (A, \Omega) \in \mathcal{V}\})$$

 $\mathcal{V} \subseteq \wp(\mathcal{V})$, because

$$(A, \Omega) \cong (\{\{a\} \mid a \in A\}, \Omega) \leqslant (\wp(A), \Omega)$$

We call a term *t linear*, if every variable occurs in *t* at most once. An identity t = u is called *linear*, if both terms *t* and *u* are linear.

Theorem (G.Gratzer, H.Lakser)

Let \mathcal{V} be a variety. The variety $\wp(\mathcal{V})$ satisfies precisely those identities resulting through identification of variables from the linear identities true in \mathcal{V} .

An algebra (A, Ω) is idempotent, if it satisfies the following law:

$$\omega(x,\ldots,x)=x$$

for every *n*-ary $\omega \in \Omega$.

An algebra (A, Ω) is idempotent, if it satisfies the following law:

$$\omega(x,\ldots,x)=x$$

for every n-ary $\omega \in \Omega$. It means that each singleton is a subalgebra

An algebra (A, Ω) is idempotent, if it satisfies the following law:

$$\omega(x,\ldots,x)=x$$

for every n-ary $\omega \in \Omega$. It means that each singleton is a subalgebra

An idempotent law is satisfied in the variety $\wp(\mathcal{V})$ if and only if it is a consequence of linear identities true in \mathcal{V} .

An algebra (A, Ω) is idempotent, if it satisfies the following law:

$$\omega(x,\ldots,x)=x$$

for every n-ary $\omega \in \Omega$. It means that each singleton is a subalgebra

An idempotent law is satisfied in the variety $\wp(\mathcal{V})$ if and only if it is a consequence of linear identities true in \mathcal{V} .

Theorem

The power algebra ($\wp(A), \Omega$) of an idempotent algebra (A, Ω) is idempotent if and only if each non-empty subset $B \subseteq A$ is a subalgebra of (A, Ω) .

Example

The power algebra $(\wp(A), \Omega)$ is idempotent if

▲ ▶ ▲

æ

Example

The power algebra $(\wp(A), \Omega)$ is idempotent if

(A, ·) - a left zero-semigroup (groupoid determined by the identity xy = x)

Example

The power algebra $(\wp(A), \Omega)$ is idempotent if

- (A, ·) a left zero-semigroup (groupoid determined by the identity xy = x)
- (A, ·) an equivalence algebra: groupoid with the multiplication defined as follows:

$$x \cdot y = \begin{cases} x, & \text{if } (x, y) \in \alpha \subseteq A \times A, \\ y, & \text{otherwise} \end{cases}$$

Example

The power algebra $(\wp(A), \Omega)$ is idempotent if

- (A, ·) a left zero-semigroup (groupoid determined by the identity xy = x)
- (A, ·) an equivalence algebra: groupoid with the multiplication defined as follows:

$$x \cdot y = \begin{cases} x, & \text{if } (x, y) \in \alpha \subseteq A imes A, \\ y, & otherwise \end{cases}$$

 (A, ·) - a tournament: a commutative groupoid in which for any a, b ∈ A, a · b = a or a · b = b

Example

The power algebra $(\wp(A), \Omega)$ is idempotent if

- (A, ·) a left zero-semigroup (groupoid determined by the identity xy = x)
- (A, ·) an equivalence algebra: groupoid with the multiplication defined as follows:

$$x \cdot y = \left\{ egin{array}{ll} x, & \textit{if} \ (x,y) \in lpha \subseteq A imes A, \ y, & \textit{otherwise} \end{array}
ight.$$

 (A, ·) - a tournament: a commutative groupoid in which for any a, b ∈ A, a · b = a or a · b = b

< 注 → 注

 ${\mathcal V}$ - a variety of idempotent algebras Idempotent algebras in $\wp({\mathcal V})$ forms a (proper) subvariety.

By adding \cup to the set of basic operations we obtain *the extended* power algebra ($\wp(A), \Omega, \cup$).

By adding \cup to the set of basic operations we obtain *the extended* power algebra ($\wp(A), \Omega, \cup$).

The algebra $(\wp_{fin}(A), \Omega, \cup)$ of all finite non-empty subsets of A is a subalgebra of the extended power algebra $(\wp(A), \Omega, \cup)$.

By adding \cup to the set of basic operations we obtain *the extended* power algebra ($\wp(A), \Omega, \cup$).

The algebra $(\wp_{fin}(A), \Omega, \cup)$ of all finite non-empty subsets of A is a subalgebra of the extended power algebra $(\wp(A), \Omega, \cup)$.

Complex operations distribute over the union \cup , i.e. for each *n*-ary operation $\omega \in \Omega$ and non-empty subsets $A_1, \ldots, A_i, \ldots, A_n, B_i \subseteq A$

$$\omega(A_1,\ldots,A_i\cup B_i,\ldots,A_n) = \omega(A_1,\ldots,A_i,\ldots,A_n) \cup \omega(A_1,\ldots,B_i,\ldots,A_n),$$

for any $1 \leq i \leq n$.

Lemma (Monotonicity Lemma)

Let A_1, \ldots, A_n , B_1, \ldots, B_n be non-empty subsets of A and let $\omega \in \Omega$ be an n-ary complex operation over A. If $A_i \subseteq B_i$ for each $1 \leq i \leq n$, then $\omega(A_1, \ldots, A_n) \subseteq \omega(B_1, \ldots, B_n)$.

Lemma (Convexity Lemma)

Let $\emptyset \neq A_{ij} \subseteq A$ for $1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant r$. Then

$$\omega(A_{11},\ldots,A_{n1})\cup\ldots\cup\omega(A_{1r},\ldots,A_{nr})\subseteq$$

$$\omega(A_{11}\cup\ldots\cup A_{1r},\ldots,A_{n1}\cup\ldots\cup A_{nr}),$$

for each n-ary complex operation $\omega \in \Omega$.

A modal is an algebra $(M, \Omega, +)$ such that

돈 돈 돈

A modal is an algebra $(M, \Omega, +)$ such that

• (M, +) is a (join) semilattice

э

A modal is an algebra $(M, \Omega, +)$ such that

- (M, +) is a (join) semilattice
- the operations $\omega \in \Omega$ distribute over +

A modal is an algebra $(M, \Omega, +)$ such that

- (M, +) is a (join) semilattice
- the operations $\omega \in \Omega$ distribute over +
- (M, Ω) is a mode idempotent and entropic algebra

A modal is an algebra $(M, \Omega, +)$ such that

- (M, +) is a (join) semilattice
- the operations $\omega \in \Omega$ distribute over +
- (M, Ω) is a mode idempotent and entropic algebra

Definition

An algebra (M, Ω) is entropic if any two of its operation commute.

• distributive lattices

æ

- distributive lattices
- dissemilattices algebras (M, ·, +) with two semilattice structures (M, ·) and (M, +) in which the operation · distributes over the operation +

- distributive lattices
- dissemilattices algebras (M, ·, +) with two semilattice structures (M, ·) and (M, +) in which the operation · distributes over the operation +
- the algebra $(\mathbb{R}, \underline{l}^0, max)$ defined on the set of real numbers, where \underline{l}^0 is the set of the following binary operations:

$$\underline{p}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}; \ (x, y) \mapsto (1 - p)x + py,$$

for each $p \in (0,1) \subset \mathbb{R}$

æ

Monotonicity Lemma

Monotonicity Lemma Convexity Lemma

Monotonicity Lemma Convexity Lemma

Lemma (Sum-Superiority Lemma)

For each n-ary basic operation $\omega \in \Omega$ and elements $x_1, \ldots, x_n \in M$, one has

$$\omega(x_1,\ldots,x_n)\leqslant x_1+\ldots+x_n.$$

Monotonicity Lemma Convexity Lemma

Lemma (Sum-Superiority Lemma)

For each n-ary basic operation $\omega\in\Omega$ and elements $x_1,\ldots,x_n\in M,$ one has

$$\omega(x_1,\ldots,x_n)\leqslant x_1+\ldots+x_n.$$

Theorem

Let (A, Ω) be an idempotent algebra. The power algebra $(\wp(A), \Omega)$ is idempotent if and only if for each n-ary basic operation $\omega \in \Omega$ and subsets $A_1, \ldots, A_n \in \wp(A)$

$$\omega(A_1,\ldots,A_n)\subseteq A_1\cup\ldots\cup A_n.$$

The entropic law may also be expressed by means of (linear) identities:

$$\omega(\phi(x_{11},\ldots,x_{n1}),\ldots,\phi(x_{1m},\ldots,x_{nm})) =$$

$$\phi(\omega(x_{11},\ldots,x_{1m}),\ldots,\omega(x_{n1},\ldots,x_{nm})),$$

for every *n*-ary $\omega \in \Omega$ and *m*-ary $\phi \in \Omega$.

The entropic law may also be expressed by means of (linear) identities:

$$\omega(\phi(x_{11},\ldots,x_{n1}),\ldots,\phi(x_{1m},\ldots,x_{nm})) =$$

$$\phi(\omega(x_{11},\ldots,x_{1m}),\ldots,\omega(x_{n1},\ldots,x_{nm})),$$

for every *n*-ary $\omega \in \Omega$ and *m*-ary $\phi \in \Omega$.

Power algebras of modes preserve entropic law, but very rarely they are again modes.

The entropic law may also be expressed by means of (linear) identities:

$$\omega(\phi(x_{11},\ldots,x_{n1}),\ldots,\phi(x_{1m},\ldots,x_{nm})) =$$

$$\phi(\omega(x_{11},\ldots,x_{1m}),\ldots,\omega(x_{n1},\ldots,x_{nm})),$$

for every *n*-ary $\omega \in \Omega$ and *m*-ary $\phi \in \Omega$.

Power algebras of modes preserve entropic law, but very rarely they are again modes.

Extended power algebras of modes needn't be modals.

 ρ, α - congruences of the extended power algebra ($\wp(M), \Omega, \cup$) of a mode (M, Ω):

 ρ, α - congruences of the extended power algebra ($\wp(M), \Omega, \cup$) of a mode (M, Ω):

 $X
ho Y \Leftrightarrow$ there exist terms t and s such that $X \subseteq t(Y, Y, \dots, Y)$ and $Y \subseteq s(X, X, \dots, X)$

 ρ, α - congruences of the extended power algebra ($\wp(M), \Omega, \cup$) of a mode (M, Ω):

$$X
ho Y \Leftrightarrow$$
 there exist terms t and s such that
 $X \subseteq t(Y, Y, \dots, Y)$ and $Y \subseteq s(X, X, \dots, X)$

 $X \alpha Y \Leftrightarrow \langle X \rangle_{\Omega} = \langle Y \rangle_{\Omega},$

where $\langle X \rangle_{\Omega}$ denotes the subalgebra of (M, Ω) generated by X

 ρ, α - congruences of the extended power algebra ($\wp(M), \Omega, \cup$) of a mode (M, Ω):

$$X
ho Y \Leftrightarrow$$
 there exist terms t and s such that
 $X \subseteq t(Y, Y, \dots, Y)$ and $Y \subseteq s(X, X, \dots, X)$

$$X \ \alpha \ Y \Leftrightarrow \langle X \rangle_{\Omega} = \langle Y \rangle_{\Omega},$$

where $\langle X \rangle_{\Omega}$ denotes the subalgebra of (M, Ω) generated by XThe relation ρ is the least element in the set $Con_{id}(\wp(M))$, of all congruence relations γ on the extended power algebra $(\wp(M), \Omega, \cup)$, such that the quotient $(\wp(M)/\gamma, \Omega)$ is idempotent.

 ρ, α - congruences of the extended power algebra ($\wp(M), \Omega, \cup$) of a mode (M, Ω):

$$X
ho Y \Leftrightarrow$$
 there exist terms t and s such that
 $X \subseteq t(Y, Y, \dots, Y)$ and $Y \subseteq s(X, X, \dots, X)$

$$X \ \alpha \ Y \Leftrightarrow \langle X \rangle_{\Omega} = \langle Y \rangle_{\Omega},$$

where $\langle X \rangle_{\Omega}$ denotes the subalgebra of (M, Ω) generated by XThe relation ρ is the least element in the set $Con_{id}(\wp(M))$, of all congruence relations γ on the extended power algebra $(\wp(M), \Omega, \cup)$, such that the quotient $(\wp(M)/\gamma, \Omega)$ is idempotent.

$$\rho_{|\wp_{fin}(M)} = \alpha_{|\wp_{fin}(M)}$$

Theorem

Let (M, Ω) be a mode. The quotient algebra $(\wp(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MS, \Omega, +)$ of all non-empty subalgebras of (M, Ω) and the quotient algebra $(\wp_{fin}(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MP, \Omega, +)$ of all finitely generated subalgebras.

Theorem

Let (M, Ω) be a mode. The quotient algebra $(\wp(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MS, \Omega, +)$ of all non-empty subalgebras of (M, Ω) and the quotient algebra $(\wp_{fin}(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MP, \Omega, +)$ of all finitely generated subalgebras.

Theorem (Power representation Theorem)

Let $(M, \Omega, +)$ be a modal generated by a set X. Then $(M, \Omega, +) \in HS(\wp(\langle X \rangle_{\Omega}), \Omega, \cup).$

Theorem

Let (M, Ω) be a mode. The quotient algebra $(\wp(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MS, \Omega, +)$ of all non-empty subalgebras of (M, Ω) and the quotient algebra $(\wp_{fin}(M)/\alpha, \Omega, \cup)$ is isomorphic to the modal $(MP, \Omega, +)$ of all finitely generated subalgebras.

Theorem (Power representation Theorem)

Let $(M, \Omega, +)$ be a modal generated by a set X. Then $(M, \Omega, +) \in HS(\wp(\langle X \rangle_{\Omega}), \Omega, \cup).$

Corollary

Each modal $(M, \Omega, +)$ generated by a set X is a homomorphic image of $(\langle X \rangle_{\Omega} P, \Omega, +)$.

Thank you for your attention!

문 문 문