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Congruence lattices

Problem. For a given class K of algebras describe Con K =all
lattices isomorphic to Con A for some A ∈ K.

Or, at least,

for given classes K, L determine if Con K = Con L
(Con K ⊆ Con L)

Especially, for finitely generated varieties K, L we have an
algorithmic problem.
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Necessary condition

In the sequel: V . . . a finitely generated CD variety;
SI(V) . . . the family of subdirectly irreducible members;
M(L) . . . completely ∧-irreducible elements of a lattice L.

Lemma

Let L ∈ConV. Then for every x ∈ M(L), the lattice ↑x is
isomorphic to ConT for some T ∈ SI(V).
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Congruence-maximal varieties

On the finite level (for finite L), the necessary condition is
sometimes also sufficient. In such a case we say that V is
congruence-maximal. Formally,V is congruence-maximal, if for
every finite distributive lattice L the following two conditions are
equivalent:
(i) L ∈ ConV;
(ii) for every x ∈ M(L), the lattice ↑x is isomorphic to ConT for

some T ∈ SI(V).
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Easy case

Theorem
Let V be a congruence-distributive variety with the property that
ConC is a finite chain for every C ∈ SI(V) and
n = max{length(Con C) | C ∈ SI(V)}. Let L be a finite
distributive lattice. The following conditions are equivalent.
(i) L ∈ ConV;
(ii) For every x ∈ M(L), the set ↑x is a chain of the length at

most n.

Examples: distributive lattices, Stone algebras ...
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The simplest of the difficult cases

In the sequel, suppose that every algebra in SI(V) is simple or has
the congruence lattice isomorphic to
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Necessary condition specified

For every A ∈ V, L = ConA,
(NC) M(L) is a disjoint union of two antichains D ∪N and for

every n ∈ N there are exactly two d, e ∈ D with n < d, e.
So, V is congruence-maximal iff every finite distributive lattice L
satisfying (NC) belongs to ConV.
Example: the variety N5 generated by the 5-element nonmodular
lattice N5 is congruence-maximal.
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Non-congruence-maximal example

Let V contain only one algebra A with ConA = V , such that the
two nontrivial subdirectly irreducible quotients of A are not
isomorphic. Then L with M(L) equal to

u u u
u u u
�

�
�

�
�

�

@
@

@

@
@

@

1

does not belong to ConV.
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Compatible families

Let A be a subset of B ×B for some set B. Let X be a set and let
F be a set of functions X → B. We say that F is A-compatible if
{f(x), g(x)) | x ∈ X} = A or {(g(x), f(x)) | x ∈ X} = A for
every f, g ∈ F , f 6= g.

Lemma
(P. Gillibert) Suppose that A ⊆ B ×B contains a pair (a, b) with
a 6= b. Then the following condition are equivalent.
(i) There exist arbitrarily large finite A-compatible sets of

functions.
(ii) For every (a, b) ∈ A there are x, y, z ∈ B such that

(x, x), (y, y), (z, z), (x, y),
(x, z), (y, z), (x, a), (x, b), (a, y), (y, b), (a, z), (b, z) ∈ A.
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Characterization theorem

Let V satisfy the above conditions.

Theorem
V is congruence-maximal iff there exist B,C ∈ V and surjective
homomorphisms h0, h1 : C → B such that
(i) B is simple, ConC = V ;
(ii) Ker(h0) 6= Ker(h1);
(iii) there are arbitrarily large A-compatible sets of functions for

A = {(h0(x), h1(x)) | x ∈ C} ⊆ B ×B.
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Positive example

For V = N5 we have B = {0, 1}, A = {(0, 0), (0, 1), (1, 0), (1, 1)}
so almost every family of functions is compatible and V is
congruence-maximal.
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Negative example

Consider the following lattice C with two additional unary
operations.
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f(00) = 00, f(0a) = 0b, f(0b) = f(01) = 01

f(ab) = f(a1) = b1, f(b1) = f(11) = 11

g(11) = 11, g(b1) = a1, g(a1) = g(01) = 01

g(ab) = g(0b) = 0a, g(0a) = g(00) = 00
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Negative example 2

For the variety C generated by C we have B = {0, 1, a, b},
A = {(0, 0), (0, a), (0, b), (a, b), (0, 1), (a, 1), (b, 1), (1, 1)} (the
labels on the elements of C), and the pair (a, b) violates Gillibert’s
condition. Thus, C is not congruence-maximal.
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Problem

Find a finitely generated CD-variety V such that one SI-member
has the congruence lattice isomorphic to V and all other
SI-members are simple, which is not congruence-maximal, but
ConV contains L with M(L) equal to
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