On finite distributive congruence lattices

Miroslav Ploščica

Slovak Academy of Sciences, Košice

June 29, 2010

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

for given classes \mathcal{K} , \mathcal{L} determine if Con $\mathcal{K} = \text{Con } \mathcal{L}$ (Con $\mathcal{K} \subseteq \text{Con } \mathcal{L}$)

Especially, for finitely generated varieties $\mathcal{K},\ \mathcal{L}$ we have an algorithmic problem.

イヨト イヨト イヨト

In the sequel: \mathcal{V} ... a finitely generated CD variety; SI(\mathcal{V})... the family of subdirectly irreducible members; M(L)... completely \wedge -irreducible elements of a lattice L.

Lemma

Let $L \in Con\mathcal{V}$. Then for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to Con T for some $T \in SI(\mathcal{V})$.

< ロ > (同 > (回 > (回 >))

On the finite level (for finite L), the necessary condition is sometimes also sufficient. In such a case we say that \mathcal{V} is *congruence-maximal*. Formally, \mathcal{V} is congruence-maximal, if for every finite distributive lattice L the following two conditions are equivalent:

- (i) $L \in \operatorname{Con} \mathcal{V};$
- (ii) for every $x \in M(L)$, the lattice $\uparrow x$ is isomorphic to $\operatorname{Con} T$ for some $T \in SI(\mathcal{V})$.

- 4 同 2 4 日 2 4 日 2 4

Theorem

Let \mathcal{V} be a congruence-distributive variety with the property that $\operatorname{Con} C$ is a finite chain for every $C \in \operatorname{SI}(\mathcal{V})$ and $n = \max\{\operatorname{length}(\operatorname{Con} C) \mid C \in \operatorname{SI}(\mathcal{V})\}$. Let L be a finite distributive lattice. The following conditions are equivalent. (i) $L \in \operatorname{Con} \mathcal{V}$; (ii) For every $n \in \mathcal{M}(L)$, the set $\widehat{\gamma}n$ is a chain of the length at

(ii) For every $x \in M(L)$, the set $\uparrow x$ is a chain of the length at most n.

Examples: distributive lattices, Stone algebras ...

イロト イポト イヨト イヨト

The simplest of the difficult cases

In the sequel, suppose that every algebra in $\mathsf{SI}(\mathcal{V})$ is simple or has the congruence lattice isomorphic to



伺 と く ヨ と く ヨ と

For every $A \in \mathcal{V}$, $L = \operatorname{Con} A$,

(NC) M(L) is a disjoint union of two antichains $D \cup N$ and for every $n \in N$ there are exactly two $d, e \in D$ with n < d, e.

So, \mathcal{V} is congruence-maximal iff every finite distributive lattice L satisfying (NC) belongs to Con \mathcal{V} .

Example: the variety N_5 generated by the 5-element nonmodular lattice N_5 is congruence-maximal.

ヘロト 人間ト ヘヨト ヘヨト

Non-congruence-maximal example

Let \mathcal{V} contain only one algebra A with ConA = V, such that the two nontrivial subdirectly irreducible quotients of A are not isomorphic. Then L with M(L) equal to

Let A be a subset of $B \times B$ for some set B. Let X be a set and let \mathcal{F} be a set of functions $X \to B$. We say that \mathcal{F} is A-compatible if $\{f(x), g(x)) \mid x \in X\} = A$ or $\{(g(x), f(x)) \mid x \in X\} = A$ for every $f, g \in \mathcal{F}, f \neq g$.

Lemma

(P. Gillibert) Suppose that $A \subseteq B \times B$ contains a pair (a, b) with $a \neq b$. Then the following condition are equivalent.

(i) There exist arbitrarily large finite A-compatible sets of functions.

(ii) For every $(a,b) \in A$ there are $x, y, z \in B$ such that $(x,x), (y,y), (z,z), (x,y), (x,z), (y,z), (x,a), (x,b), (a,y), (y,b), (a,z), (b,z) \in A.$

イロト イポト イヨト イヨト

Let $\ensuremath{\mathcal{V}}$ satisfy the above conditions.

Theorem

 \mathcal{V} is congruence-maximal iff there exist $B, C \in \mathcal{V}$ and surjective homomorphisms $h_0, h_1: C \to B$ such that

(i) B is simple,
$$\operatorname{Con} C = V$$
;

(ii)
$$\operatorname{Ker}(h_0) \neq \operatorname{Ker}(h_1);$$

(iii) there are arbitrarily large A-compatible sets of functions for $A = \{(h_0(x), h_1(x)) \mid x \in C\} \subseteq B \times B.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

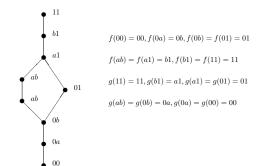
For $\mathcal{V} = \mathcal{N}_5$ we have $B = \{0, 1\}$, $A = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ so almost every family of functions is compatible and \mathcal{V} is congruence-maximal.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Negative example

Consider the following lattice ${\cal C}$ with two additional unary operations.



・ 同 ト ・ ヨ ト ・ ヨ ト

For the variety C generated by C we have $B = \{0, 1, a, b\}$, $A = \{(0, 0), (0, a), (0, b), (a, b), (0, 1), (a, 1), (b, 1), (1, 1)\}$ (the labels on the elements of C), and the pair (a, b) violates Gillibert's condition. Thus, C is not congruence-maximal.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Find a finitely generated CD-variety \mathcal{V} such that one SI-member has the congruence lattice isomorphic to V and all other SI-members are simple, which is not congruence-maximal, but $\operatorname{Con} \mathcal{V}$ contains L with M(L) equal to

(日) (日) (日)