Affine complete *G*-sets

András Pongrácz, Gábor Horváth, Peter Mayr

ELTE Budapest, Hungary

Prague, June 2010.

Describe the affine complete algebras.

Affine completeness

An algebra $\mathcal A$ is affine complete if every compatible function is a polynomial on $\mathcal A$.

Affine completeness

An algebra $\mathcal A$ is affine complete if every compatible function is a polynomial on $\mathcal A$.

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have } (\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have } (\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

• constants, fundamental operations

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have } (\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

- constants, fundamental operations
- polynomials

Affine completeness

An algebra \mathcal{A} is affine complete if every compatible function is a polynomial on \mathcal{A} .

Definition

 $f: A^k \to A \text{ compatible}: \text{ for all } \theta \in Con(A) \text{ we have}$ $(\mathbf{a}, \mathbf{b}) \in \theta \Rightarrow (f(\mathbf{a}), f(\mathbf{b})) \in \theta.$

- constants, fundamental operations
- polynomials

k-affine completeness

An algebra A is k-affine coplete if every compatible function of arity at most k is a polynomial on A.

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

 Z_p

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

every function is compatible

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

- every function is compatible
- polynomials: $\sum_{i=1}^{n} a_i x_i + b$

Fields, Boolean algebras

Finite fields, 2-element Boolean algebra: every function is a polynomial. These are affine complete.

Z_p

- every function is compatible
- polynomials: $\sum_{i=1}^{n} a_i x_i + b$
- ⇒ not affine complete

Describe the affine complete algebras.

Describe the affine complete algebras.

First significant results:

Describe the affine complete algebras.

First significant results:

Boolean algebras

Describe the affine complete algebras.

First significant results:

- Boolean algebras
- Bounded distributive lattices: not containing proper Boolean intervals

Some known results

- Abelian groups: K. Kaarli
- Semilattices: K. Kaarli, L. Márki, E. T. Schmidt
- Vector spaces: H. Werner
- Distributive lattices: M. Ploščica
- Stone algebras: M. Haviar, M. Ploščica
- Kleene algebras: M. Haviar, K. Kaarli, M. Ploščica

G-set

ullet (Ω, G) pair

G-set

- \bullet (Ω, G) pair
- underlying set: Ω

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- type: for all $g \in G$ a unary operation is given:

$$m_g: \alpha \mapsto g\alpha$$

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- type: for all $g \in G$ a unary operation is given:

$$m_{g}: \alpha \mapsto g\alpha$$

Transitive group actions

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- ullet type: for all $g \in G$ a unary operation is given:

$$m_g: \alpha \mapsto g\alpha$$

Transitive group actions

• $S \leq G$, Ω : cosets of S

G-set

- \bullet (Ω, G) pair
- underlying set: Ω
- ullet type: for all $g \in G$ a unary operation is given:

$$m_g: \alpha \mapsto g\alpha$$

Transitive group actions

- $S \leq G$, Ω : cosets of S
- $m_g(hS) = ghS$

Congruences

• $S \leq H \leq G$

Congruences

• $S \leq H \leq G$

Congruences

•
$$S \leq H \leq G$$

$$\rho_{H} = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

• Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

- Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$
- $Con((\Omega, G)) = [S, G] \le L(G)$

Congruences

• $S \leq H \leq G$

$$\rho_H = \{(aS, bS) \in \Omega \times \Omega | a, b \in G, aH = bH\}$$

- Congruences $\longleftrightarrow \{H|S \leq H \leq G\}$
- $Con((\Omega, G)) = [S, G] \le L(G)$

Regular G-sets

$$Con(R(G)) = {\rho_H | H \leq G} \cong L(G)$$
 (subgroup lattice)

Unary compatible functions

R(G): regular permutation representation of G

Unary compatible functions

R(G): regular permutation representation of G

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a, b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a,b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a,b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

• constants $x \mapsto g, g \in G$

Regular actions

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a,b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

- constants $x \mapsto g$, $g \in G$
- left translations $x \mapsto gx$, $g \in G$

Regular actions

Unary compatible functions

R(G): regular permutation representation of G f compatible on R(G): for all $H \leq G$ and $a, b \in G$

$$aH = bH \Rightarrow f(a)H = f(b)H$$

- constants $x \mapsto g$, $g \in G$
- left translations $x \mapsto gx$, $g \in G$
- These are the only unary polynomial functions on R(G).

Theorem

Pálfy (1984.): Classification of minimal algebras.

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

•
$$|\Omega| = 2$$

Theorem

Pálfy (1984.): Classification of minimal algebras.

Corollary

 (Ω, G) 1-affine complete \Rightarrow affine complete, except:

- $|\Omega| = 2$
- There exists a division ring D and a vector space $_DV$ such that $\Omega =_DV$ and $G = \{x \mapsto dx + v | d \in D, v \in V\}$

Notation

t-completeness

A group G is t-complete if R(G) is a 1-affine complete G-set.

Proposition

Let G be an abelian group. Then G is not t-complete, except if G is an elementary abelian 2-group.

Proposition

Let G be an abelian group. Then G is not t-complete, except if G is an elementary abelian 2-group.

Proposition

 $x \mapsto x^{|G:Z(G)|}$ (transfer) is compatible

G is t-complete $\Rightarrow |G:Z(G)|$ is divisible by exp(G).

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$gcd(|A|, |B|) = 1$$

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$gcd(|A|, |B|) = 1$$

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$gcd(|A|, |B|) = 1 \Rightarrow$$
 subgroups of G are of the form $C \times D$.

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$gcd(|A|,|B|) = 1 \Rightarrow$$
 subgroups of G are of the form $C \times D$. $\pi: (a,b) \mapsto (a,1)$ is compatible

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$\gcd(|A|,|B|)=1\Rightarrow$$
 subgroups of G are of the form $C\times D$. $\pi:(a,b)\mapsto(a,1)$ is compatible $(a_1,b_1)C\times D=(a_2,b_2)C\times D$

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$\gcd(|A|,|B|)=1\Rightarrow$$
 subgroups of G are of the form $C\times D$. $\pi:(a,b)\mapsto(a,1)$ is compatible $(a_1,b_1)C\times D=(a_2,b_2)C\times D$ $\Rightarrow a_1C=a_2C$

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$\gcd(|A|,|B|)=1\Rightarrow$$
 subgroups of G are of the form $C\times D$.
 $\pi:(a,b)\mapsto(a,1)$ is compatible $(a_1,b_1)C\times D=(a_2,b_2)C\times D$
 $\Rightarrow a_1C=a_2C$
 $\Rightarrow (a_1,1)C\times D=(a_2,1)C\times D$

Lemma (Typical counterexample)

 $G = A \times B$, A, B are proper subgroups and gcd(|A|, |B|) = 1. Then G is not t-complete.

$$gcd(|A|,|B|) = 1 \Rightarrow$$
 subgroups of G are of the form $C \times D$. $\pi: (a,b) \mapsto (a,1)$ is compatible $(a_1,b_1)C \times D = (a_2,b_2)C \times D$ $\Rightarrow a_1C = a_2C$ $\Rightarrow (a_1,1)C \times D = (a_2,1)C \times D$ π is not a polynomial function

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If A and B are t-complete then exactly one of the following holds:

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If A and B are t-complete then exactly one of the following holds:

• G is t-complete

Theorem

Let $A, B \leq G$ such that $\langle A, B \rangle = G$. If A and B are t-complete then exactly one of the following holds:

- G is t-complete
- $G = A \times B$ and gcd(|A|, |B|) = 1.

Definition

 $t(G) := \langle H \leq G \mid H \text{ is t-complete } \rangle.$

Definition

 $t(G) := \langle H \leq G \mid H \text{ is t-complete } \rangle.$

Properties of t(G)

Definition

 $t(G) := \langle H \leq G \mid H \text{ is t-complete } \rangle.$

Properties of t(G)

• t(G) char G.

Definition

 $t(G) := \langle H \leq G \mid H \text{ is t-complete } \rangle.$

Properties of t(G)

- t(G) char G.
- t(G) is the direct product of t-complete maximal subgroups.

Definition

 $t(G) := \langle H \leq G \mid H \text{ is t-complete } \rangle$.

Properties of t(G)

- t(G) char G.
- t(G) is the direct product of t-complete maximal subgroups.
- t(G) = 1 implies that G is odd and any two elements of prime order commute.

Definition

 $T(G) := \bigcap \{ N \triangleleft G \mid G/N \text{ is t-complete } \}.$

Definition

 $T(G) := \bigcap \{ N \triangleleft G \mid G/N \text{ is t-complete } \}.$

Properties of T(G)

Definition

 $T(G) := \bigcap \{ N \triangleleft G \mid G/N \text{ is t-complete } \}.$

Properties of T(G)

 \bullet T(G) char G.

Definition

 $T(G) := \bigcap \{ N \triangleleft G \mid G/N \text{ is t-complete } \}.$

Properties of T(G)

- \bullet T(G) char G.
- G/T(G) is the subdirect product of pairwise coprime t-complete groups.

Definition

 $T(G) := \bigcap \{ N \triangleleft G \mid G/N \text{ is t-complete } \}.$

Properties of T(G)

- *T*(*G*) char *G*.
- G/T(G) is the subdirect product of pairwise coprime t-complete groups.
- For finite G: T(G) = G implies that G is nilpotent of odd order.

Theorem: Mayr, Horváth, Szabó, Pongrácz

Theorem: Mayr, Horváth, Szabó, Pongrácz

The following groups are t-complete:

• Nonabelian p-groups of exponent p.

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian *p*-groups of exponent *p*.
- Frobenius groups.

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian p-groups of exponent p.
- Frobenius groups.
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups.

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian *p*-groups of exponent *p*.
- Frobenius groups.
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups.
- Finite nonabelian groups generated by their elements of prime order that do not have the form $G = A \times B$ with gcd(|A|, |B|) = 1.

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian *p*-groups of exponent *p*.
- Frobenius groups.
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups.
- Finite nonabelian groups generated by their elements of prime order that do not have the form $G = A \times B$ with gcd(|A|, |B|) = 1.
- Groups all of whose minimal normal subgroups are nonabelian.

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian p-groups of exponent p.
- Frobenius groups.
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups.
- Finite nonabelian groups generated by their elements of prime order that do not have the form $G = A \times B$ with gcd(|A|, |B|) = 1.
- Groups all of whose minimal normal subgroups are nonabelian.
- $SL(n, F) \leq G \leq GL(n, F) \ (n \geq 2)$

Theorem: Mayr, Horváth, Szabó, Pongrácz

- Nonabelian *p*-groups of exponent *p*.
- Frobenius groups.
- Dihedral groups, S_n (for all n), A_n ($n \ge 4$), finite nonabelian simple groups.
- Finite nonabelian groups generated by their elements of prime order that do not have the form $G = A \times B$ with gcd(|A|, |B|) = 1.
- Groups all of whose minimal normal subgroups are nonabelian.
- $SL(n, F) \leq G \leq GL(n, F) \ (n \geq 2)$
- Finite perfect groups.

Subgroup lattices

Subgroup lattices

• What lattices occur as L(G)?

Subgroup lattices

- What lattices occur as L(G)?
- Describe t-complete groups.

Subgroup lattices

- What lattices occur as L(G)?
- Describe t-complete groups.

Subgroup lattices

- What lattices occur as L(G)?
- Describe t-complete groups.

t(G), T(G)

• What are the properties of t(G) and T(G)?

Subgroup lattices

- What lattices occur as L(G)?
- Describe t-complete groups.

t(G), T(G)

- What are the properties of t(G) and T(G)?
- Characterize groups with t(G) = 1.

Subgroup lattices

- What lattices occur as L(G)?
- Describe t-complete groups.

t(G), T(G)

- What are the properties of t(G) and T(G)?
- Characterize groups with t(G) = 1.
- Characterize groups with T(G) = G.