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For example, the free Burnside group of exponent n with two
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(a,b|u"=1)

for all words v in the alphabet a, b.

The fundamental group of the orientable surface of genus n is
given by the presentation

(a1, b1, ..., an, by | [a1, b1]...[an, bn] = 1).
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Theorem. (Boone-Novikov's solution of Dehn's problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov's solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii's solution of Tarski's and von Neumann'’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.

Theorem. (Gromov's solution of Milnor's problem) Any group of
polynomial growth has a nilpotent subgroup of finite index.
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Theorem. (Birget, Rips, Olshanskii, S., Ann. of Math.,
2002) A finitely generated group has word problem in NP iff it is
inside a finitely presented group with polynomial Dehn function.

Corollary. There exists an NP-complete f.p. group.

Corollary. If a word problem in a f.g. group can be solved in
NP-time by a smart algorithm, it can be solved in NP-time by the
obvious algorithm involving relations of a bigger group.
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Consider the free Burnside group B(2, n) with 2 generators
{a1, a2} and exponent n (for simplicity n = 3).
Let

K(u) = ki(ugrugougs)ke(uqrugrugs) ks....kn(ugrugougs)™)
for every word u in the alphabet {a;,a>}, N = 28,
ki,...,kn, 91,2, q3 are new letters, and the words between
consecutive k’s are copies of ugiugyuqgs written in disjoint
alphabets.
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An embedding of the free Burnside group. Part 2

The van Kampen diagram (a disc) with boundary label K(u):

Uq1UGaUq3

The word written on the innermost circle is K({)), the hub. The
edges connecting the circles are labeled by letters 61, 05.
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Take a copy of B(2, n) generated by {by, by }.
uqiruqauqs

3
up

ugiuqauqs
Disc

o i

3

Here ajp = pajb; i = 1,2, plus commutativity relations, so
pK(u) = K(u)upp. Hence up =1
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Theorem (Olshanskii, S.) The natural homomorphism of B(2, n)
into H is an embedding. The group H has isoperimetric function
n8te provided n is odd and > 10%0; lim,_ o€ =0.
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Collins’ problem

The conjugacy problem is much harder to preserve under
embeddings.

Collins-Miller and Gorjaga-Kirkinskii: even subgroups of index 2 of
finitely presented groups do not inherit solvability or unsolvability
of the conjugacy problem.

D. Collins (1976) Does there exist a version of the Higman
embedding theorem in which the solvability of the conjugacy
problem is preserved?

Theorem (Olshanskii+S) A finitely generated group with
solvable conjugacy problem embeds into a finitely presented group
with solvable conjugacy problem. A finitely generated torsion-free
group H has solvable word problem iff it is embedded into a finitely
presented group G with solvable conjugacy problem.

Problem. Is there a version of Higman embedding preserving the
complexity of conjugacy problem?
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The von Neumann's problem

Problem (von Neumann-Day, 50s) Is there a non-amenable
group without non-cyclic free subgroups?

Solved in the 80s: Olshanskii (Tarski monster), Adian (the free
Burnside groups of large enough exponent).
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Grigorchuk-Cohen problem

Problem. Is there a finitely presented counterexample to von
Neumann's problem?

Theorem. (Olshanskii, S.) For every sufficiently large odd n,
there exists a finitely presented group G:

e G satisfies the identity [x, y]" = 1;

e G contains a subgroup isomorphic to a free Burnside group of
exponent n with 2 generators.

e G is a non-amenable finitely presented group without free
non-cyclic subgroups.

The proof uses all the ideas mentioned above: we embed the free
Burnside group B(2, n) into a finitely presented group

G = (a1,a2,x1, ..., Xs), then let a new generator t conjugate each
x; to a word w;(a1, a2).

Problem. Is there a finitely presented torsion group?
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