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presentations 〈a1, ..., an | r1, r2, ...〉, where ri is a word in a1, ..., an.
That is groups generated by a1, ..., an with relations
r1 = 1, r2 = 1, ... imposed.

For example, the free Burnside group of exponent n with two
generators is given by the presentation

〈a, b | un = 1〉

for all words u in the alphabet a, b.

The fundamental group of the orientable surface of genus n is
given by the presentation

〈a1, b1, ..., an, bn | [a1, b1]...[an, bn] = 1〉.



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem)



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman)



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem)



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems)



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.

Theorem. (Gromov’s solution of Milnor’s problem)



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.

Theorem. (Gromov’s solution of Milnor’s problem) Any group of
polynomial growth



Classical results

Theorem. (Boone-Novikov’s solution of Dehn’s problem) There
exists a finitely presented group with undecidable word problem.

Theorem. (Higman) A group has r.e. word problem iff it is a
subgroup of a f.p. group.

Theorem. (Adian-Novikov’s solution of Burnside problem) The
free Burnside group of exponent n with at least two generators is
infinite for large enough odd n.

Theorem. (Olshanskii’s solution of Tarski’s and von Neumann’s
problems) There exists a non-Amenable group with all proper
subgroups cyclic of the same prime order.

Theorem. (Gromov’s solution of Milnor’s problem) Any group of
polynomial growth has a nilpotent subgroup of finite index.
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Theorem.(Miller) The group MG has solvable conjugacy problem
iff G has solvable word problem.
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Theorem. (Birget, Rips, Olshanskii, S., Ann. of Math.,
2002) A finitely generated group has word problem in NP iff it is
inside a finitely presented group with polynomial Dehn function.

Corollary. There exists an NP-complete f.p. group.

Corollary. If a word problem in a f.g. group can be solved in
NP-time by a smart algorithm, it can be solved in NP-time by the
obvious algorithm involving relations of a bigger group.
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Consider the free Burnside group B(2, n) with 2 generators
{a1, a2} and exponent n (for simplicity n = 3).
Let

K (u) = k1(uq1uq2uq3)k2(uq1uq2uq3)
′k3....kN(uq1uq2uq3)

(N)

for every word u in the alphabet {a1, a2}, N = 28,
k1, ..., kN , q1, q2, q3 are new letters, and the words between
consecutive k ′s are copies of uq1uq2uq3 written in disjoint
alphabets.
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The van Kampen diagram (a disc) with boundary label K (u):
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The word written on the innermost circle is K (∅), the hub. The
edges connecting the circles are labeled by letters θ1, θ2.
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An embedding of the free Burnside group. Part 3

Take a copy of B(2, n) generated by {b1, b2}.

'
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AA
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uq1uq2uq3

u3
b

k1 k2

k3k4

uq1uq2uq3

ρ

Disc

Here aiρ = ρaibi i = 1, 2, plus commutativity relations, so
ρK (u) = K (u)un

b
ρ. Hence un

b
= 1
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An embedding of the free Burnside group. The theorem

Theorem (Olshanskii, S.) The natural homomorphism of B(2, n)
into H is an embedding. The group H has isoperimetric function
n8+ε provided n is odd and ≥ 1010; limn→∞ ε = 0.
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Collins’ problem

The conjugacy problem is much harder to preserve under
embeddings.

Collins-Miller and Gorjaga-Kirkinskĭı: even subgroups of index 2 of
finitely presented groups do not inherit solvability or unsolvability
of the conjugacy problem.

D. Collins (1976) Does there exist a version of the Higman

embedding theorem in which the solvability of the conjugacy

problem is preserved?

Theorem (Olshanskii+S) A finitely generated group with
solvable conjugacy problem embeds into a finitely presented group
with solvable conjugacy problem. A finitely generated torsion-free
group H has solvable word problem iff it is embedded into a finitely
presented group G with solvable conjugacy problem.
Problem. Is there a version of Higman embedding preserving the
complexity of conjugacy problem?
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Hausdorff, Banach, Tarski: One can cut a ball into several pieces
and move them to assemble two balls of the same size.
von Neumann: The reason is that the group of isometries of the
ball is not amenable, i.e. there is no way to assign weight to every
subset so that the weight of a finite disjoint union is the sum of
weights.

The reason for non-amenability: existence of non-cyclic free
subgroups.

Another definition. (Gromov):qq q
q q

q qq
Question (Beatles). Why don’t we do it in the road?
Answer: Because R is amenable.r r
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The von Neumann’s problem

Problem (von Neumann-Day, 50s) Is there a non-amenable
group without non-cyclic free subgroups?

Solved in the 80s: Olshanskii (Tarski monster), Adian (the free
Burnside groups of large enough exponent).
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Grigorchuk-Cohen problem

Problem. Is there a finitely presented counterexample to von
Neumann’s problem?

Theorem. (Olshanskii, S.) For every sufficiently large odd n,
there exists a finitely presented group G:

• G satisfies the identity [x , y ]n = 1;

• G contains a subgroup isomorphic to a free Burnside group of
exponent n with 2 generators.

• G is a non-amenable finitely presented group without free
non-cyclic subgroups.

The proof uses all the ideas mentioned above: we embed the free
Burnside group B(2, n) into a finitely presented group
G = 〈a1, a2, x1, ..., xs〉, then let a new generator t conjugate each
xi to a word wi (a1, a2).

Problem. Is there a finitely presented torsion group?
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