Minimal and minimal compact left distributive groupoids

Denis I. Saveliev

23 June 2010, Prague ICAL

Minimal vs minimal compact

Definition. A universal algebra is:

(i) *minimal* if it includes no proper subalgebras,(ii) *minimal compact* if it is compact and includesno proper compact subalgebras.

Fact. Any compact Hausdorff algebra includes a minimal compact subalgebra.

Proof. Apply Zorn's Lemma.

In the sequel, topological spaces are Hausdorff.

Both types of minimality can display a similarity. We discuss some examples. Example 1: Semigroups.

Fact. If a semigroup is minimal, then it consists of a unique element.

A groupoid is *left topological* if all its left translations are continuous.

Theorem. If a left topological semigroup is minimal compact, then it consists of a unique element.

Corollary (Ellis). Any compact left topological semigroup has an idempotent.

This leads to *idempotent ultrafilters*, which are important for applications.

Ultrafilters: topology and algebra.

The set $\mathcal{B}X$ of ultrafilters over a set X carries a natural topology generated by sets

$$\{u \in \mathcal{B}X : A \in u\}$$

for all $A \subseteq X$.

Fact. The space BX is the Stone–Čech compactification of the discrete space X.

Letting $X \subseteq \beta X$, every unary operation F on Xextends to a continuous operation on βX . One can compute F(u) explicitly:

$$F(u) = \Big\{ S : \{ x : F(x) \in S \} \in u \Big\}.$$

If \cdot is a binary operation, the extension can be fulfilled in two steps: first one extends right translations, then left ones. Explicitly:

$$uv = \Big\{ S : \{ x : \{ y : xy \in S \} \in u \} \in v \Big\}.$$

Fact. The groupoid (BX, \cdot) is left topological. Moreover, its right translations by principal ultrafilters are continuous, and such an extension is unique.

[Similarly for all universal algebras.]

Many algebraic properties are not stable under *B*. However, associativity *is* stable:

Lemma. If X is a semigroup, so is βX .

Thus any semigroup X extends to the compact left topological semigroup $\mathcal{B}X$ of ultrafilters. Applying Ellis' result, one gets

Theorem. Any semigroup carries an idempotent ultrafilter.

Idempotent ultrafilters are crucial for applications in number theory, algebra, topological dynamics, and ergodic theory. Popular examples:

van der Waerden's and Szemerédi's theorems on arithmetic progressions,

Hindman's theorem on finite sums,

Hales-Jewett's theorem on free semigroups,

Furstenberg's theorem on common recurrence,

etc. Many results have no (known) elementary proofs.

Example 2: Semirings.

 $(X, +, \cdot)$ is a *left semiring* if each of its groupoids is a semigroup, and \cdot is left distributive w.r.t. +:

x(y+z) = xy + xz.

Right semirings: defined dually. *Semirings*: left and right simultaneously.

 $(X, +, \cdot)$ is *left topological* if so is each of its groupoids. The following generalizes Ellis' result:

Theorem. If a left topological left semiring is minimal compact, then it consists of a unique element.

Corollary. Any compact left topological left semiring has a common (i.e. additive and multiplicative simultaneously) idempotent.

Algebraic counterpart.

Question. Can a minimal left semiring have more than one element?

I was able to produce the expected answer *No* only in partial cases:

- (i) *if the left semiring is finite,*
- (ii) *if it is a semiring.*

(i): by Theorem (consider the discrete topology),(ii): by different arguments.

How large can other "minimal" algebras be?

Minimal groupoids. Any size $\leq \aleph_0$ is possible. E.g. the following is a countable minimal quasigroup:

Minimal compact groupoids. An expected value:

2^{2^ℵ0}

(= the largest cardinality of a separable space).We shall see that this size is possible.

Left distributivity

Definition. A groupoid is *left distributive* if its operation is left distributive w.r.t. itself:

x(yz) = (xy)(xz).

Right distributive groupoids: defined dually. *Distributive groupoids*: left and right distributive.

Investigated from 80s by:

Matveev, Joyce (knot theory),

Ježek, Kepka, Jeřábek, Jedlička, Stanovský (distributivity, left distributive left quasigroups),

Laver, Dehornoy, Dougherty, Jech (set theory, free left distributive groupoids).

The most intriguing problem: *Can large cardinals* be eliminated from the proof of the freeness of the inverse limit of Laver groupoids? It remains widely open.

Minimal

left distributive groupoids

A simple construction. Given any groupoid X and $a \in X$, put

x * y = ay.

The groupoid (X, *) is left distributive.

Taking the additive groups \mathbb{Z}_n and their units 1 as X and a, we get a series of left distributive groupoids

		*	\cap	1	\mathbf{c}	*	0	1	2	3
* 0 0 0	* 0 1	*	1 1 1	2 2 2	0 0 0	0	1	2	3	0
	0 1 0	1				1	1	2	3	0
	1 1 0	L				2	1	2	3	0
		2				3	1	2	3	0

Obviously, all they are minimal. The converse is less obvious:

Theorem. Any minimal left distributive groupoid is (isomorphic to) one of these instances.

In particular, there exist no infinite minimal left distributive groupoids.

Proof (scetch). Based on the following facts:

(i) Any left distributive groupoid satisfies

$$(x^m)^n = x^{m+n-1},$$

where x^n denotes the *n*th *right power* of x, defined inductively: $x^1 = x, x^{n+1} = xx^n$.

(ii) Any minimal left distributive groupoid is left divisible, i.e. satisfies $\exists y \ xy = z$.

(iii) Any left divisible left distributive groupoid is left idempotent, i.e. satisfies $x^2y = xy$.

(iv) Any left idempotent groupoid satisfies $x^m y = xy$ and so $x^m x^n = x^{n+1}$.

[*Remark.* All left distributive groupoids satisfy this for $m \leq n$.]

It follows

(v) If a left distributive X is minimal and $a \in X$, then $X = \{a^n : n \ge 1\}$. The rest of the proof:

Pick any $a, b \in X$.

By (v), $a = b^n$ and $b = a^m$.

By (i),
$$a = (a^m)^n = a^{m+n-1}$$
.

Therefore

$$|X| \le m + n - 1$$

and the mapping

$$a^i \mapsto i$$

is an isomorphism of (X, \cdot) onto (|X|, *) where $i * j = 1 + j \mod |X|$.

This completes the proof.

Minimal compact left distributive groupoids

Here a similarity between minimal and minimal compact groupoids loses.

Theorem. There exists a topological minimal compact left distributive groupoid of size 2^{\aleph_0} . Besides, it includes no minimal subgroupoids.

Proof (scetch). Consider $B\mathbb{N}$ with the operation

$$u * v = 1 + v$$

where + extends the usual addition on \mathbb{N} .

The groupoid is left distributive and topological (the operation is continuous since 1 is a principal ultrafilter).

Easy facts:

(i) For any term t one has t(v,...) = n + u where u is in the right-most position in t, and n equals the depth of the occurrence of u in t.

(ii) For any $u \in B\mathbb{N}$ the subgroupoid generated by u is $\{n + u : n \in \mathbb{N}\}$.

A fact of general topology: Any unary operation on X has a fixed point iff its continuous extension to $\mathcal{B}X$ has a fixed point.

(iii) For any $u \in B\mathbb{N}$ all the ultrafilters n + u are distinct.

(iv) Any one-generated subgroupoid of $(B\mathbb{N}, *)$ is isomorphic to $(\mathbb{N}, *)$.

Consequently, $(B\mathbb{N}, *)$ has no minimal subgroupoids.

The rest of the proof:

Pick a minimal compact subgroupoid (S, *). By (iv), S is infinite.

A standard fact of general topology: Any infinite closed subset of $\mathcal{B}\mathbb{N}$ includes a topological copy of $\mathcal{B}\mathbb{N}$.

A fortiori, $|S| = 2^{2^{\aleph_0}}$.

This completes the proof.

Remark. ($\mathcal{B}\mathbb{N},*$) is not minimal compact.

Let $D \subseteq B\mathbb{N}$ consist of ultrafilters whose elements are "algebraically big" in a sense (e.g. contain arbitrarily long arithmetic progressions).

It can be shown: The set D is closed nowhere dense in $\mathcal{B}\mathbb{N}$, and it forms a subgroupoid of $(\mathcal{B}\mathbb{N}, *)$.

Question. Can a topological minimal compact quasigroup be of size $2^{2^{\aleph_0}}$?

Question. Exists there a groupoid X such that βX or $\beta X \setminus X$ is a minimal compact groupoid?