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Minimal vs minimal compact



Definition. A universal algebra is:

(i) minimal if it includes no proper subalgebras,

(ii) minimal compact if it is compact and includes

no proper compact subalgebras.

Fact. Any compact Hausdorff algebra includes

a minimal compact subalgebra.

Proof. Apply Zorn’s Lemma.

In the sequel, topological spaces are Hausdorff.

Both types of minimality can display a similarity.

We discuss some examples.



Example 1: Semigroups.

Fact. If a semigroup is minimal, then it consists

of a unique element.

A groupoid is left topological if all its left trans-

lations are continuous.

Theorem. If a left topological semigroup is

minimal compact, then it consists of a unique

element.

Corollary (Ellis). Any compact left topological

semigroup has an idempotent.

This leads to idempotent ultrafilters, which are

important for applications.



Ultrafilters: topology and algebra.

The set ßX of ultrafilters over a set X carries a

natural topology generated by sets

{u ∈ ßX : A ∈ u}
for all A ⊆ X.

Fact. The space ßX is the Stone–Čech com-

pactification of the discrete space X.



Letting X ⊆ ßX, every unary operation F on X

extends to a continuous operation on ßX. One

can compute F (u) explicitly:

F (u) =
{
S : {x : F (x) ∈ S} ∈ u

}
.

If · is a binary operation, the extension can be ful-

filled in two steps: first one extends right trans-

lations, then left ones. Explicitly:

uv =
{
S : {x : {y : xy ∈ S} ∈ u} ∈ v

}
.

Fact. The groupoid (ßX, ·) is left topological.

Moreover, its right translations by principal ultra-

filters are continuous, and such an extension is

unique.

[Similarly for all universal algebras.]



Many algebraic properties are not stable under ß.

However, associativity is stable:

Lemma. If X is a semigroup, so is ßX.

Thus any semigroup X extends to the compact

left topological semigroup ßX of ultrafilters. Ap-

plying Ellis’ result, one gets

Theorem. Any semigroup carries an idempo-

tent ultrafilter.

Idempotent ultrafilters are crucial for applications

in number theory, algebra, topological dynamics,

and ergodic theory.



Popular examples:

van der Waerden’s and Szemerédi’s theorems
on arithmetic progressions,

Hindman’s theorem on finite sums,

Hales–Jewett’s theorem on free semigroups,

Furstenberg’s theorem on common recurrence,

etc. Many results have no (known) elementary

proofs.



Example 2: Semirings.

(X,+, ·) is a left semiring if each of its groupoids

is a semigroup, and · is left distributive w.r.t. +:

x(y + z) = xy + xz.

Right semirings: defined dually.

Semirings: left and right simultaneously.

(X,+, ·) is left topological if so is each of its

groupoids. The following generalizes Ellis’ result:

Theorem. If a left topological left semiring

is minimal compact, then it consists of a unique

element.

Corollary. Any compact left topological left

semiring has a common (i.e. additive and multi-

plicative simultaneously) idempotent.



Algebraic counterpart.

Question. Can a minimal left semiring have

more than one element?

I was able to produce the expected answer No

only in partial cases:

(i) if the left semiring is finite,

(ii) if it is a semiring.

(i): by Theorem (consider the discrete topology),

(ii): by different arguments.



How large can other “minimal” algebras be?

Minimal groupoids. Any size ≤ ℵ0 is possible.

E.g. the following is a countable minimal quasi-

group:

∗ 0 1 2 3 4 5 6 . . .
0 1 0 2 3 4 5 6
1 0 2 1 5 3 4 8
2 2 1 3 0 6 7 4
3 3 5 0 4 1 2 9
4 4 3 6 1 5 0 2
5 5 4 7 2 0 6 1
6 6 8 4 9 2 1 7
. . .

Minimal compact groupoids. An expected value:

22ℵ0

(= the largest cardinality of a separable space).

We shall see that this size is possible.



Left distributivity



Definition. A groupoid is left distributive if its

operation is left distributive w.r.t. itself:

x(yz) = (xy)(xz).

Right distributive groupoids: defined dually.

Distributive groupoids: left and right distributive.

Investigated from 80s by:

Matveev, Joyce (knot theory),

Ježek, Kepka, Jěrábek, Jedlička, Stanovský
(distributivity, left distributive left quasigroups),

Laver, Dehornoy, Dougherty, Jech
(set theory, free left distributive groupoids).

The most intriguing problem: Can large cardinals

be eliminated from the proof of the freeness of

the inverse limit of Laver groupoids? It remains

widely open.



Minimal

left distributive groupoids



A simple construction.

Given any groupoid X and a ∈ X, put

x ∗ y = ay.

The groupoid (X, ∗) is left distributive.

Taking the additive groups Zn and their units 1

as X and a, we get a series of left distributive

groupoids

∗ 0
0 0

∗ 0 1
0 1 0
1 1 0

∗ 0 1 2
0 1 2 0
1 1 2 0
2 1 2 0

∗ 0 1 2 3
0 1 2 3 0
1 1 2 3 0
2 1 2 3 0
3 1 2 3 0

. . .

Obviously, all they are minimal.

The converse is less obvious:

Theorem. Any minimal left distributive groupoid

is (isomorphic to) one of these instances.

In particular, there exist no infinite minimal left

distributive groupoids.



Proof (scetch). Based on the following facts:

(i) Any left distributive groupoid satisfies

(xm)n = xm+n−1,

where xn denotes the nth right power of x,

defined inductively: x1 = x, xn+1 = xxn.

(ii) Any minimal left distributive groupoid is left

divisible, i.e. satisfies ∃y xy = z.

(iii) Any left divisible left distributive groupoid is

left idempotent, i.e. satisfies x2y = xy.

(iv) Any left idempotent groupoid satisfies

xmy = xy and so xmxn = xn+1.

[Remark. All left distributive groupoids satisfy

this for m ≤ n.]

It follows

(v) If a left distributive X is minimal and a ∈ X,

then X = {an : n ≥ 1}.



The rest of the proof:

Pick any a, b ∈ X.

By (v), a = bn and b = am.

By (i), a = (am)n = am+n−1.

Therefore

|X| ≤ m + n− 1

and the mapping

ai 7→ i

is an isomorphism of (X, ·) onto (|X|, ∗) where

i ∗ j = 1 + j mod |X|.

This completes the proof.



Minimal compact

left distributive groupoids



Here a similarity between minimal and minimal

compact groupoids loses.

Theorem. There exists a topological minimal

compact left distributive groupoid of size 22ℵ0.
Besides, it includes no minimal subgroupoids.

Proof (scetch). Consider ßN with the operation

u ∗ v = 1 + v

where + extends the usual addition on N.

The groupoid is left distributive and topological

(the operation is continuous since 1 is a principal

ultrafilter).



Easy facts:

(i) For any term t one has t(v, . . .) = n + u where

u is in the right-most position in t, and n equals

the depth of the occurrence of u in t.

(ii) For any u ∈ ßN the subgroupoid generated

by u is {n + u : n ∈ N}.

A fact of general topology: Any unary operation

on X has a fixed point iff its continuous extension

to ßX has a fixed point.

(iii) For any u ∈ ßN all the ultrafilters n + u are

distinct.

(iv) Any one-generated subgroupoid of (ßN, ∗) is

isomorphic to (N, ∗).

Consequently, (ßN, ∗) has no minimal subgroupoids.



The rest of the proof:

Pick a minimal compact subgroupoid (S, ∗).
By (iv), S is infinite.

A standard fact of general topology: Any infinite

closed subset of ßN includes a topological copy

of ßN.

A fortiori, |S| = 22ℵ0.

This completes the proof.



Remark. (ßN, ∗) is not minimal compact.

Let D ⊆ ßN consist of ultrafilters whose elements

are “algebraically big” in a sense (e.g. contain

arbitrarily long arithmetic progressions).

It can be shown: The set D is closed nowhere

dense in ßN, and it forms a subgroupoid of (ßN, ∗).



Question. Can a topological minimal compact

quasigroup be of size 22ℵ0?

Question. Exists there a groupoid X such that

ßX or ßX \X is a minimal compact groupoid?


