Congruence modularity at 0

Benedek Skublics

University of Szeged Bolyai Institute

International Conference on Algebras and Lattices Prague, 2010

 ${\cal V}$ a variety; Mal'tsev condition

 ${\mathcal V}$ a variety; Mal'tsev condition If ${\mathcal V}$ is

- congruence permutable (A.I. Mal'tsev)
- arithmetical (A.F. Pixley)
- congruence n-permutable (J. Hagemann and A. Mitschke)
- congruence distributive (B. Jónsson)
- congruence modular (A. Day)

then ${\cal V}$ can be characterized by a Mal'tsev condition.

 $\ensuremath{\mathcal{V}}$ a variety with 0 the above congruence properties can be "localized" at 0

 $\ensuremath{\mathcal{V}}$ a variety with 0 the above congruence properties can be "localized" at 0

Definition

 $\lambda: p(x_1,\ldots,x_n) \leq q(x_1,\ldots,x_n)$ a lattice identity λ holds for the congruences of $\mathcal V$ at 0 if for every $\mathbf A \in \mathcal V$ and for all $\alpha_1,\ldots,\alpha_n \in \mathsf{Con}\,\mathbf A$, we have

$$[0]p(\alpha_1,\ldots,\alpha_n)\subseteq [0]q(\alpha_1,\ldots,\alpha_n).$$

 $\ensuremath{\mathcal{V}}$ a variety with 0 the above congruence properties can be "localized" at 0

Definition

 $\lambda: p(x_1,\ldots,x_n) \leq q(x_1,\ldots,x_n)$ a lattice identity λ holds for the congruences of $\mathcal V$ at 0 if for every $\mathbf A \in \mathcal V$ and for all $\alpha_1,\ldots,\alpha_n \in \mathsf{Con}\,\mathbf A$, we have

$$[0]p(\alpha_1,\ldots,\alpha_n)\subseteq [0]q(\alpha_1,\ldots,\alpha_n).$$

If $\mathcal V$ is

- congruence permutable at 0 (H.P. Gumm)
- arithmetical at 0 (J. Duda)
- congruence *n*-permutable at 0 (I. Chajda)
- congruence distributive at 0 (I. Chajda)
- congruence modular at 0 (B. S.)

then \mathcal{V} can be characterized by a Mal'tsev condition.

 ${\cal S}$ the variety of meet semilattices with 0

- $x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$ holds for cong. of S at 0
- $x \lor (y \land z) \ge (x \lor y) \land (x \lor z)$ does not hold for cong. of S at 0

 ${\cal S}$ the variety of meet semilattices with 0

- $x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$ holds for cong. of S at 0
- $x \lor (y \land z) \ge (x \lor y) \land (x \lor z)$ does not hold for cong. of S at 0

 ${\cal S}$ the variety of meet semilattices with 0

- $x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$ holds for cong. of S at 0
- $x \lor (y \land z) \ge (x \lor y) \land (x \lor z)$ does not hold for cong. of S at 0

$$a \in [0](\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$
$$a \notin [0]\alpha \vee (\beta \wedge \gamma)$$

 $\ensuremath{\mathcal{V}}$ variety with 0

${\cal V}$ variety with 0

Theorem

The following conditions are equivalent:

- **1** \mathcal{V} is congruence modular at 0;
- **2** there are ternary terms m_1, \ldots, m_n such that $\mathcal V$ satisfies:

$$m_0(x, y, z) = 0 \text{ and } m_n(x, y, z) = z;$$
 (m1)

$$m_i(x,x,0) = 0$$
 for all i ; (m2)

$$m_i(x,x,z) = m_{i+1}(x,x,z)$$
 for i odd; (m3)

$$m_i(0,z,z) = m_{i+1}(0,z,z)$$
 for i even. (m4)

${\cal V}$ variety with 0

Theorem

The following conditions are equivalent:

- **1** \mathcal{V} is congruence modular at 0;
- **2** there are ternary terms m_1, \ldots, m_n such that $\mathcal V$ satisfies:

$$m_0(x, y, z) = 0$$
 and $m_n(x, y, z) = z;$ (m1)
 $m_i(x, x, 0) = 0$ for all $i;$ (m2)
 $m_i(x, x, z) = m_{i+1}(x, x, z)$ for i odd; (m3)

$$m_i(0,z,z) = m_{i+1}(0,z,z) \qquad \qquad \text{for i even.} \qquad (m4)$$

 $1 \Rightarrow 2$ "as usual"

${\cal V}$ variety with 0

Theorem

The following conditions are equivalent:

- **1** \mathcal{V} is congruence modular at 0;
- **2** there are ternary terms m_1, \ldots, m_n such that $\mathcal V$ satisfies:

 $m_i(0,z,z) = m_{i+1}(0,z,z)$

$$m_0(x, y, z) = 0$$
 and $m_n(x, y, z) = z;$ (m1)
 $m_i(x, x, 0) = 0$ for all $i;$ (m2)
 $m_i(x, x, z) = m_{i+1}(x, x, z)$ for i odd; (m3)

$$1\Rightarrow 2$$
 "as usual"

 $2 \Rightarrow 1$

for i even.

(m4)

Suppose 2 of Theorem.

Suppose 2 of Theorem. $\mathbf{A} \in \mathcal{V}$, $\alpha, \beta, \gamma \in \mathsf{Con}\,\mathbf{A}$,

Suppose 2 of Theorem. $\mathbf{A} \in \mathcal{V}$, $\alpha, \beta, \gamma \in \mathsf{Con}\,\mathbf{A}$, $\Delta_k = \beta \circ \gamma \circ \cdots \circ \gamma \circ \beta$.

• $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

- $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.
- $[0]\alpha \wedge \bigcup_{k=0}^{\infty} \Delta_k \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

- $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.
- $[0]\alpha \wedge \bigcup_{k=0}^{\infty} \Delta_k \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

Lemma

Suppose $\alpha \geq \gamma$, $a, d \in A$, $k \in \mathbb{N}$

$$(0,a) \in (\alpha \wedge \beta) \vee \gamma, (a,d) \in \alpha \cap \Delta_k \Rightarrow (0,d) \in (\alpha \wedge \beta) \vee \gamma.$$

- $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.
- $[0]\alpha \wedge \bigcup_{k=0}^{\infty} \Delta_k \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

Lemma

Suppose $\alpha \geq \gamma$, $a, d \in A$, $k \in \mathbb{N}$

$$(0, a) \in (\alpha \wedge \beta) \vee \gamma, (a, d) \in \alpha \cap \Delta_k \Rightarrow (0, d) \in (\alpha \wedge \beta) \vee \gamma.$$

k = 0

- $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.
- $[0]\alpha \wedge \bigcup_{k=0}^{\infty} \Delta_k \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

Lemma

Suppose $\alpha \geq \gamma$, $a, d \in A$, $k \in \mathbb{N}$

$$(0,a) \in (\alpha \wedge \beta) \vee \gamma, (a,d) \in \alpha \cap \Delta_k \Rightarrow (0,d) \in (\alpha \wedge \beta) \vee \gamma.$$

$$k = 0$$

 $k \rightarrow k + 1$:

- $[0]\alpha \wedge (\beta \vee \gamma) \subseteq [0](\alpha \wedge \beta) \vee \gamma$.
- $[0]\alpha \wedge \bigcup_{k=0}^{\infty} \Delta_k \subseteq [0](\alpha \wedge \beta) \vee \gamma$.

Lemma

Suppose $\alpha \geq \gamma$, $a, d \in A$, $k \in \mathbb{N}$

$$(0,a) \in (\alpha \wedge \beta) \vee \gamma, (a,d) \in \alpha \cap \Delta_k \Rightarrow (0,d) \in (\alpha \wedge \beta) \vee \gamma.$$

$$k = 0$$

$$k \to k+1$$
: $(a,d) \in \alpha \cap \Delta_{k+1} = \alpha \cap (\Delta_k \circ \gamma \circ \beta)$

 \mathcal{G}_0 the variety of idempotent groupoids with 0

- \bullet \mathcal{G}_0 is congruence modular at 0, but
- ullet \mathcal{G}_0 is not congruence modular in the usual sense

 \mathcal{G}_0 the variety of idempotent groupoids with 0

- \bullet \mathcal{G}_0 is congruence modular at 0, but
- ullet \mathcal{G}_0 is not congruence modular in the usual sense
- applying Theorem with n = 3

$$m_0(x, y, z) = 0,$$
 $m_1(x, y, z) = xz$
 $m_2(x, y, z) = yz,$ $m_3(x, y, z) = z.$

 \mathcal{G}_0 the variety of idempotent groupoids with 0

- \bullet \mathcal{G}_0 is congruence modular at 0, but
- ullet \mathcal{G}_0 is not congruence modular in the usual sense
- applying Theorem with n = 3

$$m_0(x, y, z) = 0,$$
 $m_1(x, y, z) = xz$
 $m_2(x, y, z) = yz,$ $m_3(x, y, z) = z.$

• the variety S of meet semilattices with 0 is a subvariety of G_0 , and R. Freese and J. B. Nation have proved that S satisfies no nontrivial congruence lattice identity

Thank you!