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Csaba Szabó Elementary problems in number theory



Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least
two of them are relatively prime?

2n is enough (contains 1 and 2)

n is not enough: 2, 4, 6, . . . , 2n

n+1 is enough:

There are two consecutive numbers among them.
Proof: Pigeon-holes: {1, 2}, {3, 4}, . . . , {2n − 1, 2n},
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Problem 2.

How many numbers do you have to choose from 1 to 2n such that there
are two among them s.t. one divides the other?

2n is enough (contains 1 and 2)

n is not enough: n + 1, n + 2, . . . , 2n

n+1 is enough:

Proof: Pigeon-holes: {1 · 2t}, {3 · 2t}, . . . , {(2n − 1) · 2t}, labelled by odd
numbers.
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Problem 3.

How many numbers do you have to choose such that the sum of a few of
them is divisible by n?

n − 1 is not enough: 1, 1, . . . , 1

n is enough:

Proof: Pigeon-holes: residue classes
Pigeons: a1, a1 + a2, . . . , a1 + a2 + · · ·+ an

Two in the same pigeon-hole:

l∑
1

ai −
k∑
1

ai =
l∑
k

ai
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Csaba Szabó Elementary problems in number theory



Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?

2n − 2 is not enough: 0, 0, . . . , 0, 1, 1, . . . , 1

n2 − n + 1 is enough:

Proof: Pigeon-holes: resiude classes
At least n in a single pigeon-hole

(n − 1)2 + 1 is enough:

Is there a better bound?
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Chevalley’s Theorem

Lemma

Let A1, . . . ,An be subsets of Fp, the p-element field, and
f ∈ Fp[x1, . . . , xn] such that

n∑
i=1

(|Ai | − 1) > (p − 1) deg f .

If the set {a ∈ A1 × · · · × An|f (a) = 0} is not empty, then it has at least
two different elements.
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Why am I talking about these problems?
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Definition

Let A be an algebra and t1 and t2 be two terms over A.

We say that t1 and t2 are equivalent over A if t1(ā) = t2(ā) for every
substitution ā ∈ A

Definition

ID-CHECK A

Let A be an algebra

Input: t1 and t2 two terms over A

Question: Are t1 and t2 equivalent over A?

Always decidable: check every substitution
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Another question

t1 and t2 two polynomials over A

POL-SAT : Does t1 = t2 have a solution?

Rings

ID-CHECK R: Is t = t1 − t2 identically 0?

POL-SAT R: Does t = t1 − t2 have a root?
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Abelian groups

A Abelian group

t(x1, . . . , xn) = xk1
1 . . . xkn

n

t(x1, . . . , xn)
?≡ 1 over A

xk1
1 . . . xkn

n ≡ 1

∀i 6= m xi = 1 =⇒ xkm
m ≡ 1

exp A | km for every m

xk1
1 . . . xkn

n ≡ 1⇐⇒ ∀m : exp A | km
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Nilpotent rings

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f (x̄) ∈ R[x1, x2, . . . , xn] be a polynomial over A.
Then for every ā ∈ Rn there is a b̄ ∈ Rn such that

bi = 0 or bi = ai

bi = ai for at most rr
...rk

many i-s (there are k-many r -s in the tower)

f (ā) = f (b̄)

G. Horváth

same bound, simpler proof for groups and rings
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Let A be a nilpotent algebra of size r and of nilpotency class k, and
f (x̄) ∈ R[x1, x2, . . . , xn] be a polynomial over A.
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Nilpotent rings

Let F (ā) = F (a1, . . . , an) = b.

For H ⊆ {1, 2, . . . , n} let aH =

{
ai if i ∈ H

0 if i /∈ H

ϕ(H) = see board

ϕ(H) =
∑
X⊆H

ϕ(X )

f (x) =
∑
H

ϕ(H)
∏
i∈H

xi

Clearly , ϕ(H) = F (aH)
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recall

ϕ(H) =
∑

X⊆H

ϕ(X ) and f (x) =
∑
H

ϕ(H)
∏
i∈H

xi

f (1) =
∑

ϕ(X ) =ϕ({1, . . . , n}) = F (ā)

f (χ(H)) =
∑
X⊆H

ϕ(X )=ϕ(H) = F (aH)

g(x̄) = f (x̄)− f (1)
g(1) = 0
g(χ(H)) = 0 ⇐⇒ F (aH) = b
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Chevalley’s Theorem, again

Recall

Let A1, . . . ,An be subsets of Fp, the p-element field, and
f ∈ Fp[x1, . . . , xn] such that

n∑
i=1

(|Ai | − 1) > (p − 1) deg f .

If the set {a ∈ A1 × · · · × An|f (a) = 0} is not empty, then it has at least
two different elements.

Apply Lemma for g(x̄) and Ai = {0, 1}. g(1̄) = 0.
If n > k(p − 1), there is an other root.
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