Elementary problems in number theory

Csaba Szabó

Eötvös Loránd University, Budapest

June, 2010

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

• 2n is enough (contains 1 and 2)

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

- 2n is enough (contains 1 and 2)
- n is not enough: 2, 4, 6, ..., 2n

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

- 2n is enough (contains 1 and 2)
- n is not enough: 2, 4, 6, ..., 2n

n+1 is enough:

There are two consecutive numbers among them.

Proof: Pigeon-holes: $\{1,2\}, \{3,4\}, \ldots, \{2n-1,2n\},$

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

• 2n is enough (contains 1 and 2)

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

- 2n is enough (contains 1 and 2)
- *n* is not enough: n + 1, n + 2, ..., 2n

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

- 2n is enough (contains 1 and 2)
- n is not enough: $n+1, n+2, \ldots, 2n$

n+1 is enough:

Proof: Pigeon-holes: $\{1 \cdot 2^t\}, \{3 \cdot 2^t\}, \dots, \{(2n-1) \cdot 2^t\},$ labelled by odd numbers.

How many numbers do you have to choose such that the sum of a *few* of them is divisible by n?

How many numbers do you have to choose such that the sum of a few of them is divisible by n?

How many numbers do you have to choose such that the sum of a few of them is divisible by n?

• n-1 is not enough: $1,1,\ldots,1$

How many numbers do you have to choose such that the sum of a few of them is divisible by n?

• n-1 is not enough: 1, 1, ..., 1

n is enough:

Proof: Pigeon-holes: residue classes

Pigeons: $a_1, a_1 + a_2, ..., a_1 + a_2 + \cdots + a_n$

Two in the same pigeon-hole:

$$\sum_{1}^{l} a_i - \sum_{1}^{k} a_i = \sum_{k}^{l} a_i$$

How many numbers do you have to choose such that the sum of n of them is divisible by n?

How many numbers do you have to choose such that the sum of n of them is divisible by n?

How many numbers do you have to choose such that the sum of n of them is divisible by n?

• 2n-2 is not enough: $0,0,\ldots,0,1,1,\ldots,1$

How many numbers do you have to choose such that the sum of n of them is divisible by n?

• 2n-2 is not enough: $0,0,\ldots,0,1,1,\ldots,1$

$n^2 - n + 1$ is enough:

Proof: Pigeon-holes: resiude classes At least *n* in a single pigeon-hole

How many numbers do you have to choose such that the sum of n of them is divisible by n?

• 2n-2 is not enough: $0,0,\ldots,0,1,1,\ldots,1$

$n^2 - n + 1$ is enough:

Proof: Pigeon-holes: resiude classes At least *n* in a single pigeon-hole

$(n-1)^2+1$ is enough:

Is there a better bound?

Chevalley's Theorem

Chevalley's Theorem

Lemma

Let A_1, \ldots, A_n be subsets of F_p , the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n} (|A_i| - 1) > (p-1) \deg f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.

1A +B] 3 (01+181-1 112/3+ x2x3+x1x2+x3 Erdos-Ginzburg-tiv. 1A1+1B1-1 SP (A)=n 181=m N'TH AHB & C an,... , a2 , €#p 7p db, 525rege O. (C|= |A|+1B1-2 <P Cheralley. $\sum a_i x_i^{r-1} = 0$ f(x,y)= T (x+y-c) Zafi < # ralf. > x, = 0 f:(0)=0. XEB -> f(x14)-0 Z dy = 2p-2 - vill. daina. Fy Toll of you E flARB = O. Spy =0 | hil=P Ti (3-2:) A = {a1,-1an}
B = {b1,-1bm} dep f = (N-1)+ (m-1) X"y" eh-ja Axb ellino pol. II (x-a:) xcv = e(4) € { TI(x-a:), TI(y-bi)) de num histat (n+m-2) \$0 atthird y was.

Csaba Szabó

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Definition

ID-CHECK A

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Definition

ID-CHECK A

Let A be an algebra

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Definition

ID-CHECK A

- Let A be an algebra
- Input: t_1 and t_2 two terms over **A**

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Definition

ID-CHECK A

- Let A be an algebra
- Input: t_1 and t_2 two terms over **A**
- Question: Are t_1 and t_2 equivalent over **A**?

Let **A** be an algebra and t_1 and t_2 be two terms over **A**.

• We say that t_1 and t_2 are equivalent over ${\bf A}$ if $t_1(\bar{a})=t_2(\bar{a})$ for every substitution $\bar{a}\in {\bf A}$

Definition

ID-CHECK A

- Let A be an algebra
- Input: t_1 and t_2 two terms over **A**
- Question: Are t_1 and t_2 equivalent over **A**?

Always decidable: check every substitution

ullet t_1 and t_2 two polynomials over ${f A}$

- t_1 and t_2 two polynomials over **A**
- POL-SAT : Does $t_1 = t_2$ have a solution?

- t_1 and t_2 two polynomials over **A**
- POL-SAT : Does $t_1 = t_2$ have a solution?

Rings

- t_1 and t_2 two polynomials over **A**
- POL-SAT : Does $t_1 = t_2$ have a solution?

Rings

• ID-CHECK **R**: Is $t = t_1 - t_2$ identically 0?

Another question

- t_1 and t_2 two polynomials over **A**
- POL-SAT : Does $t_1 = t_2$ have a solution?

Rings

- ID-CHECK **R**: Is $t = t_1 t_2$ identically 0?
- POL-SAT **R**: Does $t = t_1 t_2$ have a root?

$$\bullet t(x_1,\ldots,x_n) = x_1^{k_1}\ldots x_n^{k_n}$$

- $\bullet t(x_1,\ldots,x_n) = x_1^{k_1}\ldots x_n^{k_n}$
- $t(x_1,\ldots,x_n)\stackrel{?}{\equiv} 1$ over **A**

- $t(x_1,...,x_n) = x_1^{k_1}...x_n^{k_n}$
- $t(x_1,\ldots,x_n)\stackrel{?}{\equiv} 1$ over **A**
- $\bullet \ x_1^{k_1} \dots x_n^{k_n} \equiv 1$

- $t(x_1,...,x_n) = x_1^{k_1}...x_n^{k_n}$
- $t(x_1,\ldots,x_n)\stackrel{?}{\equiv} 1$ over **A**
- $x_1^{k_1} \dots x_n^{k_n} \equiv 1$
- $\forall i \neq m \ x_i = 1 \Longrightarrow x_m^{k_m} \equiv 1$

- $t(x_1,...,x_n) = x_1^{k_1}...x_n^{k_n}$
- $t(x_1,\ldots,x_n)\stackrel{?}{\equiv} 1$ over **A**
- $x_1^{k_1} \dots x_n^{k_n} \equiv 1$
- $\forall i \neq m \ x_i = 1 \Longrightarrow x_m^{k_m} \equiv 1$
- $\exp \mathbf{A} \mid k_m$ for every m

•
$$t(x_1,...,x_n) = x_1^{k_1}...x_n^{k_n}$$

•
$$t(x_1,\ldots,x_n)\stackrel{?}{\equiv} 1$$
 over **A**

•
$$x_1^{k_1} \dots x_n^{k_n} \equiv 1$$

•
$$\forall i \neq m \ x_i = 1 \Longrightarrow x_m^{k_m} \equiv 1$$

- $\exp \mathbf{A} \mid k_m$ for every m
- $x_1^{k_1} \dots x_n^{k_n} \equiv 1 \Longleftrightarrow \forall m \colon \exp \mathbf{A} \mid k_m$

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \dots, x_n]$ be a polynomial over A.

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \dots, x_n]$ be a polynomial over A.

$$b_i = 0 \text{ or } b_i = a_i$$

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \dots, x_n]$ be a polynomial over A.

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $\mathbf{r}^{\mathbf{r}^{\dots \mathbf{r}^k}}$ many i-s (there are k-many r-s in the tower)

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \dots, x_n]$ be a polynomial over A.

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $\mathbf{r}^{\mathbf{r}^{\dots \mathbf{r}^k}}$ many i-s (there are k-many r-s in the tower)
- $f(\bar{a}) = f(\bar{b})$

Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \dots, x_n]$ be a polynomial over A.

Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $\mathbf{r}^{\mathbf{r}^{\dots \mathbf{r}^k}}$ many i-s (there are k-many r-s in the tower)
- $f(\bar{a}) = f(\bar{b})$

G. Horváth

same bound, simpler proof for groups and rings

Let
$$F(\bar{a}) = F(a_1, \dots, a_n) = b$$
.

For $H \subseteq \{1, 2, \dots, n\}$ let $a_H = \begin{cases} a_i & \text{if } i \in H \\ 0 & \text{if } i \notin H \end{cases}$

$$\varphi(H) = \text{see board}$$

$$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X)$$

$$f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$$
Clearly, $\overline{\varphi}(H) = F(\bar{a}_H)$

recall

$$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X)$$
 and $f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$

recall

$$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X)$$
 and $f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$

$$f(\overline{1}) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(\{1, \dots, n\}) = F(\overline{a})$$

$$f(\chi(H)) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(H) = F(\overline{a}_H)$$

recall

$$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X)$$
 and $f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$

$$f(\overline{1}) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(\{1, \dots, n\}) = F(\overline{a})$$

$$f(\chi(H)) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(H) = F(\overline{a}_H)$$

$$g(\bar{x}) = f(\bar{x}) - f(\bar{1})$$

$$g(\bar{1}) = 0$$

$$g(\chi(H)) = 0 \iff F(\bar{a}_H) = b$$

Chevalley's Theorem, again

Recall

Let A_1, \ldots, A_n be subsets of F_p , the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n} (|A_i| - 1) > (p-1) \deg f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.

Chevalley's Theorem, again

Recall

Let A_1, \ldots, A_n be subsets of F_p , the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n} (|A_i| - 1) > (p-1) \deg f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.

Apply Lemma for $g(\bar{x})$ and $A_i = \{0, 1\}$. $g(\bar{1}) = 0$. If n > k(p-1), there is an other root.