Elementary problems in number theory

Csaba Szabé

EoStvos Lorand University, Budapest

June, 2010

Csaba Szabéd Elementary problems in number theory



Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least
two of them are relatively prime?
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How many numbers do you have to choose from 1 to 2n such that at least
two of them are relatively prime?

@ 2n is enough (contains 1 and 2)
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Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least
two of them are relatively prime?

@ 2n is enough (contains 1 and 2)

@ nis not enough: 2,4,6,...,2n
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Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least
two of them are relatively prime?

@ 2n is enough (contains 1 and 2)

@ nis not enough: 2,4,6,...,2n

n+1 is enough:

There are two consecutive numbers among them.
Proof: Pigeon-holes: {1,2}, {3,4}, ..., {2n—1,2n},
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Problem 2.

How many numbers do you have to choose from 1 to 2n such that there
are two among them s.t. one divides the other?
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How many numbers do you have to choose from 1 to 2n such that there
are two among them s.t. one divides the other?
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Problem 2.

How many numbers do you have to choose from 1 to 2n such that there
are two among them s.t. one divides the other?

@ 2n is enough (contains 1 and 2)

@ nis not enough: n+1,n+2,...,2n
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Problem 2.

How many numbers do you have to choose from 1 to 2n such that there
are two among them s.t. one divides the other?

@ 2n is enough (contains 1 and 2)

@ nis not enough: n+1,n+2,...,2n

n+1 is enough:

Proof: Pigeon-holes: {12t} {3-2f} ... {(2n—1) -2}, labelled by odd
numbers.
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Problem 3.

How many numbers do you have to choose such that the sum of a few of
them is divisible by n?
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Problem 3.

How many numbers do you have to choose such that the sum of a few of
them is divisible by n?

J
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Problem 3.

How many numbers do you have to choose such that the sum of a few of
them is divisible by n?

@ n—1is not enough: 1,1,...,1 J
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Problem 3.

How many numbers do you have to choose such that the sum of a few of
them is divisible by n?

@ n—1is not enough: 1,1,...,1 J

n is enough:

Proof: Pigeon-holes: residue classes
Pigeons: a1, a1+ az, ..., a1 +a+ -+ an
Two in the same pigeon-hole:
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Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?
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Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?
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Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?

@ 2n — 2 is not enough: 0,0,...,0,1,1,... 1 J
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Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?

@ 2n — 2 is not enough: 0,0,...,0,1,1,... 1 J

n*> — n+ 1 is enough:

Proof: Pigeon-holes: resiude classes
At least n in a single pigeon-hole
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Problem 4.

How many numbers do you have to choose such that the sum of n of
them is divisible by n?

@ 2n — 2 is not enough: 0,0,...,0,1,1,... 1 J

n*> — n+ 1 is enough:

Proof: Pigeon-holes: resiude classes
At least n in a single pigeon-hole

(n—1)?+ 1 is enough:
Is there a better bound?
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Chevalley’s Theorem
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Chevalley’s Theorem

Lemma

Let Ay1,..., A, be subsets of F,, the p-element field, and
f € Fplx1,...,xn) such that

n

S (Al = 1) > (p— 1) deg .

i=1

If the set {a € A1 X --- X Ap|f(a) = 0} is not empty, then it has at least
two different elements.
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Why am | talking about these problems?
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Let A be an algebra and t; and t, be two terms over A.
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A

ID-CHECK A
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A

ID-CHECK A

o Let A be an algebra
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A

ID-CHECK A

o Let A be an algebra

o Input: t; and t two terms over A
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A

ID-CHECK A
o Let A be an algebra
o Input: t; and t two terms over A

o Question: Are t; and ty equivalent over A?
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Let A be an algebra and t; and t, be two terms over A.

o We say that t; and t; are equivalent over A if t;(3) = t2(3) for every
substitution 3 € A

Definition
ID-CHECK A

o Let A be an algebra
o Input: t; and t two terms over A

o Question: Are t; and ty equivalent over A?

Always decidable: check every substitution

L A
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Another question
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r question

o t; and t» two polynomials over A J
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Another question

o t; and t» two polynomials over A
o POL-SAT : Does t; = t» have a solution?
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Another question

o t; and t» two polynomials over A
o POL-SAT : Does t; = t» have a solution?

o ID-CHECK R: Is t = t; — t» identically 07
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Another question

o t; and t» two polynomials over A
o POL-SAT : Does t; = t» have a solution?

o ID-CHECK R: Is t = t; — t, identically 07
o POL-SAT R: Does t = t; — t» have a root?
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Abelian groups

A Abelian group
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A Abelian group

0 t(X1,. ..y Xn) = X0 xkn
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Abelian groups

A Abelian group

0 t(X1,. ..y Xn) = X0 xkn

?
o t(x1,...,xp) =1 over A
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A Abelian group

0 t(X1,. ..y Xn) = X0 xkn
?

o t(x1,...,xp) =1 over A

cnx{‘1 xkn =1
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Abelian groups

A Abelian group

0 t(X1,. ..y Xn) = X0 xkn

?
o t(x1,...,xp) =1 over A
° x{“...x,’f" =

oViEmx=1= xkn=1
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Abelian groups

A Abelian group

(X1 s Xn) = X0 xhn

t(X1y .-y Xn)
x{“...x,’f" =1

Vigmx=1= xkn=1

exp A | kn, for every m
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Abelian groups

A Abelian group

0 t(X1,. ..y Xn) = X0 xkn

° t(xl,...,x,,)éloverA

° x{“...x,’f"zl
oViEmx=1= xkn=1

o expA | ky, for every m

° x{“...x,’,‘"zl(z)Vm: expA | km
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Nilpotent rings

Idziak- Szabd

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f(x) € R[x1,x2, ..., xs] be a polynomial over A.
Then for every a2 € R" there is a b € R"” such that
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Nilpotent rings

Idziak- Szabd

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f(x) € R[x1,x2, ..., xs] be a polynomial over A.
Then for every a2 € R" there is a b € R"” such that

ob,-:00rb,-:a,-
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Nilpotent rings

Idziak- Szabd

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f(x) € R[x1,x2, ..., xs] be a polynomial over A.
Then for every a2 € R" there is a b € R"” such that

ob,-:00rb,-:a,-

I'k . .
@ b; = a; for at most """ many i-s (there are k-many r-s in the tower)
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Nilpotent rings

Idziak- Szabd

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f(x) € R[x1,x2, ..., xs] be a polynomial over A.
Then for every a2 € R" there is a b € R"” such that

ob,-:00rb,-:a,-

k
N o
@ b; = a; for at most r"

o £(3) = f(b)

many i-s (there are k-many r-s in the tower)
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Nilpotent rings

Idziak- Szabd

Let A be a nilpotent algebra of size r and of nilpotency class k, and
f(x) € R[x1,x2, ..., xs] be a polynomial over A.
Then for every a2 € R" there is a b € R"” such that

ob,-:00rb,-:a,-

k
P ¢
@ b; = a; for at most r"

o £(3) = f(b)

same bound, simpler proof for groups and rings I

many i-s (there are k-many r-s in the tower)
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Nilpotent rings

ajif ieH
0if idH

For HC {1,2,...,n} let aHz{

©(H) = see board
PH) =D o(X)

XCH
F) = ot [
H icH
Clearly , ®(H) = F(an)
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P(H) = X @(X) and F(x) = 2 (H) IT x

ieH
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B(H)= X (X) and f(x) = > o(H) ] x
XE] H ieH
FD) =3 e(X) =p({L....,n}) =F(3)
Fx(H) = ) o(X)=%(H) = F(ap)
XCH
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recall

B(H) = X @(X) and f(x) = > o(H) [] x;
XCH H

ieH

FID) =3 o(X) =p({L.....n}) = F(3)
M) = X p0=3(H) = Flaw)

XCH

g(x) = f(x) - f(1)
g(1)=0
g(x(H) =0 < F(ay)=0»b
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Chevalley’s Theorem, again

Recall

Let Aq,...,A, be subsets of F,, the p-element field, and
f € Fplx1, ..., Xn] such that

n

S T(1A] = 1) > (p— 1) deg .

i=1

If the set {a € A1 x -+ x Ap|f(a) = 0} is not empty, then it has at least
two different elements.
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Chevalley’s Theorem, again

Recall
Let Aq,...,A, be subsets of F,, the p-element field, and
f € Fplx1, ..., Xn] such that

n

S T(1A] = 1) > (p— 1) deg .

i=1

If the set {a € A1 x -+ x Ap|f(a) = 0} is not empty, then it has at least
two different elements.

Apply Lemma for g(x) and A; = {0,1}. g(1) = 0.
If n > k(p — 1), there is an other root.
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