The relational clone membership problem is hard

Ross Willard

University of Waterloo, Canada

Jardafest (ICAL 2010) Prague, June 24, 2010

Ross Willard (Waterloo)

Advertisement: Summer 2011 at the Fields Institute (Toronto)

"Mathematical and algorithmic aspects of constraint satisfaction" June 27 – Aug 27, 2011

Activities (dates are tentative):

Summer school: June 27-30 (following LICS)

Workshops:

- Graph Homomorphisms: July 11-15
- Algebra and CSPs: Aug 2–6
- Approximability of CSPs: Aug 15-19

Other:

- Ongoing seminars
- Lecture series on applied aspects of CSP
- Distinguished lectures

The relational clone membership problem

Starting point: the Galois connection between operations and relations

Definition

Let f be an n-ary operation and r a k-ary relation on a finite set D.

Say that f preserves r iff for all $A = [a_{ij}] \in D^{n \times k}$, if each row of A $[a_{11} \ldots a_{1k}], \ldots, [a_{n1} \ldots a_{nk}]$ is in r, then

$$\left(f\left(\begin{bmatrix}a_{11}\\\vdots\\a_{n1}\end{bmatrix}\right),\ldots,f\left(\begin{bmatrix}a_{1k}\\\vdots\\a_{nk}\end{bmatrix}\right)\right)\in r.$$

< □ > < ---->

The relational clone membership problem

Starting point: the Galois connection between operations and relations

Definition

Let f be an n-ary operation and r a k-ary relation on a finite set D.

Say that f preserves r iff for all $A = [a_{ij}] \in D^{n \times k}$, if each row of A $[a_{11} \ldots a_{1k}], \ldots, [a_{n1} \ldots a_{nk}]$ is in r, then

$$\left(f\left(\begin{bmatrix}a_{11}\\\vdots\\a_{n1}\end{bmatrix}\right),\ldots,f\left(\begin{bmatrix}a_{1k}\\\vdots\\a_{nk}\end{bmatrix}\right)\right)\in r.$$

Other jargon:

- r is **invariant** under f.
- f is a **polymorphism** of r.

< □ > < ---->

- $Op_D = \{all \text{ finitary operations on } D\}.$
- $\operatorname{Rel}_D = \{ \text{all finitary relations on } D \}.$
- For $\mathfrak{F} \subseteq \operatorname{Op}_{D}$ and $\mathfrak{R} \subseteq \operatorname{Rel}_{D}$
 - $INV(\mathcal{F}) = \{r \in Rel_D : r \text{ is invariant under every } f \in \mathcal{F}\}$
 - $\operatorname{Pol}(\mathcal{R}) = \{ f \in \operatorname{Op}_D : f \text{ is a polymorphism of every } r \in \mathcal{R} \}.$

- $Op_D = \{all \text{ finitary operations on } D\}.$
- $\operatorname{Rel}_D = \{ \text{all finitary relations on } D \}.$
- For $\mathfrak{F} \subseteq \operatorname{Op}_{D}$ and $\mathfrak{R} \subseteq \operatorname{Rel}_{D}$

• $INV(\mathcal{F}) = \{r \in Rel_D : r \text{ is invariant under every } f \in \mathcal{F}\}$

• $\operatorname{Pol}(\mathcal{R}) = \{ f \in \operatorname{Op}_D : f \text{ is a polymorphism of every } r \in \mathcal{R} \}.$

 $\operatorname{Pol}\circ\operatorname{Inv}$

is a closure operator on Op_D

- $Op_D = \{all \text{ finitary operations on } D\}.$
- $\operatorname{Rel}_D = \{ \text{all finitary relations on } D \}.$
- For $\mathfrak{F} \subseteq \operatorname{Op}_{\mathcal{D}}$ and $\mathfrak{R} \subseteq \operatorname{Rel}_{\mathcal{D}}$

• $INV(\mathcal{F}) = \{r \in Rel_D : r \text{ is invariant under every } f \in \mathcal{F}\}$

• $\operatorname{Pol}(\mathcal{R}) = \{ f \in \operatorname{Op}_D : f \text{ is a polymorphism of every } r \in \mathcal{R} \}.$

POL \circ INV (resp. INV \circ POL) is a closure operator on Op_D (resp. Rel_D).

- $Op_D = \{all \text{ finitary operations on } D\}.$
- $\operatorname{Rel}_D = \{ \text{all finitary relations on } D \}.$
- For $\mathfrak{F} \subseteq \operatorname{Op}_{D}$ and $\mathfrak{R} \subseteq \operatorname{Rel}_{D}$

• $INV(\mathcal{F}) = \{r \in Rel_D : r \text{ is invariant under every } f \in \mathcal{F}\}$

• $\operatorname{Pol}(\mathcal{R}) = \{ f \in \operatorname{Op}_D : f \text{ is a polymorphism of every } r \in \mathcal{R} \}.$

POL \circ INV (resp. INV \circ POL) is a closure operator on Op_D (resp. Rel_D).

This lecture focuses on the relational side (Rel_D) .

INV POL Theorem (Geiger '68; Bodnarčuk *et al* '69)

(*D* finite.) For any $\mathcal{R} \subseteq \operatorname{Rel}_D$,

 $Inv(Pol(\mathcal{R})) = Clo_{rel}(\mathcal{R}), \text{ the relational clone generated by } \mathcal{R}$ $= \{ \text{ relations on } D \text{ definable by } pp \ \mathcal{R}\text{-formulas} \}$

INV POL Theorem (Geiger '68; Bodnarčuk *et al* '69)

(*D* finite.) For any $\mathcal{R} \subseteq \operatorname{Rel}_D$,

INV(POL(\Re)) = CLO_{rel}(\Re), the **relational clone** generated by \Re = { relations on *D* definable by **pp** \Re -formulas } (= $\langle \Re \rangle_{pp}$).

INV POL Theorem (Geiger '68; Bodnarčuk *et al* '69)

(*D* finite.) For any $\mathcal{R} \subseteq \operatorname{Rel}_D$,

INV(POL(\Re)) = CLO_{rel}(\Re), the **relational clone** generated by \Re = { relations on *D* definable by **pp** \Re -formulas } (= $\langle \Re \rangle_{pp}$).

Definition (Primitive Positive Formula)

A **pp** \mathcal{R} -formula is a first-order formula $\varphi(\mathbf{x})$ of the form $\exists \mathbf{y}(\alpha_1 \land \cdots \land \alpha_m)$ where each α_i is either an application of a relation in \mathcal{R} to some variables in $\mathbf{x} \cup \mathbf{y}$, or an equality between two variables in $\mathbf{x} \cup \mathbf{y}$.

INV POL Theorem (Geiger '68; Bodnarčuk *et al* '69)

(*D* finite.) For any $\mathcal{R} \subseteq \operatorname{Rel}_D$,

INV(POL(\Re)) = CLO_{rel}(\Re), the **relational clone** generated by \Re = { relations on *D* definable by **pp** \Re -formulas } (= $\langle \Re \rangle_{pp}$).

Definition (Primitive Positive Formula)

A **pp** \mathcal{R} -formula is a first-order formula $\varphi(\mathbf{x})$ of the form $\exists \mathbf{y}(\alpha_1 \land \cdots \land \alpha_m)$ where each α_i is either an application of a relation in \mathcal{R} to some variables in $\mathbf{x} \cup \mathbf{y}$, or an equality between two variables in $\mathbf{x} \cup \mathbf{y}$.

The **relational clone membership problem** is the decision problem which, given D and $\mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$, asks whether $s \stackrel{?}{\in} \operatorname{CLO}_{rel}(\mathcal{R})$.

INV POL theorem $\Rightarrow \exists$ witnesses to both sides of $s \in CLO_{rel}(\mathcal{R})$:

- If $s \in CLO_{rel}(\mathcal{R})$, then it's **witnessed** by a pp \mathcal{R} -formula (defining s).
- If s ∉ CLO_{rel}(R), then it's witnessed by an operation (preserving R but not s).

INV POL theorem $\Rightarrow \exists$ witnesses to both sides of $s \in CLO_{rel}(\mathcal{R})$:

If s ∈ CLO_{rel}(R), then it's witnessed by a pp R-formula (defining s).
If s ∉ CLO_{rel}(R), then it's witnessed by an operation (preserving R but not s).

Questions:

- How large must witnesses be (in the worst case)?
 - (Cohen, Jeavons \sim 1995.)
- How hard is the relational clone membership problem?
 - (Dalmau, 2000.)

Start with first question (on size of witnesses).

Proof of $\mathrm{INV}\,\mathrm{PoL}$ theorem \Rightarrow upper bounds

Input: $\mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$. Let d = |D|, n = |s|.

- If s ∈ CLO_{rel}(𝔅), then this is witnessed by a pp 𝔅-formula having dⁿ variables.
- If s ∉ CLO_{rel}(ℜ), then this is witnessed by a polymorphism of ℜ of arity n.

Start with first question (on size of witnesses).

Proof of $\mathrm{INV}\,\mathrm{PoL}$ theorem \Rightarrow upper bounds

Input: $\mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$. Let d = |D|, n = |s|.

- If s ∈ CLO_{rel}(𝔅), then this is witnessed by a pp 𝔅-formula having dⁿ variables.
- If s ∉ CLO_{rel}(ℜ), then this is witnessed by a polymorphism of ℜ of arity n.

First Question (refined):

- Do pp formulas witnessing $s \in CLO_{rel}(\mathcal{R})$ ever require $\stackrel{\log}{\sim} d^n$ variables?
- Do polymorphisms witnessing $s \notin CLO_{rel}(\mathcal{R})$ ever require arity $\sim n$?

Theorem 1 (W., 2010)

For infinitely many *n* there exist *D* and $\mathcal{R} \cup \mathcal{R}' \cup \{s\} \subseteq \operatorname{Rel}_D$ such that:

- |s| = n;
- $s \in \operatorname{CLO}_{rel}(\mathfrak{R})$, yet every witnessing pp formula has $\geq 2^{n/3}$ variables;
- $s \notin \text{CLO}_{rel}(\mathcal{R}')$, yet every witnessing polymorphism has arity $\geq n/3$.

Theorem 1 (W., 2010)

For infinitely many *n* there exist *D* and $\mathcal{R} \cup \mathcal{R}' \cup \{s\} \subseteq \operatorname{Rel}_D$ such that:

- |s| = n;
- $s \in \text{CLO}_{rel}(\mathfrak{R})$, yet every witnessing pp formula has $\geq 2^{n/3}$ variables;
- $s \notin \operatorname{CLO}_{rel}(\mathfrak{R}')$, yet every witnessing polymorphism has arity $\geq n/3$.

Moreover,

● |*D*| = 22

•
$$|\mathcal{R}| = |\mathcal{R}'| = n;$$

• Each relation in $\mathcal{R} \cup \mathcal{R}' \cup \{s\}$ has arity $O(\log n)$.

Second question: how hard is it to decide $g \stackrel{?}{\in} \operatorname{CLO}_{rel}(\mathcal{R})$?

Image: Image:

Second question: how hard is it to decide $g \stackrel{?}{\in} \operatorname{CLO}_{rel}(\mathcal{R})$?

Upper bound to size of polymorphism witnesses to $g \notin \operatorname{CLO}_{rel}(\mathcal{R})$ gives

The relational clone membership problem is in co-NEXPTIME.

Second question: how hard is it to decide $g \stackrel{?}{\in} CLO_{rel}(\mathcal{R})$?

Upper bound to size of polymorphism witnesses to $g
ot\in \operatorname{CLO}_{\mathit{rel}}(\mathcal{R})$ gives

The relational clone membership problem is in co-NEXPTIME.

Second Question (refined)

- Is there a better algorithm than naive search for a negative witness?
 - (Dalmau, 2000.)
- Is the relational clone membership problem co-NEXPTIME-complete?
 - (AIM workshop, 2008.)

Second question: how hard is it to decide $g \stackrel{?}{\in} CLO_{rel}(\mathcal{R})$?

Upper bound to size of polymorphism witnesses to $g \notin \operatorname{CLO}_{rel}(\mathcal{R})$ gives

The relational clone membership problem is in co-NEXPTIME.

Second Question (refined)

- Is there a better algorithm than naive search for a negative witness?
 - (Dalmau, 2000.)
- Is the relational clone membership problem co-NEXPTIME-complete?
 - (AIM workshop, 2008.)

Theorem 2 (W., announced at NSAC 2009)

 $\exists d > 0$ such that the relational clone membership problem restricted to *d*-element domains is co-*NEXPTIME*-complete.

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

Roughly speaking, a **tiling problem** involves:

- An unlimited supply of **tiles**, each having a **tile type** $\in \{t_1, \ldots, t_k\}$.
- A positive integer N, which determines an $N \times N$ grid.

(0,4)	(1,4)	(2,4)	(3,4)	(4,4)
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)
(0,0)	(1,0)	(2,0)	(3,0)	(4,0)

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

Roughly speaking, a **tiling problem** involves:

- An unlimited supply of **tiles**, each having a **tile type** $\in \{t_1, \ldots, t_k\}$.
- A positive integer N, which determines an $N \times N$ grid.

• One then attempts to cover the grid with tiles, subject to some **constraints** on horizontally and vertically adjacent tile types.

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

Roughly speaking, a **tiling problem** involves:

- An unlimited supply of **tiles**, each having a **tile type** $\in \{t_1, \ldots, t_k\}$.
- A positive integer N, which determines an $N \times N$ grid.

• One then attempts to cover the grid with tiles, subject to some **constraints** on horizontally and vertically adjacent tile types.

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

Roughly speaking, a **tiling problem** involves:

- An unlimited supply of **tiles**, each having a **tile type** $\in \{t_1, \ldots, t_k\}$.
- A positive integer N, which determines an $N \times N$ grid.

• One then attempts to cover the grid with tiles, subject to some **constraints** on horizontally and vertically adjacent tile types.

• Both proofs exploit an encoding of a **tiling problem** into the relational clone membership problem.

Roughly speaking, a **tiling problem** involves:

- An unlimited supply of **tiles**, each having a **tile type** $\in \{t_1, \ldots, t_k\}$.
- A positive integer N, which determines an $N \times N$ grid.

- One then attempts to cover the grid with tiles, subject to some **constraints** on horizontally and vertically adjacent tile types.
- Option: can require an initial condition (on the first row).

< <>></>

Definition

Fix $N \ge 2$.

• A domino system is a finite relational structure $\mathcal{D} = (\Delta; H, V)$ with H, V binary. (Δ = "tile types," H = "horizontal," V = "vertical.")

-

< ∃ >

Definition

Fix $N \geq 2$.

- A domino system is a finite relational structure $\mathcal{D} = (\Delta; H, V)$ with H, V binary. ($\Delta =$ "tile types," H = "horizontal," V = "vertical.")
- **2** $N = \{0, 1, \dots, N-1\}.$

(3)

Definition

Fix $N \ge 2$.

• A domino system is a finite relational structure $\mathcal{D} = (\Delta; H, V)$ with H, V binary. (Δ = "tile types," H = "horizontal," V = "vertical.")

2
$$N = \{0, 1, \dots, N - 1\}.$$

③ \mathcal{B}_N denotes the structure ($N \times N$; ≺₁, ≺₂) where

< ∃ >

Definition

Fix $N \ge 2$.

• A domino system is a finite relational structure $\mathcal{D} = (\Delta; H, V)$ with H, V binary. ($\Delta =$ "tile types," H = "horizontal," V = "vertical.")

2
$$N = \{0, 1, \dots, N - 1\}.$$

③ \mathcal{B}_N denotes the structure ($N \times N$; ≺₁, ≺₂) where

4 tiling of $N \times N$ by \mathcal{D} is a homomorphism $\tau : \mathcal{B}_N \to \mathcal{D}$.

Image: Image:

3 ×

Definition

Fix $N \ge 2$.

• A domino system is a finite relational structure $\mathcal{D} = (\Delta; H, V)$ with H, V binary. ($\Delta =$ "tile types," H = "horizontal," V = "vertical.")

2
$$N = \{0, 1, \dots, N - 1\}.$$

③ \mathcal{B}_N denotes the structure ($N \times N$; ≺₁, ≺₂) where

$$\begin{aligned} \prec_1 &= \{ \left((i,j), \, (i+1,j) \right) \, : \, i,j \in \mathsf{N}, \, i \neq \mathsf{N}-1 \} \\ \prec_2 &= \{ \left((i,j), \, (i,j+1) \right) \, : \, i,j \in \mathsf{N}, \, j \neq \mathsf{N}-1 \}. \end{aligned}$$

- A tiling of N × N by D is a homomorphism τ : B_N → D.
 Given w = (w₀, w₁,..., w_{m-1}) ∈ Δ^m with m ≤ N, say that a tiling τ
 - of $N \times N$ satisfies initial condition w if $\tau(i, 0) = w_i$ $\forall i < m$.

Fix a domino system $\mathcal{D} = (\Delta; H, V)$.

EXPTILE(\mathcal{D}), the Exponential Tiling-by- \mathcal{D} Problem, is:

Input: $\mathbf{w} \in \Delta^m$ for some $m \ge 2$.

Question:

Does \exists a tiling of $2^m \times 2^m$ by \mathfrak{D} satisfying initial condition **w**?

Fix a domino system $\mathcal{D} = (\Delta; H, V)$.

EXPTILE(\mathcal{D}), the Exponential Tiling-by- \mathcal{D} Problem, is:

```
Input:

\mathbf{w} \in \Delta^m for some m \ge 2.
```

Question:

Does \exists a tiling of $2^m \times 2^m$ by \mathfrak{D} satisfying initial condition **w**?

Fact: \exists a "universal" domino system \mathcal{D}_u such that $ExpTILE(\mathcal{D}_u)$ is *NExpTIME*-complete.

For every domino system $\mathcal{D} = (\Delta; H, V)$ there exists a finite set D and a log-space construction

 $\mathbf{w} \in \Delta^m \quad \mapsto \quad \mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$

such that $s \in CLO_{rel}(\mathcal{R})$ iff there does **not** exist a tiling of $2^m \times 2^m$ by \mathcal{D} satisfying initial condition **w**.

For every domino system $\mathcal{D} = (\Delta; H, V)$ there exists a finite set D and a log-space construction

$$\mathbf{w} \in \Delta^m \quad \mapsto \quad \mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$$

such that $s \in CLO_{rel}(\mathcal{R})$ iff there does **not** exist a tiling of $2^m \times 2^m$ by \mathcal{D} satisfying initial condition **w**.

Hence $\text{ExpTILE}(\mathcal{D})$ is interpretable into the **complement** of the relational clone membership problem restricted to the domain *D*.

(With the universal \mathcal{D}_{u} , gives Theorem 2.)

For every domino system $\mathcal{D} = (\Delta; H, V)$ there exists a finite set D and a log-space construction

$$\mathbf{w} \in \Delta^m \quad \mapsto \quad \mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$$

such that $s \in CLO_{rel}(\mathcal{R})$ iff there does **not** exist a tiling of $2^m \times 2^m$ by \mathcal{D} satisfying initial condition **w**.

Hence $\text{ExpTILE}(\mathcal{D})$ is interpretable into the **complement** of the relational clone membership problem restricted to the domain *D*.

(With the universal \mathcal{D}_u , gives Theorem 2.)

Moreover:

•
$$|s| = 3m$$
, and s depends only on m (not on w);

For every domino system $\mathcal{D} = (\Delta; H, V)$ there exists a finite set D and a log-space construction

$$\mathbf{w} \in \Delta^m \quad \mapsto \quad \mathcal{R} \cup \{s\} \subseteq \operatorname{Rel}_D$$

such that $s \in CLO_{rel}(\mathcal{R})$ iff there does **not** exist a tiling of $2^m \times 2^m$ by \mathcal{D} satisfying initial condition **w**.

Hence $\text{ExpTILE}(\mathcal{D})$ is interpretable into the **complement** of the relational clone membership problem restricted to the domain D.

(With the universal \mathcal{D}_u , gives Theorem 2.)

Moreover:

- |s| = 3m, and s depends only on m (not on w);
- The sizes of witnesses to s ∈ [∉] CLO_{rel}(ℜ) are connected to certain properties of tilings/obstructions to tilings.

(With an appropriate \mathcal{D} , gives Theorem 1.)

What about the operational side?

・ロト ・回ト ・ヨト

What about the operational side?

- Clone membership is known to be hard (*EXPTIME*-complete, Bergman *et al*, 1999).
- **Open**: Can one prove lower bounds (to sizes of witnesses) matching the "obvious" upper bounds (given by the POL INV theorem)?
 - Not much seems to be known.

What about the operational side?

- Clone membership is known to be hard (*EXPTIME*-complete, Bergman *et al*, 1999).
- **Open**: Can one prove lower bounds (to sizes of witnesses) matching the "obvious" upper bounds (given by the POL INV theorem)?
 - Not much seems to be known.

Variations (on the relational side), e.g.:

- **Open**: Do there exist fixed D and \mathcal{R} such that:
 - Witnesses are large for $s \stackrel{?}{\in} \operatorname{CLO}_{rel}(\mathcal{R})$?

What about the operational side?

- Clone membership is known to be hard (*EXPTIME*-complete, Bergman *et al*, 1999).
- **Open**: Can one prove lower bounds (to sizes of witnesses) matching the "obvious" upper bounds (given by the POL INV theorem)?
 - Not much seems to be known.

Variations (on the relational side), e.g.:

- **Open**: Do there exist fixed D and \Re such that:
 - Witnesses are large for $s \stackrel{?}{\in} \operatorname{CLO}_{rel}(\mathcal{R})$?
 - The relational clone membership problem restricted to D, \mathcal{R} is still co-*NEXPTIME*-complete?
- (The latter would nicely complement a result of Kozik 2008 on the operational side.)