I. Banach algebras

1. Basic properties

Definition 1. We say that (A4, 4+, —,0, -, -) is an algebra over K if (4, 4+, —, 0, -5) is a vector space over K, (4, +,—,-,0) is a
ring, and moreover (@ sa) -b =a-(¢-sb) =a - (a-b) foralla,b € A and @ € K. An algebra over K is called commutative if
its ring multiplication - is commutative.

Proposition 2. Let A be an algebra over K. Put A. = A X K and define vector operations on A, in the usual way (i.e.
componentwise) and further multiplication of the elements of A. by the formula

(a,a)(b,B) = (ab + ab + Ba,af) fora,be A a, B ek
Then A. is an algebra with the unit (0, 1) and A can be identified with its subalgebra A x {0}. If A is commutative, then 5o is Ae.

Let A, B be algebras over K. (Algebra) homomorphism @: A — B is a mapping which is a homomorphism between the
respective vector spaces (i.e. it is linear) and also it is a homomorphism between the respective rings (i.e. it is multiplicative, or
®(ab) = @(a)®(D)).

@ is called an (algebraic) isomorphism of algebras A and B if @ is a bijection.

Fact 3. Let A be an algebra, B an algebra with a unit e, and ®: A — B a homomorphism. Then P Ae — B, a(x,)k) =
@(x) + Ae is a homomorphism extending ®.

Proposition 4. Let A be an algebra with a unit e and B a subalgebra of A not containing e. Then C = B + span{e} is a
subalgebra of A and the mapping ® : B, — C, ®(x, 1) = x + Ae is an isomorphism.

Definition 5. A pair (4, ||-||) is called a normed algebra if A is an algebra, (A, ||-||) is a normed linear space, and ||ab|| < ||a|||b]|
for each a, b € A. If the metric generated by ||-|| is complete, then (A, ||-||) is called a Banach algebra.

Proposition 6. Let (A, ||-||) be a normed algebra. The multiplication of elements of A is Lipschitz on bounded sets (and in
particular continuous) as a mapping from A x A to A.

Corollary 7. Let A be a normed algebra and B a subalgebra of A. Then B is also a subalgebra of A.

Corollary 8. Every normed algebra A has a completion, i.e. a Banach algebra such that A is its dense subalgebra. This com-
pletion is unique up to an isometry. If A has a unit e, then e is also a unit in the completion of A.

Proposition 9. Let (A, ||-||) be a normed algebra. If we define a norm on Ae by the formula ||(a,®)||4, = la|| + || (ie.
A. = A ®1 K), then A with this norm is a normed algebra. If (A, ||-||) is a Banach algebra, then so is A with the norm above.

Definition 10. Let A and B be normed algebras and @: A — B an (algebra) homomorphism. We say that @ is an isomorphism
of normed algebras A and B (or just an isomorphism) if @ is a homeomorphism of A onto B; we say that @ is an isomorphism
of A into B (or just an isomorphism into) if @ is an isomorphism of A onto Rng &.

Theorem 11. Let A be a normed algebra. For each a € A we define a left translation Ly : A — A by the formula L,(x) = ax.
Then L, € £(A) and the mapping I : A — £(A), I(a) = L, is a continuous algebra homomorphism with ||I| < 1. If A has
a unit e, then I is an isomorphism into and 1(e) = Id. If |le|| = 1 or ||x?|| = ||x||? for each x € A (e.g. if A is a subalgebra of
Loo(I")), then I is an isometry into.

Corollary 12. Let (A, ||-||) be a non-trivial normed algebra with a unit. Then there exists an equivalent norm |||-||| on A such that
(A, IIFIID is a normed algebra and ||e]|| = 1.

Recall that in a ring with a unit (or more generally in a monoid) the following holds: if x has a left and a right inverse, then
these are equal (and it is then and inverse to x). In particular, inverses to invertible elements are uniquely determined. Further,
the invertible elements form a group, i.e. if x, y € A are invertible, then also xy is invertible and (xy)~! = y~!x~!. This group
of invertible elements will be denoted by A*.

Fact 13. Let A be an algebra with a unit and B its subalgebra containing e. Then B* C A* N B.

Fact 14. Let A, B be semigroups, ® : A — B a homomorphism onto, and let A be moreover a monoid with a unit e. Then B is a
monoid with a unit ®(e) and if x € A is invertible, then ®(x) is invertible and ®(x)~! = ®(x™'). If moreover @ is a bijection,
then @ | g4x is an isomorphism of the groups A™ and B*.

Lemma 15. Let A be a normed algebra wit a unit and x € A. If the series y_no o X" converges, then y - o x" = (e —x)~ L.
Lemma 16. Let A be a Banach algebra with a unit.

(a) If x € Uy, then the series Y no o, X" converges absolutely and so Y po o X" = (e —x)7L.



(b) Letx € A* andleth € A be such that |h|| <
2[lx PR

oy Then x+h € A% Ifmoreover ||h|| < sty then [|(x + B~ —x7! 4+ x7Thx™!|

Definition 17. Let G be a group and t a topology on G. We say that (G, 7) is a fopological group if the group operations (i.e.
multiplication -: G x G — G and inversion ~': G — G) are continuous.
Theorem 18. Let A be a Banach algebra with a unit. Then A is an open subset of A and it is a topological group.

Proposition 19. Let A be a Banach algebra with a unit and B its closed subalgebra containing e. Then (g B*) N A* = @ and

= U {C C B; C is a component of A N B intersecting B} .

2. Spectral theory
Definition 20. Let A be an algebra with a unit. For x € A we define the resolvent set of x as
p(x) ={L €eK; le —x € A}

and the spectrum of x as
o(x) =K\ p(x).

If A does not have a unit, then for x € A we define the above notions with respect to the algebra A..
Definition 21. An element x of a groupoid is called idempotent if x* = x.
Proposition 22. Let A, B be algebras and ®: A — B an algebraic isomorphism. Then o (®(x)) = o(x) for every x € A.

Lemma 23. Let M be a monoid and x,y € M. If at least two of the elements x, y, xy, and yx are invertible, then all four are
invertible.

Proposition 24. Let A be an algebra over K.

(a) If A is non-trivial, then o(0) = {0}.

(b) If A has a unit, then o (ae + Bx) = o + fo(x) foreveryx € Aand o, f € K.

(c) Ifx € A,n e N, and A € 6(x), then A" € a(x").

(d) Ifx € AX, then A € o(x) ifand only if T € o(x™1).

(e) If x,y € A, then the sets o(xy) and o (yx) differ at most by the element 0. If moreover x € A, then o(xy) = o (yx).
(f) If z € A*, then o(x) = o(zxz™ ") for every x € A.

Proposition 25. Let X, Y be normed linear spaces, T € £(X), andlet S: X — Y be a linear isomorphism. Then the operator
SoT oS! € L(Y) has the following property: 6(S o T o S™') = 0(T)ao,(SoT oS~ = 0,(T).

Fact 26. Let A be an algebra and B an ideal in A. Then B is also an ideal in A..
Proposition 27. Let A be an algebra.

(a) 0 € a4,(x) for every x € A. So, if A does not have a unit, then 0 € o(x) for every x € A.
(b) If A has a unit, then 04,(x) = o4(x) U {0} for every x € A.

(c) Suppose that A has a unit e, B is a subalgebra of A not containing e, and C = B + span{e}. Then oc (x) = o, (x) for
every x € B.

(d) Let B be a subalgebra of A and x € B. If B has a unit which is not a unit in A, then o04(x) C op(x) U {0}, in the other
cases o4(x) C op(x).

(e) If B is a proper ideal in A, then op,(x) = 04(x) for every x € B.

Proposition 28. Let A, B be algebras, @: A — B a homomorphism, and x € A. If A has a unit e and ®(e) is not a unit in B,
then op(D(x)) C a4(x) U {0}, in the other cases og(P(x)) C o4(x).

Definition 29. Let A be an algebra. For x € A we define the spectral radius of x as

r(x) = sup{|A| € [0, +00); A € 0(x)}.



Theorem 30. Let A be a Banach algebra and x € A. Then p(x) is open, o (x) is compact, and
r(x) < inf V|x"| = lim V/|x"].
neN n—00
Lemma 31. Let {a,} be a sequence of real numbers.

(a) If aman < am + a, forallm,n € N, then lim 2 = inf % < +o0.
n—oo neN

(b) If{an} is non-negative and ap+, < amay forallm,n € N, then lim /a, = in1£I "a, € R.
n—00 ne

Theorem 32. Let A be a Banach algebra with a unit, B its closed subalgebra containing e, and x € B. Then the following hold:
(a) dpp(x) C dpa(x) and

pB(x) = U{C C K; C is a component of p4(x) intersecting pp(x)}.

(b) If C is a component of p4(x), then either C C op(x), or C Nop(x) = @. Further, dog(x) C do4(x).
(c) If pa(x) is connected, then og(x) = o4(x).
(d) If op(x) has an empty interior, then op(x) = o4(x).

Definition 33. Let Y be a normed linear space over K, 2 C K, f: 2 — Y,anda € 2. If lim W € Y exists, then this

x—>a

limit is called the derivative of the mapping f at a and it is denoted by f'(a).

Fact 34. Let Y be a normed linear space over K, 2 CK, f: 2 — Y, anda € 2. If f'(a) exists, then (po ) (a) = ¢(f'(a))
for every ¢ € Y*.

Fact 35. Let Y be a normed linear space over K, 2 CK, f: 2 — Y, and a € 2. If f'(a) exists, then f is continuous at a.

Definition 36. Let A be an algebra over K with a unit. On p(x) we define the resolvent (or the resolvent mapping) of the element
x by the formula

Ry(A) = (ke —x)"1, Xepx).
If A does not have a unit, then we define the resolvent with respect to the algebra A..

Proposition 37. Let A be a Banach algebra and x € A. Then the mapping A — R, (L) has a derivative at every point of the set
p(x).

Definition 38. Let Y be a complex normed linear space, 2 C C an open set, and f: £2 — Y. We say that f is holomorphic
on £2, if f/(z) exists for every z € £2.

Theorem 39 (Liouville’s theorem). Let Y be a complex normed linear space and let f: C — Y be holomorphic on C. If f is
bounded, then it is constant.

Theorem 40. Let A be a complex Banach algebra and x € A.
(a) The resolvent mapping R is holomorphic on p(x).
(b) If A is non-trivial, then o (x) # @.

(c) r(x) = inI£I Vix™|| = lim 3/||x"| (the Beurling-Gelfand formula).
ne n—>oo

Corollary 41. If A is a complex Banach algebra, x € A, and A € C, |A| > r(x), then the sum > _no, ic—z converges absolutely.

n

So if A has a unit, then Rx(A) = Y_,% o siFr-

Theorem 42 (S. Mazur (1938), I. M. Gelfand (1941)). Let A be a non-trivial complex Banach algebra with a unit. If A* = A\{0},
then A is isomorphic to C. If moreover |e|| = 1, then A is isometrically isomorphic to C.



3. Holomorphic calculus

Let A be a Banach algebra over K with a unit and x € A. Further let ¥ be some algebra of functions defined on a subset of K that
contains polynomials. A functional calculus for x will be some homomorphism @: ¥ — A such that @(1) = e, @(Ild) = x,
and which is moreover continuous, resp. sequentially continuous, in some convenient topologies on & and A.

Theorem 43. Let A be a complex algebra with a unit and x € A. Let §21,§2, C C be open neighbourhoods of o (x) and let
@;: H(82;) — A be an algebra homomorphism such that ®;(1) = e, ®;(Id) = x, and ®; is sequentially continuous from the
topology of locally uniform convergence on H(82;) to some Hausdorff topology t on A, i = 1,2. If f; € H($2;),i = 1,2 are
such that f1 = fz on 21 N §2,, then @, (fl) = ¢z(f2).

Let X be a complex Banach space, y: [a,b] — C a path, and f: (y) — X a continuous mapping. The integral of f along
y is defined by

/ f= / Y (0 £ (1) dA(0).
y [a,b]

The integral along a chain I" = y; + --- 4 y, in C of a continuous mapping f: (I') — X is defined by

[r=[rees] s

Y1

Lemma 44. Let I" be a chain in C, X a complex Banach space, f: (I') — X continuous, and ¢ € X*. Then gb(fp f) =
f r ¢o f .

If 2 C Cisopen and K C £2 compact, then we say that a cycle I" surrounds K in £ if (I"') C £ \ K, indp z = 1 for
ze€ K,andindp z =0forz € C\ £2.

Theorem 45. Let 2 C C be open, X a complex Banach space, and let f: §2 — X be holomorphic. If I', I are two cycles in
§2 such that indr, (z) = indr, (2) for every z € C\ 2, then [ f = [, [

Definition 46. Let A be a complex Banach algebra with aunitand x € A.If f € H(§2), where £2 C C is an open neighbourhood
of o(x), then we define

1 1 _
1) =5 | Re= 5 [ F@rae -0 do
2wi Jr 2wi Jr
where I” is any cycle surrounding o (x) in £2.

Lemma 47. Let (£2, ) be a space with a complete measure, A a Banach algebra and f € Lq(u, A). Then

x( [ fdu) ~ [ @) ana ( [ fdu)x = [ rwxaue

for every x € A and every measurable E C §2.

Fact 48. Let G be a group. If u,v € G commute, then also u, v, u™l v commute.
Lemma 49. Let A be an algebra with a unit, x € A, and 1, v € p(x).

(@) Rx(i)Rx(v) = Rx(v)Rx(pt).

(b) Rx() — Rx(v) = (v — ) Rx () Ry (v) (resolvent identity).

Theorem 50 (holomorphic calculus). Let A be a complex Banach algebra with a unit, x € A, 2 C C an open neighbourhood
of o(x), and f € H(2). The mapping ®: H(2) — A, where ®(g) = g(x) from Definition 46| has the following properties:

(a) Consider H(S2) with the topology of locally uniform convergence. Then @ is a continuous algebra homomorphism for which
&(1) =eand &(Id) = x.

(b) f(x) € A% ifand only if f(A) # O for every A € o(x). In this case f(x)™" = 4 (x).

(c) a(f(x)) = f(o(x)) (spectral mapping theorem,).

(d) If g € H(£21), where 21 is an open neighbourhood of f(c(x)), then (g o £)(x) = g(f(x)).
(e) If y € A commutes with x, then y commutes also with f(x).

(f) If B is a complex Banach algebra and ®: A — B a continuous homomorphism such that ©(e) is a unit in B, then
f(O(x)) = O(f(x)). In particular, if z € A%, then f(zxz™ ') =z f(x)z~ L



4. Multiplicative linear functionals

Definition 51. Let A be an algebra over K. A homomorphism ¢: A — K is called a multiplicative linear functional (i.e. ¢ is
linear and ¢(xy) = @(x)@(y) for all x, y € A). The set of all non-zero multiplicative linear functionals on A4 is denoted by
A(A).

Proposition 52. Let A be an algebra over K. Then A(A) is a linearly independent set.

Proposition 53. Let A be an algebra. Every multiplicative linear functional ¢ on A has a unique extension € A(A.) given by
P(x.A) = ¢(x) + A and A(A) = {¢: ¢ € A(A) U {0}}.

Proposition 54. Let A be an algebra and ¢ € A(A). Then ¢(x) € o(x) for every x € A and so |p(x)| < r(x).

Corollary 55. Let A be a Banach algebra. Then A(A) C Bgx (in particular, every multiplicative linear functional on A is
automatically continuous). If A has a unit, then | ¢|| > ﬁfor every ¢ € A(A). In particular, if ||le|| = 1, then A(A) C Syx.

Definition 56. Let A be an algebra. A maximal ideal in A is a proper ideal in A that is maximal with respect to the ordering of
all proper ideals in A by inclusion.

Proposition 57. Let A be an algebra with a unit. Then every proper ideal in A is contained in some maximal ideal in A.

Proposition 58. Let A be a Banach algebra with a unit. If I is a proper ideal in A, then also I is a proper ideal in A. So every
maximal ideal in A is closed.

Lemma 59. Let A be a commutative algebra with a unit and suppose that x € A is not invertible. Then the principal ideal x A
is proper.

Theorem 60. Let A be a complex commutative Banach algebra with a unit and let I be a proper ideal in A. Then there exists
¢ € A(A) such that ¢ M; = 0.

Corollary 61. If A is a non-trivial complex commutative Banach algebra with a unit, then A(A) # 0.

Corollary 62. Let A be a complex commutative Banach algebra with a unit. Then the mapping @ : ¢ +— Ker ¢ is a bijection
between A(A) and the set of all maximal ideals in A.

Theorem 63. Let A be a Banach algebra and M = A(A) U {0} C (Bg*, w™) is the set of all linear multiplicative functionals
on A. Then M is compact, A(A) is locally compact, and if A has a unit, then A(A) is compact. If A(A) is not compact, then M
is the Alexandrov compactification of A(A).

The mapping @ : M — A(Ae), where @(p) = @ is the unique extension of ¢ to the element of A(Ae), is a homeomorphism.

Let X, Y be vector spacesand 7: X — Y be a linear mapping. Then we define the algebraically dual mapping 7%: Y# — Xx*#
by the formula 7% f(x) = f(Tx) for f € Y#and x € X.

Lemma 64. Let X, Y be vector spaces and T : X — Y a linear bijection. Then T* is a bijection and (T*)™' = (T~1)*.

Proposition 65. Let A, B be Banach algebras and @ : A — B an algebraic isomorphism. Then the mapping ¥ = ®#| A(B) 18
a homeomorphism of A(B) onto A(A).

Proposition 66. Let S, T be topological spaces and let h: S — T be continuous and onto. Then @ : Co(T) — Cy(S),
@(f) = f ohis an isometric isomorphism of the Banach algebra Cy(T) into the Banach algebra Cy(S). If S and T are locally
compact Hausdorff spaces and h is a homeomorphism, then @ | c,(t) is an isometric isomorphism of Banach algebras Co(T)

and Cy(S).

Theorem 67. Let K, L be locally compact Hausdorf{f topological spaces. Then the following statements are equivalent:
(i) The Banach algebras Co(K) and Cy(L) are isometrically isomorphic.
(ii) The algebras Co(K) and Co(L) are algebraically isomorphic.

(iii) The spaces K and L are homeomorphic.

Definition 68. A commutative algebra A is called semi-simple if A(A) separates the points of 4, i.e. if ({Kerg; ¢ € A(A)} =
{0}

Theorem 69. Let A, B be Banach algebras and suppose B is commutative and semi-simple. Then every homomorphism from A
to B is automatically continuous. Also every conjugate-linear multiplicative mapping from A to B is automatically continuous.

Corollary 70. Let A be a commutative semi-simple algebra. Then all norms on A in which A is a Banach algebra are equivalent.



5. Gelfand transform

Definition 71. Let A be a Banach algebra over K. For x € A we define X: A(4) — K by the formula X(¢) = ¢(x), i.e.
X = &y | ac4)- The function X is called the Gelfand transform of the element x.

Theorem 72. Let A be a complex commutative Banach algebra and x € A. If A has a unit, then RngX = o(x). If A does not
have a unit, then o(x) \ {0} C Rngx C o(x).

Corollary 73. Let A be a complex commutative Banach algebra and x € A. Then ||X||cy(aca)) = 7(X).

Definition 74. Let A be a Banach algebra. The mapping I': A — Co(A(A)), I'(x) = X is called the Gelfand transform of the
algebra A.

Proposition 75. Let A be a Banach algebra and let I' be its Gelfand transform. Then the following hold:

(a) T is a continuous homomorphism and | I"|| < 1.

(b) The subalgebra I'(A) C Cy(A(A)) separates the points of A(A).

(c) I is one-to-one if and only if A(A) separates the points of A, i.e. if and only if A is commutative and semi-simple.
Theorem 76. Let A be a complex commutative Banach algebra and let I' be its Gelfand transform. Then the following hold:
(a) T is an isomorphism into if and only if there exists K > 0 such that ||x2|| > K||x||? for every x € A.

(b) T is an isometry into if and only if | x%|| = ||x||? for every x € A.

Definition 77. Let A be a groupoid and M C A. Then the set M = {a € A; ax = xa for every x € M}, i.e. the set of all
elements of A commuting with every element of M, is called the commutant of the set M.

Proposition 78. Let A be a groupoid and M C A. Then the following hold:
(a) M C (M°)“.

(b) The set M N M€ commutes.

(c) If M commutes, then also (M°)° commutes.

Proposition 79. Let A be an algebra and M C A. Then the following hold:
(a) M€ is a subalgebra of A.

(b) If A has a unit, then e € M°.

(c) If A is normed, then M€ is closed.

Proposition 80. Ler A be an algebra with a unit e and suppose that M C A commutes. Then B = (M°) is a commutative
algebra with a unit e, M C B, and B* = A* N B. So 064(x) = op(x) for every x € B.

Theorem 81. Let A be a complex Banach algebra and suppose that x,y € A commute. Then the following hold:
(a) o(x +y) Co(x)+o(y)ando(xy) Co(x)o(y).
(b) r(x +y) =r(x)+r(y)andr(xy) < r(x)r(y).

6. B*-algebras

Theorem 82. Let Hy, H, be Hilbert spaces and T € £(Hy, Hy). Then there exists a unique operator T* € £(H,, Hy) such
that

(Tx,y)H, = (x.T*y)m,

for every y € Hy and x € Hy. Further, T* = 11_1 o T* oI, where I;: H; — Hj*, j = 1,2 are the corresponding
conjugate-linear isometries from the Lowig-Fréchet-Riesz theorem.

Definition 83. The operator 7* from the preceding theorem is called the hilbertian adjoint operatorto T .
Theorem 84. Let Hy, H>, H3 be Hilbert spaces.
(a) If T € £(Hy, H), then T** = (T*)* =T.

(b) The mapping T — T* is a conjugate-linear isometry of £(Hy, Hy) onto £(H,, Hy).



(c) Let T € £(Hy, Hy) and S € £(H>, H3). Then (S o T)* = T* o S*. Also, (Idg,)* = 1dg,.
(d) LetT € £(Hy, Hy). Then |[T* o T|| = |T o T*|| = | T

(e) T* is an isomorphism if and only if T is an isomorphism.

(f) T* is compact if and only if T is compact.

Definition 85. Let A be an algebra over K. The mapping *: A — A is called an algebra involution if it has the following
properties:

o (x 4+ y)* =x*+ y*forevery x,y € A,
e (Ax)* = Ax* forevery x € Aand A € K,
e (xy)* = y*x* forevery x,y € A,
e (x*)* = x forevery x € A (i.e. the mapping * is an involution).
An algebra on which there is an algebra involution is called an algebra with an involution.

Fact 86. Let A be an algebra with an involution. Then (a,a)* = (a*, @) for (a,a) € A. is an algebra involution on A, that
extends the involution from A.

Proposition 87. Let A be an algebra with an involution and x € A. Then the following hold:
(a) If e is a left or right unit in A, then e is a unit and e* = e.
(b) Suppose A has a unit. Then x* € A* if and only if x € AX. In this case (x*)™! = (x™1)*.
(¢c) A € o(x) ifand only if X € o(x*). Therefore r(x*) = r(x).
Proposition 88. Let A be a commutative semi-simple Banach algebra. Then every algebra involution on A is continuous.
Definition 89. Let A be an algebra with an involution. An element x € A is called self-adjoint if x* = x.
Fact 90. Let A be an algebra with an involution and x,y € A. Then the following hold:
(a) The elements x + x*, x*x, xx*, and in the complex case also i (x — x*) are self-adjoint.
(b) If x is self-adjoint, then also tx is self-adjoint for every t € R.
(c) If A is complex, then there exist unique self-adjoint elements u,v € A such that x = u + iv. Then x* = u —iv.
(d) If x, y are self-adjoint and commute, then xy is self-adjoint.
(e) If x is self-adjoint, then yxy* is self-adjoint.
Definition 91. A Banach algebra A with an involution is called a B*-algebra if
Ix* x| = Jlx]?
for every x € A.
Lemma 92. Let A be a normed algebra with an involution. Then the following statements are equivalent:
(i) |x*x|| = ||x||? for every x € A.
(ii) || xx*|| = ||x||? for every x € A.
(iii) ||x*x| = ||x||? for every x € A.
(iv) ||xx*| = ||x||? for every x € A.
In all cases then ||x*|| = ||x|| for every x € A.

Proposition 93. Let A be a B*-algebra without a unit. Then there exists a norm |||-||| on A, with the involution from Fact [86]
extending the original norm on A (and equivalent to the norm from Proposition[9) such that A. is a B*-algebra.

Definition 94. Let A be an algebra with an involution.

e If A has a unit, then an element x € A is called unitary if x*x = xx* = e, or in other words x ™1 = x*.



e Anelement x € A is called normal if it commutes with x*, i.e. if x*x = xx*.
Fact 95. Let A be an algebra over K with an involution and x,y € A.
(a) If A has a unit and if x, y are unitary, then Xy is unitary.
(b) If x is normal, then x" is normal for every n € N.
(c) If A has a unit and if x is normal and y is unitary, then yxy* is normal.
(d) If A has a unit and if x is normal and A € K, then Ae — x is normal.
Theorem 96. Let A be a B*-algebra and x € A.
(a) If x is normal, then | x™|| = ||x||* for every n € N and if A is complex, then r(x) = || x]|.
(b) If A is complex, then r(x*x) = r(xx*) = ||x||%
(c) If A has a unit and x is unitary, then 0 (x) C {A € K; |A| = 1}. If moreover A is non-trivial, then || x| = 1.
(d) If x is self-adjoint, then o (x) C R.
Corollary 97. Let A be a non-trivial complex commutative B*-algebra. Then A(A) # 0.

Corollary 98. Let A be a complex algebra with an involution. Then there exists at most one norm on A with which A is a
B*-algebra.

*

Definition 99. Let A and B be algebras with an involution. Then an algebra homomorphism @: A — B is called a *-
homomorphism if it preserves the operation *, i.e. if @(x*) = @(x)* for every x € A.

Corollary 100. Let A be a complex B*-algebra. Then every multiplicative linear functional on A is a *-homomorphism.

Corollary 101. Let A, B be complex B*-algebras and @ : A — B a *-homomorphism. Then @ is automatically continuous and
moreover ||@| < 1.

Corollary 102. Let A be a complex B*-algebra and B its B*-subalgebra. If A and B has a common unit, then B* = A* N B.
Further, let x € B. If B has a unit which is not a unit in A, then 04(x) = op(x) U {0}, in the other cases c4(x) = op(x).

Theorem 103 (I. M. Gelfand a M. A. Naimark (1943)). Let A be a complex commutative B*-algebra. Then the Gelfand transform
is an isometric *-isomorphism of A onto Co(A(A)).

Corollary 104. A complex commutative B*-algebra A has a unit if and only if A(A) is compact.
Corollary 105. Let A and B are complex commutative B*-algebras. Then the following statements are equivalent:
(i) A and B are isometrically *-isomorphic.
(ii) A and B are algebraically isomorphic.
(iii) The spaces A(A) and A(B) are homeomorphic.
Theorem 106 (I. M. Gelfand a M. A. Naimark (1943), I. Kaplansky (1953)). Every complex B*-algebra can be embedded by an
isometric *-isomorphism into £ (H) for some suitable complex Hilbert space H.
7. Continuous calculus for normal elements of B*-algebras

Proposition 107. Ler A be a normed algebra over K, 2 C K, f,g: 2 — A, andt € 2. If f'(t) and g'(t) exist, then
(f8)' () = f'()g@) + f(1)g' ().

Let A be a (real) Banach algebra with a unit and x € A. Then we define

o0
xn
exXpx = —.
n!
n=0

Theorem 108. Let A be a Banach algebra over K with a unit e and x € A.
(a) If y € A commutes with x, then expx expy = exp(x + y).

(b) expx € A* and (expx)~! = exp(—x).



(c) Put f(A) = exp(Ax) for A € K. Then f'(1) = exp(Ax)x for every A € K.
(d) If A is an algebra with a continuous involution, then (exp x)* = exp x*.

(e) If A is a complex algebra with a continuous involution and x is self-adjoint, then exp(ix) is unitary.

Theorem 109 (Bent Fuglede (1950), Calvin R. Putnam (1951)). Let A be a complex B*-algebra, x € A, and let a,b € A be
normal and such that ax = xb. Then a*x = xb™.

Definition 110. Let A be an algebra and M C A. The set
algM = ﬂ{B D M; B is asubalgebra of A}
is called algebra hull of M .
Proposition 111. Let A be an algebra and M C A. Then
alg M = span{xix;---Xxp; X1,...,Xp, € M,n € N}.
Definition 112. Let A be a normed algebra and M C A. Then we define a closed algebra hull of M as
algM = ﬂ{B D M; B is aclosed subalgebra of A}.

Proposition 113. Let A be a normed algebra and M C A. Then alg M = alg M.

Fact 114. Let A, B be algebras and M C A. Then every algebra homomorphism ®@: algM — B is uniquely determined
by its values on M. If A, B are normed algebras, then every continuous algebra homomorphism @ : alg M — B is uniquely
determined by its values on M.

Proposition 115. Let A be a B*-algebra and suppose that M C A commutes and is closed under the involution. Then alg M is
a commutative B*-subalgebra of A.

Theorem 116. Let A be an algebra over K with a unit and x € A. Let 2, C K be closed and §21 C $§2,. Let @;: C(£2;) — A
be an algebra homomorphism such that ®;(1) = e, ®;(Id) = x, in the complex case moreover ®,(Id) = ®,(Id), and let
®; be sequentially continuous from the topology of locally uniform convergence on C(§2;) to some Hausdorff topology t on A,
i =1,2.Then @1(f 1'@,) = ©2(f) for every f € C(§2,).

Let A be a complex B*-algebra with a unit and let x € A be normal. Set B = alg{e, x, x*}. Then we can define

f(x)=Tg"(f o Ig(x)). (1)

Theorem 118 (continuous calculus). Let A be a complex B*-algebra with a unit, let x € A be normal and f € C(o(x)). The
mapping @ : C(o(x)) — A, where ®(g) = g(x) is given by the formula (1), has the following properties:

(a) @ is an isometric *-isomorphism of C (o (x)) onto B = alg{e, x, x*}, for which moreover ®(1) = e and &(Id) = x.
(b) f(x) € AX ifand only if f(L) # O for every A € o(x). In this case f(x)™! = %(x).

(c) f(x) is self-adjoint if and only if f is real.

(d) a(f(x)) = f(o(x)) (spectral mapping theorem).

(e) If ¥: C(o(x)) — A isa*-homomorphism for which W (1) = e and ¥ (Id) = x, then ¥ = @.

(f) If C C A is a commutative B*-subalgebra containing e and x, then FC_I (folc(x)) = f(x).

(g) Ifg € C(f(0(x))), then (g o f)(x) = g(f(x)).

(h) If g € H(82), where 2 C C is an open neighbourhood of o(x), then ®(g }s(x)) = ¥(g), where W is the holomorphic
calculus from Theorem[50]

(i) If y € A commutes with x, then y commutes also with f(x).

(j) If D is a complex B*-algebraand ® : A — D is a *-homomorphism such that @ (e) is a unitin D, then f(O(x)) = O(f(x)).
In particular, if u € A is unitary, then f(uxu*) = uf(x)u*.

(k) If0 € o(x) and f(0) = 0, then f(x) € alg{x, x*}.

If A does not have a unit, then we carry out the whole construction in Ae. If f € C(0(x)) is such that f(0) = 0, then
f(x) e A
Theorem 119. Let A be a complex B*-algebra and x € A.

(a) The element x is self-adjoint if and only if it is normal and o (x) C R.

(b) If A has a unit, then x is unitary if and only if it is normal and o (x) C {A € C; |A| = 1}.



8. Non-negative elements of B*-algebras

Definition 120. Let A be an algebra with an involution and let x € A be self-adjoint. We say that x is non-negative, if o(x) C
[07 +OO)'

Fact 121. An element x of a complex B*-algebra is non-negative, if and only if it is normal and o (x) C [0, +00).
Proposition 122. Let A be an algebra with an involution and let x,y € A be non-negative.

(a) Ift = 0, then tx is non-negative.

(b) If A is a complex B*-algebra, then x + y is non-negative.

(c) If A is a complex Banach algebra and x and y commute, then Xy is non-negative.

Fact 123. Let A be a complex B*-algebra and x € A.

(a) If x is non-negative, then |x| = x.

(b) If x is self-adjoint, then |x|*> = x2.

(c) If x is non-negative, then (\/x)? = x. Moreover, \/x is the only non-negative y € A satisfying y*> = x.

(d) If x is self-adjoint, then ~/x% = |x|.

Proposition 124. Let A be a complex B*-algebra. Then for every self-adjoint element x € A there exists a unique pair of
non-negative elements x*,x~ € A such that x = x* —x~ and x x* = xTx~ = 0. Moreover, x* + x~ = |x]|.

Theorem 125 (I. Kaplansky (1953)). Let A be a complex B*-algebra and x € A. Then x*x and xx* are non-negative.

Theorem 126 (polar decomposition). Let A be a complex B*-algebra with a unit and let x € A be invertible. Then there exist a
unitary u € A and a non-negative a € A satisfying x = ua. This decomposition is unique.

I1. Continuous linear operators on Hilbert spaces

1. Basic properties

Theorem 127. If Hy, H, are Hilbert spaces and T € £(H1, H>), then
(a) KerT* = (RngT)*,

(b) KerT = (Rng T*)*,

(c) RngT = (KerT*)*%,

(d) RngT* = (Ker T)*.

Definition 128. Let X, Y, and Z be vector spaces over K. A mapping B: X x Y — Z is called bilinear if it is linear separately
in the first and in the second coordinate, i.e. the mapping x — B(x, y) is linear for every y € Y and y +— B(x, y) is linear
for every x € X. The mapping B is called sesquilinear, if it is linear in the first coordinate and conjugate-linear in the second
coordinate. If Z = K, then B is called bilinear, resp. sesquilinear form.

Proposition 129 (polarisation formula). Let X, Y be vector spaces over K and let S: X x X — Y be a sesquilinear mapping.
Then

1
S(x,y)+ S(y.x) = E(S(x +y.x+y)—Skx—y.x—y)
foreveryx,y € X. If K = C, then

1
S(x,y) = Z(S(x +y.x+y)=Sx—y.x—y)+iSx+iy,x +iy) —iS(x —iy,x —iy))

forevery x,y € X.

Theorem 130. Let X be an inner-product space and let T : X — X be a linear operator. Suppose moreover that at least one of
the following condition holds:

o X is complex.

e X is a Hilbert space and T is continuous and self-adjoint.
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If (Tx,x) = 0foreveryx € X, then T = 0.

Corollary 131. Let X be an inner-product space and let S, T : X — X be linear operators. Suppose moreover that at least one
of the following condition holds:

o X is complex.
e X is a Hilbert space and S, T are continuous and self-adjoint.
If (Sx,x) = (Tx,x) foreveryx € X, then S = T.

Definition 132. Let X, Y, Z be normed linear spaces and let B: X x Y — Z be a bilinear, resp. sesquilinear mapping. We say
that B is bounded if supycp. ,ep, [|B(x, )| < +00. In this case we define || B|| = sup,ep, yen, | B(x, y)].

Proposition 133. Let H be a Hilbert space. If S is a bounded sesquilinear form on H, then there exists a unique T € £(H)
such that S(x,y) = (Tx,y) forall x,y € H. Moreover, |T| = || S|

Fact 134. Let Hy, H; be Hilbert spaces and T € £(H1, H,). Then KerT* o T = KerT.

Theorem 135. Let H be a Hilbert space and T € £(H ). Then the following statements are equivalent:
(i) T is normal.

(it) (T*x, T*y) =(Tx,Ty) foreveryx,y € H.

(iii) |T*x|| = ||T x| for every x € H.

Definition 136. Let X be a normed linear spacer over K and 7 € £(X). A number A € K is called an approximate eigenvalue
of the operator T if there exists a sequence {x,} C Sy such that (A — T')x,, — 0. The set of all approximate eigenvalues of the
operator T is called an approximate point spectrum of the operator T' and it is denoted by 0., (7).

Fact 137. Let X be a normed linear space over K and T € £(X). Then A € K is an approximate eigenvalue of T if and only if
Al — T is not an isomorphism into.

Proposition 138. Let X, Y be normed linear spaces, T € £(X), and let S: X — Y be a linear isomorphism. Then o,p(S o T o
S71) = 04p(T), where So T o S™1 € £(Y).

Definition 139. Let X be an inner-product space and T € £(X). The set Ny = {{(T'x, x); x € Sy} is called a numerical range
of the operator 7'.

Fact 140. Let X be a normed linear space with dim X # 1 (i.e. X is either complex, or real of dimension not equal to 1). Then
Sx is pathwise connected.

Proposition 141. Let X be an inner-product space over K and T € £(X).

(a) Nor+pr = o + BNt foranya,p € K.

(b) The set Nt is pathwise connected.

(c) 0p(T) C N7 C Bk (0, |T|).

(d) o,p(T) C N7. If X is a Hilbert space, then o (T) \ 04p(T) C Nr, and so o(T) C Nr.
Theorem 142. Let H be a Hilbert space and let T € £(H) be normal. Then the following hold:
(a) KerT = Ker T*.

(b) Rng T is dense in H if and only if T is one-to-one.

(c) T is invertible if and only if there exists ¢ > 0 such that ||T x|| > c||x|| for every x € H.

(d) o(T) = 0ip(T).

(e) A € 0p(T) if and only if A€ UP(T*l The eigenspace of T corresponding to an eigenvalue A is equal to the eigenspace of
T™ corresponding to the eigenvalue \.

(f) If A1, Ay are different eigenvalues of T, then Ker(A1I — T) L Ker(A,I — T).

Theorem 143. Let H be a Hilbert space and T € £(H). Then T is self-adjoint if and only if (Tx,y) = (x,Ty) for every
x,y € H. For T self-adjoint the following holds:

(a) (Tx,x) € R foreveryx € H.
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(b) Nt C R. If H is non-trivial and if we denote mr = inf Ny, Mt = sup N, then |T|| = max{|mr|, |Mr|} and
{mr,Mr} Co(T) C [mr, M), and so the number ||T || or —||T || lies in o (T).

(c) r(T) =sup{|Al: A € Np} = [T
Proposition 144. Let H be a complex Hilbert space and T € £(H). Then T is self-adjoint if and only if Ny C R.

Corollary 145. Let H be a Hilbert space and T € £(H). If T is self-adjoint, then o (T) C [0, 400) if and only if (Tx,x) > 0
for every x € H. If H is complex, then T is non-negative (element of the algebra £(H)) if and only if (T x,x) > 0 for every
xeH.

Theorem 146. Let H be a Hilbert space and let P € £(H) be a projection. Then the following statements are equivalent:
(i) P is self-adjoint.

(ii) P is normal.

(iii) P is orthogonal.

(iv) P is non-negative.

Lemma 147. Let H be a Hilbert space, S, T € £(H) and assume that S is self-adjoint. Then Rng S L Rng T if and only if
ST =0.

Definition 148. Let H;, H, be Hilbert spaces. An operator T € £(H;, H,) is called unitary it T*oT = Ig, and T oT* = Ig,,
or in other words 77! = T*.

Theorem 149. Let Hy, H, be Hilbert spaces and T € £(Hy, Hy). Then the following statements are equivalent:
(i) T is unitary.
(ii) T isonto and (Tx,Ty) = (x,y) foreveryx,y € H.

(iii) T is an isometry onto.

Lemma 150. Let Hy, H, be Hilbert spaces and T € £(H1, H). Let Y be a closed subspace of Hy such that RngT C Y and
let S € £(Hy,Y) be defined as Sx = Tx for x € Hy. Then S* = T* |'y.

Theorem 151. Let H be a Hilbert space. Then KX (H) = ¥ (H).

Definition 152. Let A be asetandlet f: A — A be a mapping. A set B C A is called invariant with respect to f if f(B) C B,
ie. flp: B— B.

Fact 153. Let H be a Hilbert space, T € £(H), and let M C H be a set of eigenvectors of T (not necessarily all).
(a) IfY C H is invariant with respect to T, then Y+ is invariant with respect to T*.

(b) span M is invariant with respect to T .

(c) If T normal, then both Span M and (Span M)+ are invariant with respect to both T and T*.

(d) Let Y C H be a closed subspace invariant with respect to both T and T*. Then (T }'y)* = T* }y. So if T is self-adjoint,
resp. normal, then T 'y € £(Y) is self-adjoint, resp. normal.

Theorem 154 (spectral decomposition of a normal compact operator; D. Hilbert (1904), Erhard Schmidt (1907)). Let H be a
Hilbert space and T € K (H). Suppose further that

o T is self-adjoint or
e H is complex and T is normal.

Then there exist an orthonormal basis B of H consisting of eigenvectors of T. The set of all vectors from B corresponding
to non-zero eigenvalues of T is countable and if we enumerate it by an arbitrary injective sequence {ey },1:/:1, N € Ny U {o0},
then {ey,} is an orthonormal basis of Rng T and

N
Tx = Z An{x,en)en
n=1

for every x € H, where A, is the eigenvalue corresponding to the eigenvector ey,.
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If {A, },1:4:1, M € Ny U {oo} is an injective sequence of all eigenvalues of T and P, is the orthogonal projection onto

Ker(A,I —T), then

M
IZZPn,

n=1

where the series converges pointwise unconditionally (i.e. x = Z,Ilu:l P, x unconditionally for every x € H) and

M
T = anp,,,
n=1

where the series converges unconditionally in the space £(H).

Theorem 155 (representation of a compact operator; E. Schmidt (1907)). Let Hy, H, be Hilbert spaces and T € K (H1, H>).
Then there exist N € Ng U {00}, a sequence of positive numbers {1, },Ilvzl, and orthonormal systems {uy, },IlV:l C H; and
{vn },11\/=1 C H; such that

N
Tx =Y An(X.1n)n
n=1

for every x € H. Further, {12 }r},v=1 is a sequence of all non-zero eigenvalues of the operator T* o T, and for every A > 0 the
number of elements of the set {n € N; A2 = A} is equal to dimKer(Al — T* o T). So the sequence {1, },11\]:1 is determined
uniquely up to a permutation and if N = oo, then A, — 0.

2. Bounded Borel calculus

Definition 156. Let X, Y be normed linear spaces. We define the following locally convex topologies on the space £(X,Y):
e the strong operator topology tsor is generated by the system of seminorms {p,(T) = | Tx|; x € X},
e the weak operator topology twor is generated by the system of seminorms {p, #(T) = | f(Tx)|; x € X, f € Y*}.

The symbol Bfy,(X) denotes the set of all bounded Borel functions on a topological space X .

Definition 157. Let X be a Banach space over K and 7" € £(X). We say that a mapping ¥ : Bf,(0(T")) — £(X) is a Borel
Junctional calculus for T if ¥ is an algebra homomorphism, ¥ (1) = I, ¥(Id) = T, and if { f,} C Bfy(c(T)) is a bounded
sequence converging pointwise to f € Bf,(c(T)), then ¥ ( f,) — ¥(f) in the topology twor-

Let A be an algebra over K with a unit, T a Hausdorff topology on A4, x,y € 4, and F C K closed. A homomorphism
@: Bfy,(F) — A will be called a Borel calculus on F for t and a pair (x, y) if ®(1) = e, ®(Id) = x, ®(Id) = y, and

v(f) 5 ¥ (f) whenever { f,} C Bfy(F) is a bounded sequence converging pointwise to f € Bf,(F).

Theorem 158. Let A be a Banach algebra over K with a unit, t a Hausdorf{f topology on A (non-strictly) weaker than norm, and
X,y € A. Assume that there exists a Borel calculus ¥ on a closed F C K for t and a pair (x, y). Then there is a Borel calculus
@ on o(x) for T and a pair (x, y). If moreover W1 is a Borel calculus on Fy for v and a pair (x,y), then ¥1(f) = @(f o))
for every f € Bfy(Fy).

Lemma 159. Let H be a Hilbert space and {x,}5>, C H. If x, — x € H weakly and ||x,|| — |x|, then x, — x (in the
norm).

Let H be a complex Hilbert space and let T € £(H) be a normal operator. For fixed x,y € H consider the function
@x,y: C(0(T)) — C defined by

Pxy () = (f(T)x, ).

There exist a regular Borel complex measure iy, on o(T") such that

%Mﬂ=£mfwm

forevery f € C(o(T)), and [[puxyll = lexyll = IxI ¥l
For f € Bfy,(0(T)) there exist a unique operator f(T) € £(H) such that

uwmw=/mfmw @

for every x, y € H. Moreover, || f(T)|| < | f lloo-
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Theorem 160. Let H be a complex Hilbert space, let T € £(H) be a normal operator and f € Bfy(o(T)). The mapping
@ : Bf,(0(T)) —> L£(H), where @(g) = g(T) is defined above, is a Borel functional calculus for T with the following proper-
ties:

(a) @ is a *-homomorphism and if we denote by W the continuous calculus for T from Theoremm then @ M co(y = VY. If
H is non-trivial, then | @| = 1.

(b) If { fu} C Bfy(0(T)) is a bounded sequence converging pointwise to f, then @( f,) — ®@(f) in the topology tsor.

(c) If W is a Borel functional calculus for T which is moreover a *-homomorphism, then W (g) = ®(g) for every g € Bfy,(o(T)).
(d) f(T) is normal If f is real, then f(T) is self-adjoint. If | f | = 1, then f(T) is unitary.

() a(f(T)) € f(a(T)).

() If g € Bfy(Rng [), then (g o f)(T) = g(f(T)).

(g) If S € £(H) commutes with T, then S commutes also with f(T).

(h) If U € L(H) is unitary, then f(UTU*) = Uf(T)U™*.

3. Polar decomposition

Theorem 161 (polar decomposition). Let H be a complex Hilbert space and T € £(H). Then T is normal if and only if there
exist a unitary U € £(H) and a non-negative A € £(H) such that T = UA = AU. This decomposition is unique if and only if
T is one-to one.

Corollary 162. Let H be a complex Hilbert space and T € L(H). Then T is normal if and only if there exists a unitary
UeX(H)suchthatT* =UT =TU.

Theorem 163. Let H,, H, be complex Hilbert spaces and T € £(Hi, Hz). Then there exists a unique pair of operators
Ae E£(Hy)and U € L(Rng A,Rng T) such that T = U o A, A is non-negative, and U is unitary. If T is an isomorphism, then
A is an automorphism of H;.

Proposition 164. Let T € L(C"). Then there exist a unitary U € £(C™) and a non-negative A € £(C") such that T = UA.

4. Spectral decomposition of an operator

Definition 165. Let § be a o-algebra and X a topological vector space. A mapping u: § — X is called a vector measure if
;L(Uzozl An) =Y o2, i(Ay) for every sequence {4, }5° , of pairwise disjoint sets from §.

Fact 166. Let X, Y be topological vector spaces, L 8 — X a vector measure, and T : X — Y a continuous linear mapping.
Then T o p is also a vector measure.

Proposition 167. Let X, Y be normed linear spaces over K, 8 a o-algebra, and u: 8§ — (£(X,Y), twor) a vector measure.
Then for every x € X and f € Y* the function jix 5 : 8 — K given by

M, (A) = f((A)x)

is a complex measure on 8. The mapping B: (x, ) v [y, r is a bilinear mapping from X x Y* to a normed linear space of
complex measures on 8. If moreover X is a Banach space, then sup,cg||t(A)|| < 400 and B is bounded.

Theorem 168 (B. J. Pettis (1938)). Let X be a normed linear space and . 8 — (X, w) a vector measure. Then | is also a
vector measure as a mapping into (X, ||-|).

Corollary 169. Let X, Y be normed linear spaces, 8 a o-algebra, and jv: 8 — (L(X,Y), twor) a vector measure. Then [ is
also a vector measure as a mapping into (£(X,Y), tsor)-

By Bs(X) we denote the o-algebra of Borel subsets of a topological space X .

Definition 170. Let X be a Banach space over K. A resolution of the identity on X is a vector measure E: Bs(K) —
(L(X), tsor) with the following properties:

(i) E(A) is a projection for every Borel A C K.
(i) E(K) =1.
(iii) E(AN B) = E(A)E(B) for every Borel A, B C K.
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If X is a Hilbert space and all projections E(A) are orthogonal, then E is called an orthogonal resolution of the identity on X .
Fact 171. Let X be a Banach space over K and E a resolution of the identity on X.
(a) The projections E(A) and E(B) commute for every A, B € Bs(K).
(b) If A, B € Bs(K), B C A, then Rng E(B) C Rng E(A) and Ker E(B) D Ker E(A).
(c) If{An} C Bs(K), then (,—, Ker E(A,) C Ker E(Uy—; An).
(d) E, r is aregular Borel complex measure on K for everyx € X a f € X*.
Let moreover X be a Hilbert space and E orthogonal.
(e) If A, B € Bs(K) are disjoint, then Rng E(A) L Rng E(B).
(f) Ex.x is a finite regular Borel non-negative measure on K and || Ex x|| = ||x|| for every x € X.
Lemma 172. Let X be a Banach space over K and suppose E : Bs(K) — £(X) has the following properties:
(i) E(A) is a projection for every Borel A C K.
(ii) EK) =1.
(iii) E(AN B) = E(A)E(B) for every Borel A, B C K.
(iv) Ex r:Bs(K) = K, Ey r(A) = f(E(A)x) is a Borel complex measure on K for every x € X and [ € X*.

Then E is a resolution of the identity on X.
If X is a complex Hilbert space, then instead of (iv) it suffices to assume that Ex x: Bs(K) — C, Ex x(A) = (E(A)x, x) is
a finite Borel measure on C for every x € X.

Proposition 173. Let X, Y be Banach spaces over K, let E be a resolution of the identity on X, and let S: X — Y be a linear
isomorphism. Then F: A +— S o E(A) o S71, A € Bs(K) is a resolution of the identity on Y. If moreover X, Y are Hilbert
spaces, S is an isometry (and so unitary), and E is orthogonal, then F is also orthogonal.

Definition 174. Let X be a Banach space over K and 7" € £(X). We say that E is a resolution of the identity with respect to the
operator T if E is a resolution of the identity on X such that for every Borel A C K the following holds:

(i) the projection E(A) commutes with T,

(i) if we set T4 = T Mrog £(4), then 0(T4) C A.
Proposition 175. Let X be a Banach space over K, T € £(X), and E a resolution of the identity with respectto T.
(a) a(Ty) C o(T) for every Borel A C K.
(b) In the complex case E(o(T)) = 1.
(c) If E(o(T)) = I (in particular if X is complex), then E(G) # 0 for every (relatively) open non-empty G C o(T).
(d) Ker(AI —T) C Rng E({1}) for every A € K. In particular, if A is an eigenvalue of T, then E({1}) # 0.

Lemma 176. Let X, Y be normed linear spaces, T € £(X), let Z C X be a subspace invariant with respect to T, and let
S: X — Y be a linear isomorphism. Then S(Z) is invariant with respect to U = S oT o S7' € £(Y) and o(U 5(z)) =
o(T t2).

Proposition 177. Let X, Y be Banach spaces over K, T € £(X), and S: X — Y a linear isomorphism. If E is a resolution
of the identity with respect to T, then F: A+ S o E(A) o S™!, A € Bs(K), is a resolution of the identity with respect to the
operatorU = SoT oS~ e £(Y).

Theorem 178. Let X be a Banach space over K. If W is a Borel functional calculus for T € £(X), then there exists a resolution
of the identity E with respect to T such that

¢(Tx) = [ AdE, 4(A)
a(T)
Jorevery x € X and ¢ € X*. This resolution has the following properties:

(a) E(A) = ¥(xano(T)) for every Borel A C K.
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(b)
$W(f)x) = [

o(T

)dex,q;
for every f € Bf,(o(T)) and every x € X and ¢ € X*.

(c) E({{A}) is a projection onto Ker(Al — T) for every A € K.

(d) A € op(T) ifand only if E({A}) # 0.

(e) If X is complex and A an isolated point of o(T'), then A € op(T).

(f) If X is a Hilbert space and W is a *-homomorphism, then E is orthogonal.

On the other hand, if E is a resolution of the identity on X such that E(K) = I for some compact K C K, then there
exists a unique mapping ¥ : Bfy(K) — £(X) such that (b) holds. This ¥ is a Borel functional calculus for T = ¥ (Id), E is
a resolution of the identity with respect to T, and (a)—(e) holds. If moreover X is a complex Hilbert space and E is orthogonal,
then W is a *-homomorphism and T is normal.

Corollary 179. Let H be a complex Hilbert space and T € £(H) a normal operator. Then there exists a unique orthogonal
resolution of the identity E on H such that there is a compact K C C containing o(T), E(K) = I, and

(Tx,x) = /Kx dEx (V)

for every x € H. This resolution is given by the formula E(A) = y4(T). It is an orthogonal resolution of the identity with
respectto T.

(f(T)x.y) = / o F

forevery f € Bfy(0(T)) and every x,y € H. Further, (c), (d), (e) of Theorem[I78 hold.

Definition 180. Let (S,§), (7, T) be measurable spaces, X a topological vector space, ;1: § — X a vector measure, and
f: S — T ameasurable mapping. The mapping f(u): 7 — X defined by the formula f(u)(A) = u(f ' (A)) for A € T is
called an image of the vector measure [L.

Proposition 181. Let X be a Banach space over K, E a resolution of the identity with respectto T € £(X) such that E(K) = 1
for some compact K C K, and f € Bfy(K). Then f(E) is a resolution of the identity with respect to f(T) = Y (f), where ¥
is the Borel functional calculus for T from Theorem|(l78
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