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|. Banach algebras

1. Basic properties

Definition 1

We say that (A, +,—,0, -, ) is an algebra over K if

(A, +,—,0,) is a vector space over K, (A,+,—,-,0)isa
ring, and moreover (¢ sa)-b=a-(x-b) =« (a- b) for
all a,b € Aand a € K. An algebra over K is called
commutative if its ring multiplication - is commutative.



Proposition 2

Let A be an algebra over K. Put A. = A x K and define
vector operations on A. in the usual way (i.e.
componentwise) and further multiplication of the elements
of A. by the formula

(a,a)(b,B) = (ab+ ab+ Ba,af) fora,be A a,p € K.

Then A. is an algebra with the unit (0,1) and A can be
identified with its subalgebra A x {0}. If A is commutative,
then so is A..



Let A, B be algebras over K. (Algebra) homomorphism
®: A — Bis a mapping which is a homomorphism
between the respective vector spaces (i.e. it is linear) and
also it is a homomorphism between the respective rings
(i.e. it is multiplicative, or @(ab) = ®(a)®(b)).



Let A, B be algebras over K. (Algebra) homomorphism
®: A — Bis a mapping which is a homomorphism
between the respective vector spaces (i.e. it is linear) and
also it is a homomorphism between the respective rings
(i.e. it is multiplicative, or @(ab) = ®(a)®(b)).

@ is called an (algebraic) isomorphism of algebras A and
B if @ is a bijection.



Fact 3
Let A be an algebra, B an algebra with a unit e, and

®: A— B a homomorphism. Then @: A. — B,
@(x,A) = @(x) + Ae is a homomorphism extending ®.



Fact 3

Let A be an algebra, B an algebra with a unit e, and
®: A— B a homomorphism. Then @: A. — B,
@(x,A) = @(x) + Ae is a homomorphism extending ®.

Proposition 4

Let A be an algebra with a unit e and B a subalgebra of A
not containing e. Then C = B + span{e} is a subalgebra

of A and the mapping ®: B. — C, ®(x,A) = x + Aeis an
isomorphism.



Definition 5

A pair (A, ||]|) is called a normed algebra if Ais an
algebra, (A, ||-||) is a normed linear space, and

|labll < |la|l||b| for each a, b € A. If the metric generated
by ||-|| is complete, then (A, ||-||) is called a Banach

algebra.



Proposition 6

Let (A, |-||) be a normed algebra. The multiplication of
elements of A is Lipschitz on bounded sets (and in
particular continuous) as a mapping from A x A to A.
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Let A be a normed algebra and B a subalgebra of A. Then
B is also a subalgebra of A.



Proposition 6

Let (A, |-||) be a normed algebra. The multiplication of
elements of A is Lipschitz on bounded sets (and in
particular continuous) as a mapping from A x A to A.

Corollary 7

Let A be a normed algebra and B a subalgebra of A. Then
B is also a subalgebra of A.

Corollary 8

Every normed algebra A has a completion, i.e. a Banach
algebra such that A is its dense subalgebra. This
completion is unique up to an isometry. If A has a unit e,
then e is also a unit in the completion of A.



Proposition 9

Let (A, ||-|l) be a normed algebra. If we define a norm on
A. by the formula ||(a, o)|la. = ||a|| + || (i.e. A = A®1K),
then A. with this norm is a normed algebra. If (A, |-||) is a
Banach algebra, then so is A. with the norm above.



Definition 10

Let A and B be normed algebras and @: A — B an
(algebra) homomorphism. We say that @ is an
isomorphism of normed algebras A and B (or just an
isomorphism) if @ is a homeomorphism of A onto B; we
say that @ is an isomorphism of A into B (or just an
isomorphism into) if @ is an isomorphism of A onto Rng @.



Theorem 11

Let A be a normed algebra. For each a € A we define a
left translation L,: A — A by the formula L,(x) = ax. Then
L, € £(A) and the mapping I: A — £(A), I(a) = L, is a
continuous algebra homomorphism with ||| < 1.
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Theorem 11

Let A be a normed algebra. For each a € A we define a
left translation L,: A — A by the formula L,(x) = ax. Then
L, € £(A) and the mapping I: A — £(A), I(a) = L, is a
continuous algebra homomorphism with ||/|| < 1. If A has
a unit e, then | is an isomorphism into and I(e) = Id. If
lell =1 or|x?|| = ||x||?> foreach x € A (e.g. ifAis a
subalgebra of L (I")), then | is an isometry into.

Corollary 12

Let (A, |-||) be a non-trivial normed algebra with a unit.
Then there exists an equivalent norm |||-||| on A such that
(A |IIFlID is a normed algebra and |||le||| = 1.



Recall that in a ring with a unit (or more generally in a
monoid) the following holds: if x has a left and a right
inverse, then these are equal (and it is then and inverse
to x). In particular, inverses to invertible elements are
uniquely determined. Further, the invertible elements form
a group, i.e. if x, y € A are invertible, then also xy is
invertible and (xy)~' = y~'x~'. This group of invertible
elements will be denoted by A*.



Recall that in a ring with a unit (or more generally in a
monoid) the following holds: if x has a left and a right
inverse, then these are equal (and it is then and inverse
to x). In particular, inverses to invertible elements are
uniquely determined. Further, the invertible elements form
a group, i.e. if x, y € A are invertible, then also xy is

invertible and (xy)~' = y~'x~'. This group of invertible
elements will be denoted by A*.
Fact 13

Let A be an algebra with a unit and B its subalgebra
containing e. Then B* ¢ A* N B.



Fact 14

Let A, B be semigroups, ® : A— B a homomorphism
onto, and let A be moreover a monoid with a unit e. Then
B is a monoid with a unit ®(e) and if x € A is invertible,
then ®(x) is invertible and ®(x)~' = ®(x~"). If moreover
@ is a bijection, then @ | 4< is an isomorphism of the
groups A* and B*.



Lemma 15
Let A be a normed algebra wit a unit and x € A. If the
series Y ., x" converges, then > 72/ x" = (e — x)~.
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Let A be a Banach algebra with a unit.
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Lemma 15

Let A be a normed algebra wit a unit and x € A. If the

series Y 2, x" converges, then > 72 . x" = (e —x)~".

Lemma 16

Let A be a Banach algebra with a unit.

(a) If x € Ua, then the series y_,. , x" converges
absolutely and so Y 72 x" = (e — x)~".

(b) Letx € A* and let h € A be such that |||l < 5t
Then x 4+ h € A*. If moreover ||h|| < m then
[+ By~ =Xt x| < 2% P



Definition 17

Let G be a group and t a topology on G. We say that

(G, 1) is a topological group if the group operations (i.e.
multiplication -: G x G — G and inversion ~': G — G) are
continuous.



Definition 17

Let G be a group and t a topology on G. We say that

(G, 1) is a topological group if the group operations (i.e.
multiplication -: G x G — G and inversion ~': G — G) are
continuous.

Theorem 18
Let A be a Banach algebra with a unit. Then A* is an

open subset of A and it is a topological group.



Proposition 19
Let A be a Banach algebra with a unit and B its closed
Subalgebra containing e. Then (0gB*) N A* = @ and

B* =|_J{C c B: C is acomponent of A* N B intersecting B*} .
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Definition 20
Let A be an algebra with a unit. For x € A we define the
resolvent set of x as

p(x) ={L eK; Ae—x € A*}
and the spectrum of x as

o(x) =K\ p(x).



2. Spectral theory

Definition 20
Let A be an algebra with a unit. For x € A we define the
resolvent set of x as

p(x) ={L eK; Ae—x € A*}
and the spectrum of x as
o(x) =K\ p(x).

If A does not have a unit, then for x € A we define the
above notions with respect to the algebra A..



Definition 21
An element x of a groupoid is called idempotent if x2 = x.



Proposition 22

Let A, B be algebras and @ : A — B an algebraic
isomorphism. Then o (®(x)) = o(x) for every x € A.



Lemma 23

Let M be a monoid and x,y € M. If at least two of the
elements x, y, xy, and yx are invertible, then all four are
invertible.
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Let A be an algebra over K.
(a) If A is non-trivial, then o (0) = {0}.
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Proposition 24

Let A be an algebra over K.

(a) If A is non-trivial, then o (0) = {0}.

(b) If A has a unit, then o (xe + Bx) = a + Bo(x) for
everyx e Aanda, B € K.

(c) Ifxe A,ne N, and A € a(x), then A" € o(x").

(d) Ifx € A, then A € o(x) ifand only if ; € o(x™").

(e) Ifx,y € A, then the sets o (xy) and o (yx) differ at
most by the element 0. If moreover x € A*, then
o (xy) = o(yx).

(f) Ifz € A%, theno(x) = o(zxz™") for every x € A.



Proposition 25

Let X, Y be normed linear spaces, T € £(X), and let
S: X — Y be a linear isomorphism. Then the operator
SoToS™' e &(Y) has the following property:

O’(SO T o 8_1) = O'(T) a O'p(SO T o 8_1) = Up(T)-



Fact 26
Let A be an algebra and B an ideal in A. Then B is also an
ideal in A..
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Let A be an algebra.
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unit, then 0 € o(x) for every x € A.
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Proposition 27
Let A be an algebra.

(@) 0 € 0a.(x) forevery x € A. So, if A does not have a
unit, then 0 € o(x) for every x € A.

(b) If A has a unit, then o4, (x) = oa(x) U {0} for every
x € A.

(c) Suppose that A has a unit e, B is a subalgebra of A
not containing e, and C = B + span{e}. Then
oc(x) = og,(x) forevery x € B.

(d) Let B be a subalgebra of A and x € B. If B has a unit
which is not a unit in A, then oa(x) C og(x) U {0}, in
the other cases oa(x) C og(x).

(e) If B is a proper ideal in A, then og,(x) = oa(x) for
every x € B.



Proposition 28

Let A, B be algebras, ®: A— B a homomorphism, and
x € A. If A has a unit e and ®(e) is not a unit in B, then
08(®(Xx)) C aa(x) U {0}, in the other cases

0B(P (X)) C 0a(X).



Definition 29
Let A be an algebra. For x € A we define the spectral
radius of x as

r(x) = sup{|A| € [0, 400); A € 0(X)}.



Theorem 30
Let A be a Banach algebra and x € A. Then p(x) is open,
o(x) is compact, and

r(x) < inf /||x"| = lim /|| x"].
neN n—o00



Theorem 30
Let A be a Banach algebra and x € A. Then p(x) is open,
o(x) is compact, and

r(x) < inf /||x"| = lim /|| x"].
neN n—o00

Lemma 31
Let {a,} be a sequence of real numbers.

(@) Ifamen < am+ an forallm,n e N, then

lim 2 = inf & < +o00.
n—o00 neN 1



Theorem 30
Let A be a Banach algebra and x € A. Then p(x) is open,
o(x) is compact, and

r(x) < inf J{[x"[| = lim /|[x"].
neN n—o00

Lemma 31
Let {a,} be a sequence of real numbers.

(@) Ifamen < am+ an forallm,n e N, then

lim 2 = inf & < +o00.
n—o00 neN 1

(b) If{an} is non-negative and anm+, < aman for all

m,n e N, then lim Ya, = inf J/a, € R.
n—o00 neN



Theorem 32
Let A be a Banach algebra with a unit, B its closed

subalgebra containing e, and x € B. Then the following
hold:

(a) dps(x) C dpa(x) and

ps(x) = |_J{C CK: C is a component of pa(x)

intersecting pg(X)}.
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Let A be a Banach algebra with a unit, B its closed

subalgebra containing e, and x € B. Then the following
hold:

(a) dps(x) C dpa(x) and

ps(x) = |_J{C CK: C is a component of pa(x)

intersecting pg(X)}.

(b) If C is a component of pa(x), then either C C op(X),
or C Nog(x) = @. Further, dog(x) C doa(Xx).



Theorem 32

Let A be a Banach algebra with a unit, B its closed

subalgebra containing e, and x € B. Then the following
hold:

(a) dps(x) C dpa(x) and

ps(x) = |_J{C CK: C is a component of pa(x)

intersecting pg(X)}.

(b) If C is a component of pa(x), then either C C op(X),
or C Nog(x) = @. Further, dog(x) C doa(Xx).

(c) If pa(x) is connected, then og(x) = ca(X).



Theorem 32
Let A be a Banach algebra with a unit, B its closed

subalgebra containing e, and x € B. Then the following
hold:

(a) dps(x) C dpa(x) and

ps(x) = |_J{C CK: C is a component of pa(x)
intersecting pg(X)}.

(b) If C is a component of pa(x), then either C C op(X),
or C Nog(x) = @. Further, dog(x) C doa(Xx).

(c) If pa(x) is connected, then og(x) = ca(X).
(d) Ifos(x) has an empty interior, then og(x) = oa(x).



Definition 33
Let Y be a normed linear space over K, 2 C K,
f: 2 — Y,and ae 2. If lim =@ ¢ y exists, then this

X—a

limit is called the derivative of the mapping f at aand it is
denoted by f'(a).
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Definition 33

Let Y be a normed linear space over K, 2 C K,
f: 2 — Y,and ae 2. If lim =@ ¢ y exists, then this

X—a

limit is called the derivative of the mapping f at aand it is
denoted by f'(a).

Fact 34

Let Y be a normed linear space overK, 2 C K,
f- 22— Y,and ace 2. If f'(a) exists, then
(pof)(a) = ¢(f(a)) forevery ¢ € Y*.

Fact 35

Let Y be a normed linear space overK, 2 C K,

f: 22— Y,and ae £2. If f'(a) exists, then f is continuous
at a.



Definition 36

Let A be an algebra over K with a unit. On p(x) we define
the resolvent (or the resolvent mapping) of the element x
by the formula

R.(A) = (le—x)", A€ p(x).
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Definition 36
Let A be an algebra over K with a unit. On p(x) we define
the resolvent (or the resolvent mapping) of the element x
by the formula

R.(A) = (le—x)", A€ p(x).

If A does not have a unit, then we define the resolvent
with respect to the algebra A..

Proposition 37

Let A be a Banach algebra and x € A. Then the mapping
A +— Ry(A) has a derivative at every point of the set p(x).



Definition 38

Let Y be a complex normed linear space, §2 C C an open
set, and f: 2 — Y. We say that f is holomorphic on £2, if
f'(z) exists for every z € £2.



Definition 38

Let Y be a complex normed linear space, §2 C C an open
set, and f: 2 — Y. We say that f is holomorphic on £2, if
f'(z) exists for every z € £2.

Theorem 39 (Liouville’s theorem)

Let'Y be a complex normed linear space and let
f: C — Y be holomorphic on C. If f is bounded, then it is
constant.



Theorem 40
Let A be a complex Banach algebra and x € A.

(a) The resolvent mapping Ry is holomorphic on p(x).
(b) If A is non-trivial, then o (x) # 0.
(c) r(x) = |nf Vx| = I|m valpdl

(the Beurl/ng Ge/fand formu/a)



Theorem 40
Let A be a complex Banach algebra and x € A.

(a) The resolvent mapping Ry is holomorphic on p(x).
(b) If A is non-trivial, then o (x) # 0.
(c) r(x) = |nf Vx| = I|m valpdl

(the Beurl/ng Ge/fand formu/a)

Corollary 41

If A is a complex Banach algebra, x € A, and A € C,
|A| > r(x), then the sum Y 7., AZ converges absolutely.
So if A has a unit, then Ry (A) = > 12, M+1



Theorem 42 (S. Mazur (1938), |. M. Gelfand
(1941))

Let A be a non-trivial complex Banach algebra with a unit.
If A< = A\ {0}, then A is isomorphic to C. If moreover
lell = 1, then A is isometrically isomorphic to C.



3. Holomorphic calculus



3. Holomorphic calculus

Let A be a Banach algebra over K with a unit and x € A.
Further let ¥ be some algebra of functions defined on a
subset of K that contains polynomials. A functional
calculus for x will be some homomorphism @: ¥ — A
such that @(1) = e, @(Id) = x, and which is moreover
continuous, resp. sequentially continuous, in some
convenient topologies on ¥ and A.



Theorem 43

Let A be a complex algebra with a unit and x € A. Let
£24, 82, C C be open neighbourhoods of o (x) and let

®;: H($2;) — A be an algebra homomorphism such that
®;(1) = e, ®;(Id) = x, and @, is sequentially continuous
from the topology of locally uniform convergence on
H($2;) to some Hausdorff topology t on A, i = 1,2. If

fie H($2;), i =1,2 are such that fy = f, on £2, N 22, then
P1(f) = Po(R2).



Let X be a complex Banach space, y: [a, b] — C a path,
and f: (y) — X a continuous mapping. The integral of f
along y is defined by

/ f= / Y (OF (1) dA(D).
y [a,b]



Let X be a complex Banach space, y: [a, b] — C a path,
and f: (y) — X a continuous mapping. The integral of f
along y is defined by

/ f= / Y (OF (1) dA(D).
y [a,b]

The integral alongachain I' = y; +--- 4+ y,in C of a
continuous mapping f: (I') — X is defined by

/f: ot | F
r Y1 Vn



Lemma 44
Let I" be a chain in C, X a complex Banach space,
f-(I"') — X continuous, and ¢ € X*. Then

¢(frf)=Jr¢of.



If 2 C Cisopenand K C £2 compact, then we say that a
cycle I surrounds K'in 2 if (I') € 2\ K, indr z =1 for
zeK,andindpz=0forze C\ £2.



Theorem 45

Let 2 C C be open, X a complex Banach space, and let
f: 2 — X be holomorphic. If I'y, I'> are two cycles in $2
such thatindr,(z) = indr,(z) forevery z € C \ 2, then

fF1 f:fFQ f.



Theorem 45

Let 2 C C be open, X a complex Banach space, and let
f: 2 — X be holomorphic. If Iy, I'> are two cycles in 2
such thatindr,(z) = indr,(z) forevery z € C \ 2, then

fF1 f:fFQ f.

Definition 46
Let A be a complex Banach algebra with a unit and x € A.

If f € H(§2), where 2 C C is an open neighbourhood of
o (x), then we define

1 1 _1
f(X) = 2—mﬁfRX = 2—7”/Ff(a)(ote—x) dOl,

where I is any cycle surrounding o (x) in £2.



Lemma 47
Let (82, 1) be a space with a complete measure, A a
Banach algebra and f € Ly(u, A). Then

x( /E fdu) - /E xf(t)du(t) and ( /E fd,u)x = fE f(t)x dp(t)

for every x € A and every measurable E C S2.



Fact 48
Let G be a group. If u,v € G commute, then also u, v,
u~', v=' commute.



Fact 48
Let G be a group. If u,v € G commute, then also u, v,
u~', v=' commute.

Lemma 49

Let A be an algebra with a unit, x € A, and i1, v € p(x).

(@) Rx(n)Ax(v) = Rx(v)Rx().

(b) Rx(n) — Rx(v) = (v — w)Rx(1) Rx(v) (resolvent
identity).



Theorem 50 (holomorphic calculus)

Let A be a complex Banach algebra with a unit, x € A, 2 C C
an open neighbourhood of o (x), and f € H($2). The mapping
@: H(2) — A, where ®(g) = g(x) from Definition 46, has the
following properties:
(a) Consider H($2) with the topology of locally uniform
convergence. Then @ is a continuous algebra
homomorphism for which ®(1) = e and @(Id) = x.



Theorem 50 (holomorphic calculus)

Let A be a complex Banach algebra with a unit, x € A, 2 C C
an open neighbourhood of o (x), and f € H($2). The mapping
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Theorem 50 (holomorphic calculus)

Let A be a complex Banach algebra with a unit, x € A, 2 C C
an open neighbourhood of o (x), and f € H($2). The mapping
@: H(2) — A, where ®(g) = g(x) from Definition 46, has the

following properties:
(a) Consider H(£2) with the topology of locally uniform

convergence. Then ® is a continuous algebra
homomorphism for which ®(1) = e and @(Id) = x.

(b) f(x) € A< ifand only iff(A) # O for every A € o(x). In this
case f(x)~' = 1(x).

(c) o(f(x)) = f(o(x)) (spectral mapping theorem).

(d) Ifg € H($21), where £21 is an open neighbourhood of
f(o(x)), then (g o f)(x) = g(f(x)).

(e) Ify € Acommutes with x, then y commutes also with f(x).

(f) If B is a complex Banach algebra and ®: A — B a
continuous homomorphism such that ®(e) is a unit in B,
then f(®(x)) = O(f(x)). In particular, if z € A*, then
f(zxz™") = zf(x)z7".
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Definition 51
Let A be an algebra over K. A homomorphism ¢: A — K
is called a multiplicative linear functional (i.e. ¢ is linear

and ¢(xy) = e(X)e(y) for all x, y € A).



4. Multiplicative linear functionals

Definition 51

Let A be an algebra over K. A homomorphism ¢: A — K
is called a multiplicative linear functional (i.e. ¢ is linear
and ¢(xy) = p(x)p(y) for all x, y € A). The set of all
non-zero multiplicative linear functionals on A is denoted
by A(A).



Proposition 52

Let A be an algebra over K. Then A(A) is a linearly
independent set.



Proposition 53
Let A be an algebra. Every multiplicative linear functional

¢ on A has a unique extension ¢ € A(A.) given by
g(X,4) = ¢(x) + A and A(A.) = {¢: ¢ € A(A) U{0}]}.



Proposition 54

Let A be an algebra and ¢ € A(A). Then ¢(x) € a(x) for
every x € A and so |¢p(x)| < r(x).



Proposition 54

Let A be an algebra and ¢ € A(A). Then ¢(x) € a(x) for
every x € A and so |¢p(x)| < r(x).

Corollary 55

Let A be a Banach algebra. Then A(A) C By«

(in particular, every multiplicative linear functional on A is
automatically continuous). If A has a unit, then ||¢|| > ”‘?“
for every ¢ € A(A). In particular, if |e|| = 1, then

A(A) C Sy-.



Definition 56

Let A be an algebra. A maximal ideal in A is a proper ideal
in A that is maximal with respect to the ordering of all
proper ideals in A by inclusion.
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Proposition 57

Let A be an algebra with a unit. Then every proper ideal
in A is contained in some maximal ideal in A.



Definition 56

Let A be an algebra. A maximal ideal in A is a proper ideal
in A that is maximal with respect to the ordering of all
proper ideals in A by inclusion.

Proposition 57

Let A be an algebra with a unit. Then every proper ideal
in A is contained in some maximal ideal in A.

Proposition 58

Let A be a Banach algebra with a unit. If | is a proper ideal
in A, then also | is a proper ideal in A. So every maximal
ideal in A is closed.



Lemma 59
Let A be a commutative algebra with a unit and suppose

that x € A is not invertible. Then the principal ideal XA is
proper.



Theorem 60

Let A be a complex commutative Banach algebra with a

unit and let | be a proper ideal in A. Then there exists
¢ € A(A) such thate |, = 0.
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Let A be a complex commutative Banach algebra with a

unit and let | be a proper ideal in A. Then there exists
¢ € A(A) such thate |, = 0.

Corollary 61

If A is a non-trivial complex commutative Banach algebra
with a unit, then A(A) # 0.



Theorem 60

Let A be a complex commutative Banach algebra with a
unit and let | be a proper ideal in A. Then there exists

¢ € A(A) such thatp }, = 0.

Corollary 61

If A is a non-trivial complex commutative Banach algebra
with a unit, then A(A) # 0.

Corollary 62

Let A be a complex commutative Banach algebra with a
unit. Then the mapping @ : ¢ — Ker ¢ is a bijection
between A(A) and the set of all maximal ideals in A.



Theorem 63

Let A be a Banach algebra and

M = A(A) U {0} C (Bax, w*) is the set of all linear
multiplicative functionals on A. Then M is compact,

A(A) is locally compact, and if A has a unit, then A(A) is

compact. If A(A) is not compact, then M is the Alexandrov
compactification of A(A).



Theorem 63

Let A be a Banach algebra and

M = A(A) U {0} C (Bax, w*) is the set of all linear
multiplicative functionals on A. Then M is compact,

A(A) is locally compact, and if A has a unit, then A(A) is
compact. If A(A) is not compact, then M is the Alexandrov
compactification of A(A).

The mapping ®: M — A(A.), where ®(p) = ¢ is the
unique extension of ¢ to the element of A(A.), is a
homeomorphism.



Let X, Y be vector spaces and T: X — Y be alinear
mapping. Then we define the algebraically dual mapping
T#. Y# — X* by the formula T#f(x) = f(Tx) for f € Y#
and x € X.
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Lemma 64

Let X, Y be vector spaces and T: X — Y a linear
bijection. Then T* is a bijection and (T*)~" = (T)*.



Let X, Y be vector spaces and T: X — Y be alinear
mapping. Then we define the algebraically dual mapping
T#. Y# — X* by the formula T#f(x) = f(Tx) for f € Y#
and x € X.

Lemma 64
Let X, Y be vector spaces and T: X — Y a linear
bijection. Then T* is a bijection and (T*)~" = (T)*.

Proposition 65

Let A, B be Banach algebras and ®: A — B an algebraic
isomorphism. Then the mapping ¥ = ®* | (s, is a
homeomorphism of A(B) onto A(A).



Proposition 66

Let S, T be topological spaces and leth: S — T be
continuous and onto. Then @ : C,(T) — Gy (S),

@(f) = f o his an isometric isomorphism of the Banach
algebra Cy(T) into the Banach algebra C,(S).



Proposition 66

Let S, T be topological spaces and leth: S — T be
continuous and onto. Then @ : C,(T) — Gy (S),

@(f) = f o his an isometric isomorphism of the Banach
algebra C,(T) into the Banach algebra C,(S). If Sand T
are locally compact Hausdorff spaces and h is a
homeomorphism, then @ | ¢,(r) is an isometric
isomorphism of Banach algebras Co(T) and Cy(S).



Theorem 67

Let K, L be locally compact Hausdorff topological spaces.
Then the following statements are equivalent:

(i) The Banach algebras Cyo(K) and Cy(L) are
isometrically isomorphic.

(i) The algebras Cy(K) and Cy(L) are algebraically
isomorphic.

(ii) The spaces K and L are homeomorphic.



Definition 68
A commutative algebra A is called semi-simple if A(A)

separates the points of A, i.e. if
({Kerg: ¢ € A(A)} ={0}.



Definition 68
A commutative algebra A is called semi-simple if A(A)
separates the points of A, i.e. if

[{Kerg: ¢ € A(A)} = {0}

Theorem 69

Let A, B be Banach algebras and suppose B is
commutative and semi-simple. Then every
homomorphism from A to B is automatically continuous.
Also every conjugate-linear multiplicative mapping from A
to B is automatically continuous.



Definition 68
A commutative algebra A is called semi-simple if A(A)
separates the points of A, i.e. if

[{Kerg: ¢ € A(A)} = {0}

Theorem 69

Let A, B be Banach algebras and suppose B is
commutative and semi-simple. Then every
homomorphism from A to B is automatically continuous.
Also every conjugate-linear multiplicative mapping from A
to B is automatically continuous.

Corollary 70

Let A be a commutative semi-simple algebra. Then all
norms on A in which A is a Banach algebra are
equivalent.



5. Gelfand transform



5. Gelfand transform

Definition 71

Let A be a Banach algebra over K. For x € A we define
X: A(A) — K by the formula X(¢) = ¢(x), i.e. X = ex [ aa)-
The function X is called the Gelfand transform of the
element x.



5. Gelfand transform

Definition 71

Let A be a Banach algebra over K. For x € A we define
X: A(A) — K by the formula X(¢) = ¢(x), i.e. X = ex [ aa)-
The function X is called the Gelfand transform of the
element x.

Theorem 72

Let A be a complex commutative Banach algebra and
x € A. If A has a unit, then Rng X = o(x). If A does not
have a unit, then o (x) \ {0} C RngX C o(x).



5. Gelfand transform

Definition 71

Let A be a Banach algebra over K. For x € A we define
X: A(A) — K by the formula X(¢) = ¢(x), i.e. X = ex [ aa)-
The function X is called the Gelfand transform of the
element x.

Theorem 72

Let A be a complex commutative Banach algebra and
x € A. If A has a unit, then Rng X = o(x). If A does not
have a unit, then o (x) \ {0} C RngX C o(x).

Corollary 73

Let A be a complex commutative Banach algebra and
x € A. Then ||5\(||CO(A(A)) = I’(X).



Definition 74
Let A be a Banach algebra. The mapping
I': A— Cy(A(A)), I'(x) = X is called the Gelfand

transform of the algebra A.
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transform of the algebra A.

Proposition 75

Let A be a Banach algebra and let I" be its Gelfand
transform. Then the following hold:

(a) I' is a continuous homomorphism and ||| < 1.
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transform of the algebra A.
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Let A be a Banach algebra and let I" be its Gelfand
transform. Then the following hold:
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(b) The subalgebra I' (A) C Cy(A(A)) separates the
points of A(A).



Definition 74

Let A be a Banach algebra. The mapping

I': A— Cy(A(A)), I'(x) = X is called the Gelfand
transform of the algebra A.

Proposition 75

Let A be a Banach algebra and let I" be its Gelfand

transform. Then the following hold:

(a) I' is a continuous homomorphism and ||| < 1.

(b) The subalgebra I' (A) C Cy(A(A)) separates the
points of A(A).

(c) I' is one-to-one if and only if A(A) separates the
points of A, i.e. if and only if A is commutative and
semi-simple.



Theorem 76
Let A be a complex commutative Banach algebra and let
I' be its Gelfand transform. Then the following hold:

(a) I' is an isomorphism into if and only if there exists
K > 0 such that | x?|| > K||x||? for every x € A.

(b) I is an isometry into if and only if |x?| = || x||? for
every x € A.



Definition 77

Let A be a groupoid and M C A. Then the set

Mc = {a e A, ax = xafor every x € M}, i.e. the set of all
elements of A commuting with every element of M, is
called the commutant of the set M.



Definition 77

Let A be a groupoid and M C A. Then the set

Mc = {a e A, ax = xafor every x € M}, i.e. the set of all
elements of A commuting with every element of M, is
called the commutant of the set M.

Proposition 78

Let A be a groupoid and M C A. Then the following hold:
(a) M c (M°)e.

(b) The set M N M¢ commutes.

(c) If M commutes, then also (M°)¢ commutes.



Proposition 79

Let A be an algebra and M C A. Then the following hold:
(a) Mc is a subalgebra of A.

(b) If A has a unit, then e € M.

(c) If A is normed, then M¢ is closed.



Proposition 79

Let A be an algebra and M C A. Then the following hold:
(a) Mc is a subalgebra of A.

(b) If A has a unit, then e € M.

(c) If A is normed, then M¢ is closed.

Proposition 80

Let A be an algebra with a unit e and suppose that M C A
commutes. Then B = (M°)¢ is a commutative algebra with
aunite, M C B, and B* = A* N B. S0 0a(x) = os(x) for
every x € B.



Theorem 81
Let A be a complex Banach algebra and suppose that
X,y € A commute. Then the following hold:

(@) o(x+y) Co(x)+o(y)anda(xy) Co(x)a(y).
(b) r(x+y) <r(x)+r(y) and r(xy) < r(x)r(y).



6. B*-algebras
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Theorem 82
Let H;, H> be Hilbert spaces and T € £(H;, H>). Then
there exists a unique operator T* € £(H., Hy) such that

(TX, Y H, = (X, T*Y)H,

forevery y € H. and x € H;.
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Theorem 82
Let H;, H> be Hilbert spaces and T € £(H;, H>). Then
there exists a unique operator T* € £(H., Hy) such that

(TX, Y H, = (X, T*Y)H,

forevery y € Hy and x € Hy. Further, T* = I o T* o b,
where |: H — H*, j = 1,2 are the corresponding
conjugate-linear isometries from the Léwig-Fréchet-Riesz
theorem.



6. B*-algebras

Theorem 82
Let H;, H> be Hilbert spaces and T € £(H;, H>). Then
there exists a unique operator T* € £(H., Hy) such that

(TX, Y H, = (X, T*Y)H,

forevery y € Hy and x € Hy. Further, T* = I o T* o b,
where |: H — H*, j = 1,2 are the corresponding
conjugate-linear isometries from the Léwig-Fréchet-Riesz
theorem.

Definition 83
The operator T* from the preceding theorem is called the
hilbertian adjoint operator to T.



Theorem 84
Let Hy, H>, Hs be Hilbert spaces.

(@) If T € £(Hy, Hy), then T** = (T*)* = T.
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(b) The mapping T — T* is a conjugate-linear isometry
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(e) T* is anisomorphism if and only if T is an
isomorphism.



Theorem 84
Let Hy, H>, Hs be Hilbert spaces.

(@) IfT € £(Hy,H), then T** = (T*)* = T.
(b) The mapping T — T* is a conjugate-linear isometry
Ofcf(H1, Hg) onto éE(Hg, H1)

(c) LetT € £(Hy,H,) and S € £(H,, H3). Then
(SoT) =T*oS*. Also, (Idy,)* = ldy,.
(d) LetT € £(Hy,Hy). Then |[T*oT|| = ||[ToT*|| = | T2
(e) T* is anisomorphism if and only if T is an
isomorphism.
(f) T* is compact if and only if T is compact.



Definition 85
Let A be an algebra over K. The mapping *: A — Ais
called an algebra involution if it has the following
properties:

® (X+y)=x*+y*forevery x,y € A,

e (Ax)* = Ax* forevery x e Aand A € K,

® (xy)* = y*x* forevery x,y € A,

e (x*)* = x for every x € A (i.e. the mapping * is an

involution).



Definition 85
Let A be an algebra over K. The mapping *: A — Ais
called an algebra involution if it has the following
properties:

* (X+y)r=x*+y*forevery x,y € A,

e (Ax)* = Ax* forevery x e Aand A € K,

® (xy)* = y*x* forevery x,y € A,

e (x*)* = x for every x € A (i.e. the mapping * is an

involution).

An algebra on which there is an algebra involution is
called an algebra with an involution.



Fact 86

Let A be an algebra with an involution. Then

(a,a)* = (a*,@) for (a,a) € A. is an algebra involution
on A. that extends the involution from A.



Fact 86

Let A be an algebra with an involution. Then

(a,a)* = (a*,@) for (a,a) € A. is an algebra involution
on A. that extends the involution from A.

Proposition 87
Let A be an algebra with an involution and x € A. Then
the following hold:

(a) Ifeis a left or right unit in A, then e is a unit and
e* =e.



Fact 86

Let A be an algebra with an involution. Then

(a,a)* = (a*,@) for (a,a) € A. is an algebra involution
on A. that extends the involution from A.

Proposition 87

Let A be an algebra with an involution and x € A. Then

the following hold:

(a) Ifeis a left or right unit in A, then e is a unit and
e* =e.

(b) Suppose A has a unit. Then x* € A* if and only if
x € A*. In this case (x*)™! = (x7)*.



Fact 86

Let A be an algebra with an involution. Then

(a,a)* = (a*,@) for (a,a) € A. is an algebra involution
on A. that extends the involution from A.

Proposition 87
Let A be an algebra with an involution and x € A. Then
the following hold:

(a) Ifeis a left or right unit in A, then e is a unit and

e* =e.
(b) Suppose A has a unit. Then x* € A* if and only if
x € A*. In this case (x*)™! = (x7)*.

(c) A € o(x) ifand only if . € o(x*). Therefore
r(x*) = r(x).



Proposition 88

Let A be a commutative semi-simple Banach algebra.
Then every algebra involution on A is continuous.



Definition 89
Let A be an algebra with an involution. An element x € A
is called self-adjoint if x* = x.
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the following hold:

(a) The elements x + x*, x*x, xx*, and in the complex
case also i(x — x*) are self-adjoint.
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(b) If x is self-adjoint, then also tx is self-adjoint for every
t e R.
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is called self-adjoint if x* = x.
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Let A be an algebra with an involution and x,y € A. Then

the following hold:

(a) The elements x + x*, x*x, xx*, and in the complex
case also i(x — x*) are self-adjoint.

(b) If x is self-adjoint, then also tx is self-adjoint for every
t e R.

(c) If A is complex, then there exist unique self-adjoint
elements u,v € A such that x = u + iv. Then
X*=u—iv.
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is called self-adjoint if x* = x.
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Let A be an algebra with an involution and x,y € A. Then

the following hold:
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(c) If A is complex, then there exist unique self-adjoint
elements u,v € A such that x = u + iv. Then
X*=u—iv.

(d) If x,y are self-adjoint and commute, then xy is
self-adjoint.



Definition 89
Let A be an algebra with an involution. An element x € A
is called self-adjoint if x* = x.

Fact 90

Let A be an algebra with an involution and x,y € A. Then

the following hold:

(a) The elements x + x*, x*x, xx*, and in the complex
case also i(x — x*) are self-adjoint.

(b) If x is self-adjoint, then also tx is self-adjoint for every
t e R.

(c) If A is complex, then there exist unique self-adjoint
elements u,v € A such that x = u + iv. Then
X*=u—iv.

(d) If x,y are self-adjoint and commute, then xy is
self-adjoint.

(e) If x is self-adjoint, then yxy* is self-adjoint.



Definition 91
A Banach algebra A with an involution is called a

B*-algebra if
Ix*x|| = [Ix||?

for every x € A.



Definition 91
A Banach algebra A with an involution is called a
B*-algebra if

Ix*x|| = [Ix||?

for every x € A.

Lemma 92
Let A be a normed algebra with an involution. Then the
following statements are equivalent:

(i) lIx*x]|| > ||x||? for every x € A.
(ii) lxx*|l = lx||? for every x € A.
(iii) ||Ix*x]|| = ||x||? for every x € A.
(iv) ||xx*|| = ||x||? for every x € A.
In all cases then || x*|| = ||x|| for every x € A.



Proposition 93

Let A be a B*-algebra without a unit. Then there exists a
norm |||-|l| on A. with the involution from Fact 86 extending
the original norm on A (and equivalent to the norm from
Proposition 9) such that A. is a B*-algebra.



Definition 94
Let A be an algebra with an involution.

¢ |f A has a unit, then an element x € Ais called unitary
if x*x = xx* = e, or in other words x~' = x*.



Definition 94
Let A be an algebra with an involution.

¢ |f A has a unit, then an element x € Ais called unitary
if x*x = xx* = e, or in other words x~' = x*.

® An element x € Ais called normal if it commutes
with x*, i.e. if x*x = xx*.



Definition 94
Let A be an algebra with an involution.

¢ |f A has a unit, then an element x € Ais called unitary
if x*x = xx* = e, or in other words x~' = x*.

® An element x € Ais called normal if it commutes
with x*, i.e. if x*x = xx*.

Fact 95
Let A be an algebra over K with an involution and
X,y €A



Definition 94
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Let A be an algebra with an involution.

¢ |f A has a unit, then an element x € Ais called unitary
if x*x = xx* = e, or in other words x~' = x*.

® An element x € Ais called normal if it commutes
with x*, i.e. if x*x = xx*.

Fact 95
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(a) If A has a unit and if x, y are unitary, then xy is
unitary.

(b) If x is normal, then x" is normal for every n € N.

(c) If A has a unit and if x is normal and y is unitary, then
yxy* is normal.



Definition 94
Let A be an algebra with an involution.

¢ |f A has a unit, then an element x € Ais called unitary
if x*x = xx* = e, or in other words x~' = x*.

® An element x € Ais called normal if it commutes
with x*, i.e. if x*x = xx*.

Fact 95
Let A be an algebra over K with an involution and
X,y €A

(a) If A has a unit and if x, y are unitary, then xy is
unitary.

(b) If x is normal, then x" is normal for every n € N.

(c) If A has a unit and if x is normal and y is unitary, then
yxy* is normal.

(d) If A has a unit and if x is normal and A € K, then
Ae — x is normal.



Theorem 96
Let A be a B*-algebra and x € A.

(a) Ifx is normal, then || x"|| = ||x||" for every n € N and if
A is complex, then r(x) = || x||.
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Theorem 96
Let A be a B*-algebra and x € A.

(a) Ifx is normal, then || x"|| = ||x||" for every n € N and if
A is complex, then r(x) = || x||.

(b) If A is complex, then r(x*x) = r(xx*) = || x||?.

(c) If A has a unit and x is unitary, then o (x) C {A € K;
|A| = 1}. If moreover A is non-trivial, then || x| = 1.

(d) If x is self-adjoint, then o (x) C R.



Corollary 97

Let A be a non-trivial complex commutative B*-algebra.
Then A(A) # 0.



Corollary 97

Let A be a non-trivial complex commutative B*-algebra.
Then A(A) # 0.

Corollary 98

Let A be a complex algebra with an involution. Then there
exists at most one norm on A with which A is a
B*-algebra.



Definition 99

Let A and B be algebras with an involution. Then an
algebra homomorphism @: A — Biis called a
*-homomorphism if it preserves the operation *, i.e. if
@(x*) = d(x)* for every x € A.
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Definition 99

Let A and B be algebras with an involution. Then an
algebra homomorphism @: A — Biis called a
*-homomorphism if it preserves the operation *, i.e. if
@(x*) = d(x)* for every x € A.

Corollary 100

Let A be a complex B*-algebra. Then every multiplicative
linear functional on A is a *-homomorphism.

Corollary 101

Let A, B be complex B*-algebras and ®: A— B a
*-homomorphism. Then @ is automatically continuous
and moreover ||®| < 1.



Corollary 102

Let A be a complex B*-algebra and B its B*-subalgebra. If
A and B has a common unit, then B* = A* N B.



Corollary 102

Let A be a complex B*-algebra and B its B*-subalgebra. If
A and B has a common unit, then B* = A* N B. Further,
let x € B. If B has a unit which is not a unit in A, then
oa(x) = og(x) U {0}, in the other cases oa(x) = og(x).



Theorem 103 (I. M. Gelfand a M. A. Naimark
(1943))
Let A be a complex commutative B*-algebra. Then the

Gelfand transform is an isometric * -isomorphism of A
onto Cy(A(A)).



Corollary 104

A complex commutative B*-algebra A has a unit if and
only if A(A) is compact.



Corollary 104

A complex commutative B*-algebra A has a unit if and
only if A(A) is compact.

Corollary 105

Let A and B are complex commutative B*-algebras. Then
the following statements are equivalent:

(i) A and B are isometrically *-isomorphic.
(i) A and B are algebraically isomorphic.
(i) The spaces A(A) and A(B) are homeomorphic.



Theorem 106 (I. M. Gelfand a M. A. Naimark
(1943), I. Kaplansky (1953))

Every complex B*-algebra can be embedded by an
isometric *-isomorphism into £(H) for some suitable
complex Hilbert space H.



7. Continuous calculus for normal elements

of B*-algebras



7. Continuous calculus for normal elements

of B*-algebras

Proposition 107

Let A be a normed algebra overK, 2 C K, f,g: 2 — A,
andte . Iff(t) and g'(t) exist, then

(fg)'(t) = f'(Ha(®) + f(HI' (D).



Let A be a (real) Banach algebra with a unit and x € A.
Then we define

o0 X”
Xp X = —.
exp n!

n=0



Theorem 108
Let A be a Banach algebra over K with a unit e and x € A.

(a) Ify € A commutes with x, then
expxexpy = exp(x + y).
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Theorem 108
Let A be a Banach algebra over K with a unit e and x € A.

(a) Ify € A commutes with x, then
expxexpy = exp(x + y).

(b) expx € A* and (exp x)™' = exp(—x).

(c) Putf(A) =exp(Ax) for A € K. Then f'(A) = exp(Ax)x
for every A € K.

(d) If A is an algebra with a continuous involution, then
(exp x)* = exp x*.

(e) If Ais a complex algebra with a continuous involution
and x is self-adjoint, then exp(ix) is unitary.



Theorem 109 (Bent Fuglede (1950), Calvin R.
Putnam (1951))

Let A be a complex B*-algebra, x € A, and leta,b € A be
normal and such that ax = xb. Then a*x = xb*.



Definition 110
Let A be an algebra and M C A. The set

algM = (){B > M; Bis a subalgebra of A}

is called algebra hull of M.



Definition 110
Let A be an algebra and M C A. The set

algM = (){B > M; Bis a subalgebra of A}

is called algebra hull of M.

Proposition 111
Let A be an algebra and M C A. Then

algM = span{xiXo--- Xp; X1,...,Xp € M,n e N}.



Definition 112
Let A be a normed algebra and M C A. Then we define a
closed algebra hull of M as

algM = ﬂ{B D M; Bis a closed subalgebra of A}.



Definition 112
Let A be a normed algebra and M C A. Then we define a
closed algebra hull of M as

algM = ﬂ{B D M; Bis a closed subalgebra of A}.

Proposition 113

Let A be a normed algebra and M C A. Then
algM = alg M.




Fact 114

Let A, B be algebras and M C A. Then every algebra
homomorphism @ : alg M — B is uniquely determined by
its values on M.



Fact 114

Let A, B be algebras and M C A. Then every algebra
homomorphism @ : alg M — B is uniquely determined by
its values on M. If A, B are normed algebras, then every
continuous algebra homomorphism &: algM — B is
uniquely determined by its values on M.



Proposition 115

Let A be a B*-algebra and suppose that M C A commutes
and is closed under the involution. Then alg M is a
commutative B*-subalgebra of A.



Theorem 116

Let A be an algebra over K with a unit and x € A. Let

2, C K be closed and 21 C £2,. Let ®;: C(£2;) — A be an
algebra homomorphism such that ®;(1) = e, ®;(ld) = x,
in the complex case moreover ®1(ld) = ®,(Id), and let ®;
be sequentially continuous from the topology of locally
uniform convergence on C($2;) to some Hausdorff
topology t on A, i = 1,2. Then ®¢(f }'o,) = ®.(f) for every
fe C(Qg)



Let A be a complex B*-algebra with a unitand let x € A
be normal. Set B = alg{e, x, x*}. Then we can define

f(x) = I'g "' (f o IB(X)). (1)



Theorem 117 (continuous calculus)

Let A be a complex B*-algebra with a unit, let x € A be
normal and f € C(a(x)). The mapping ®@: C(a(x)) — A,
where ®(g) = g(x) is given by the formula (1), has the
following properties:

(a) @ is an isometric *-isomorphism of C(o(x)) onto

B = alg{e, x, x*}, for which moreover ®(1) = e and
@(Ild) = x.
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(d) f(x) is normal, it is self-adjoint if and only if f is real,
and it is unitary if and only if |f| = 1.



Theorem 117 (continuous calculus)

Let A be a complex B*-algebra with a unit, let x € A be
normal and f € C(a(x)). The mapping ®@: C(a(x)) — A,
where ®(g) = g(x) is given by the formula (1), has the
following properties:

(a) @ is an isometric *-isomorphism of C(o(x)) onto
B = alg{e, x, x*}, for which moreover ®(1) = e and
@(Ild) = x.

(b) Ifw: C(o(x)) — A is a*-homomorphism for which
v(1)=eand¥(ld) = x, then¥ = .

(c) f(x) e AXifand only if f(A) # O forevery A € a(x). In
this case f(x)™! = ().

(d) f(x) is normal, it is self-adjoint if and only if f is real,
and it is unitary if and only if |f| = 1.

(e) a(f(x)) = f(o(x)) (spectral mapping theorem).



(f) If C C Ais a commutative B*-subalgebra containing
e and x, then I'; ' (f o I'c(x)) = f(x).
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(f) If C C Ais a commutative B*-subalgebra containing
e and x, then I'; ' (f o I'c(x)) = f(x).

(9) If g € C(f(o(x))), then (g o F)(x) = g(f(x)).

(h) If g € H($2), where 2 C C is an open neighbourhood

of o(x), then @(g |+x) = ¥(9), where ¥ is the
holomorphic calculus from Theorem 50.
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(9) If g € C(f(o(x))), then (g o F)(x) = g(f(x)).

(h) If g € H($2), where 2 C C is an open neighbourhood
of o(x), then @(g |+x) = ¥(9), where ¥ is the
holomorphic calculus from Theorem 50.
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(f) If C C Ais a commutative B*-subalgebra containing
e and x, then I'; ' (f o I'c(x)) = f(x).

(9) If g € C(f(o(x))), then (g o F)(x) = g(f(x)).

(h) If g € H($2), where 2 C C is an open neighbourhood
of o(x), then @(g |+x) = ¥(9), where ¥ is the
holomorphic calculus from Theorem 50.

(i) If y € Acommutes with x, then y commutes also
with f(x).

(j) If Dis a complex B*-algebraand ®: A— Dis a
*-homomorphism such that @(e) is a unit in D, then
f(®(x)) = O(f(x)). In particular, if u € A is unitary,
then f(uxu*) = uf(x)u*.

(k) If 0 € o(x) and f(0) = 0, then f(x) € alg{x, x*}.

If A does not have a unit, then we carry out the whole
construction in A.. If f € C(o(x)) is such that f(0) = 0,
then f(x) € A.



Theorem 119
Let A be a complex B*-algebra and x € A.

(a) The element x is self-adjoint if and only if it is normal
ando(x) C R.



Theorem 119
Let A be a complex B*-algebra and x € A.

(a) The element x is self-adjoint if and only if it is normal
ando(x) C R.

(b) If A has a unit, then x is unitary if and only if it is
normal ando(x) C {A € C; |A| = 1}.



8. Non-negative elements of B*-algebras



Definition 120
Let A be an algebra with an involution and let x € A be

self-adjoint. We say that x is non-negative, if
o(x) C [0, +00).
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Let A be an algebra with an involution and let x € A be
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Fact 121
An element x of a complex B*-algebra is non-negative, if
and only if it is normal and o (x) C [0, +00).



Definition 120

Let A be an algebra with an involution and let x € A be
self-adjoint. We say that x is non-negative, if

o(x) C [0, +00).

Fact 121
An element x of a complex B*-algebra is non-negative, if
and only if it is normal and o (x) C [0, +00).

Proposition 122

Let A be an algebra with an involution and let x, y € A be
non-negative.

(a) Ift >0, then tx is non-negative.
(b) If Ais a complex B*-algebra, then x + y is
non-negative.

(c) If A is a complex Banach algebra and x and y
commute, then xy is non-negative.



Fact 123
Let A be a complex B*-algebra and x € A.

(a) Ifx is non-negative, then |x| = x.

(b) If x is self-adjoint, then |x|?> = x2.

(c) If x is non-negative, then (/x)? = x. Moreover, \/x
is the only non-negative y € A satisfying y?> = x.

(d) If x is self-adjoint, then v/x2 = |x|.



Proposition 124

Let A be a complex B*-algebra. Then for every self-adjoint
element x € A there exists a unique pair of non-negative
elements x*,x~ € A such that x = x* — x~ and

x~xt = xtx~ = 0. Moreover, x* + x~ = |x|.



Proposition 124

Let A be a complex B*-algebra. Then for every self-adjoint
element x € A there exists a unique pair of non-negative
elements x*,x~ € A such that x = x* — x~ and

x~xt = xtx~ = 0. Moreover, x* + x~ = |x|.

Theorem 125 (l. Kaplansky (1953))
Let A be a complex B*-algebra and x € A. Then x*x and
XX* are non-negative.



Theorem 126 (polar decomposition)
Let A be a complex B*-algebra with a unit and let x € A
be invertible. Then there exist a unitary u € A and a

non-negative a € A satisfying x = ua. This decomposition
is unique.



Il. Continuous linear operators on Hilbert

spaces

1. Basic properties




Il. Continuous linear operators on Hilbert

spaces

1. Basic properties

Theorem 127
If Hy, Ho are Hilbert spaces and T € £(H;, H>), then

(a) Ker T* = (Rng T)*+,
(b) Ker T = (Rng T*)*,
(c) Rng T = (Ker T)*,
(d) Rng T* = (Ker T)*.



Definition 128

Let X, Y, and Z be vector spaces over K. A mapping

B: X x Y — Zis called bilinear if it is linear separately in
the first and in the second coordinate, i.e. the mapping

X — B(x,y)islinear forevery y € Yand y — B(x,y) is
linear for every x € X.
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Definition 128

Let X, Y, and Z be vector spaces over K. A mapping

B: X x Y — Zis called bilinear if it is linear separately in
the first and in the second coordinate, i.e. the mapping

X — B(x,y)islinear forevery y € Yand y — B(x,y) is
linear for every x € X. The mapping B is called
sesquilinear, if it is linear in the first coordinate and
conjugate-linear in the second coordinate. If Z = K, then
B is called bilinear, resp. sesquilinear form.



Proposition 129 (polarisation formula)
Let X, Y be vector spaces overK andletS: X x X — Y
be a sesquilinear mapping. Then

1
S(x,y) + S(y.x) = E(S(X +y.X+y)—Sx—y.x—y))

forevery x,y € X.



Proposition 129 (polarisation formula)

Let X, Y be vector spaces overK andletS: X x X — Y
be a sesquilinear mapping. Then

1
SX. )+ 8. x) = 5 (S +y.x+y) =S =y, x=y))
forevery x,y € X. IfK = C, then

1
S(x,y) = Z(S(x+y,x +yY)—-S(x—y. x—y)+
+ iIS(X + iy, x + iy) —iS(x — iy, x — iy))

forevery x,y € X.



Theorem 130

Let X be an inner-product space andlet T: X — X be a

linear operator. Suppose moreover that at least one of the
following condition holds:

e X is complex.

e X is a Hilbert space and T is continuous and
self-adjoint.

If(Tx,x) =0 forevery x € X, then T = 0.



Theorem 130

Let X be an inner-product space andlet T: X — X be a
linear operator. Suppose moreover that at least one of the
following condition holds:

e X is complex.

e X is a Hilbert space and T is continuous and
self-adjoint.

If(Tx,x) =0 forevery x € X, then T = 0.

Corollary 131

Let X be an inner-product space and let S, T: X — X be
linear operators. Suppose moreover that at least one of
the following condition holds:

e X is complex.

e X is a Hilbert space and S, T are continuous and
self-adjoint.
If (Sx,x) = (Tx, x) forevery x € X, thenS =T.



Definition 132
Let X, Y, Z be normed linear spaces and let

B: X x Y — Z be a bilinear, resp. sesquilinear mapping.
We say that B is bounded if sup,eg, yeg, [IB(X, Y) || < +o0.
In this case we define ||B|| = supyeg, ,es, | BX, Y)II-



Definition 132

Let X, Y, Z be normed linear spaces and let

B: X x Y — Z be a bilinear, resp. sesquilinear mapping.
We say that B is bounded if sup,eg, yeg, [IB(X, Y) || < +o0.
In this case we define ||B|| = supyeg, ,es, | BX, Y)II-

Proposition 133

Let H be a Hilbert space. If S is a bounded sesquilinear
form on H, then there exists a unique T € £(H) such that
S(x,y) = (Tx,y) forall x,y € H. Moreover, | T|| = ||S].



Fact 134
Let H;, H> be Hilbert spaces and T € £(H;, H>). Then
KerT*oT =KerT.



Theorem 135

Let H be a Hilbert space and T € £(H). Then the
following statements are equivalent:

(i) T is normal.
(i) (T*x, T*y) = (Tx, Ty) forevery x,y € H.
(iiiy | T*x]|| = || Tx|| for every x € H.



Definition 136
Let X be a normed linear spacerover K and T € £(X). A

number A € K is called an approximate eigenvalue of the
operator T if there exists a sequence {x,} C Sx such that

(A = T)x, — 0.
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Definition 136

Let X be a normed linear spacerover K and T € £(X). A
number A € K is called an approximate eigenvalue of the
operator T if there exists a sequence {x,} C Sx such that
(Al — T)x, — 0. The set of all approximate eigenvalues of
the operator T is called an approximate point spectrum of
the operator T and it is denoted by o0,,(T).

Fact 137
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if A\l — T is not an isomorphism into.
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operator T if there exists a sequence {x,} C Sx such that
(Al — T)x, — 0. The set of all approximate eigenvalues of
the operator T is called an approximate point spectrum of
the operator T and it is denoted by o0,,(T).

Fact 137

Let X be a normed linear space overK and T € £(X).
Then A € K is an approximate eigenvalue of T if and only
if A\l — T is not an isomorphism into.

Proposition 138

Let X, Y be normed linear spaces, T € £(X), and let
S: X — Y be a linear isomorphism. Then
0p(SoToS ") =0,(T), where So To S ' € £(Y).



Definition 139
Let X be an inner-product space and T € £(X). The set

Nr = {{Tx, x); x € Sx} is called a numerical range of the
operator T.



Fact 140

Let X be a normed linear space withdim Xg # 1 (i.e. X is
either complex, or real of dimension not equal to 1). Then
Sx is pathwise connected.
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Proposition 141
Let X be an inner-product space over K and T € £(X).
(@) Nyiypr =+ BNy foranya,p € K.
(b) The set Ny is pathwise connected.
(c) op(T) C Nr C Bg(0,|TI).
(d) o,p(T) C Nr. If X is a Hilbert space, then
o(T)\ oyp(T) C Nr,and soo(T) C Nr.
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Let H be a Hilbert space and let T € £(H) be normal.
Then the following hold:

(a) KerT =KerT*.
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Theorem 142

Let H be a Hilbert space and let T € £(H) be normal.
Then the following hold:

(a) KerT =KerT~.
(b) Rng T is dense in H if and only if T is one-to-one.
(c) T isinvertible if and only if there exists ¢ > 0 such

that || Tx|| > c||x|| for every x € H.
(d) o(T) = 0yp(T).

(e) A €o,(T) ifand only if Ae o,(T*). The eigenspace of
T corresponding to an eigenvalue A is equal to the
eigenspace of T* corresponding to the eigenvalue A.

(f) If A4, Ao are different eigenvalues of T, then
Ker(A1/—T) L Ker(A2l —T).



Theorem 143

Let H be a Hilbert space and T € £(H). Then T is
self-adjoint if and only if (Tx, y) = (x, Ty) for every
X,y € H.
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Theorem 143
Let H be a Hilbert space and T € £(H). Then T is
self-adjoint if and only if (Tx, y) = (x, Ty) for every
X,y € H. For T self-adjoint the following holds:
(@) (Tx,x) e R forevery x € H.
(b) Nr C R. If H is non-trivial and if we denote
mr = inf Ny, My = sup Nr, then
I Tl = max{|mr|,[Mr|} and
{mr, Mz} C o(T) C [mr, M7], and so the number || T ||
or—|T| liesina(T).
(c) r(T) =sup{|Al: A € N} = | T].



Proposition 144

Let H be a complex Hilbert space and T € £(H). Then T
is self-adjoint if and only if Nr C R.



Proposition 144

Let H be a complex Hilbert space and T € £(H). Then T
is self-adjoint if and only if Nr C R.

Corollary 145

Let H be a Hilbert space and T € £(H). If T is
self-adjoint, then o (T) C [0, +o0) ifand only if (Tx, x) > 0
for every x € H. If H is complex, then T is non-negative
(element of the algebra £(H)) if and only if (Tx, x) > 0 for
every x € H.



Theorem 146

Let H be a Hilbert space and let P € £(H) be a

projection. Then the following statements are equivalent:
(i) P is self-adjoint.

(i) P is normal.

(iii) P is orthogonal.

(iv) P is non-negative.



Theorem 146
Let H be a Hilbert space and let P € £(H) be a

projection. Then the following statements are equivalent:
(i) P is self-adjoint.
(i) P is normal.
(iii) P is orthogonal.
(iv) P is non-negative.

Lemma 147
Let H be a Hilbert space, S, T € £(H) and assume that S

is self-adjoint. Then Rng S L Rng T ifand only if ST = 0.



Definition 148

Let H;, H, be Hilbert spaces. An operator T € £(H;, H>)
is called unitary if T* o T = Iy, and T o T* = [y,, Orin
other words T—' = T*.



Definition 148

Let H;, H, be Hilbert spaces. An operator T € £(H;, H>)
is called unitary if T* o T = Iy, and T o T* = [y,, Orin
other words T—' = T*.

Theorem 149

Let Hy, H> be Hilbert spaces and T € £(H;, H>). Then the
following statements are equivalent:

() T is unitary.
(i) T isonto and (Tx, Ty) = (x,y) forevery x,y € H.
(iii)y T is an isometry onto.



Lemma 150

Let Hy, H> be Hilbert spaces and T € £(H;, H). Let Y be
a closed subspace of H, such thatRng T C Y and let

S e £(H:,Y) be defined as Sx = Tx for x € H;. Then
S*=T*y.



Theorem 151
Let H be a Hilbert space. Then K (H) = ¥ (H).



Definition 152

Let Abe asetandlet f: A— Abe a mapping. A set

B C Ais called invariant with respect to f if f(B) C B, i.e.
frg: B— B.



Fact 153
Let H be a Hilbert space, T € £(H), and let M C H be a
set of eigenvectors of T (not necessarily all).

(a) If Y C H is invariant with respect to T, then Y+ is
invariant with respect to T*.

(b) span M is invariant with respectto T.

(c) If T normal, then both span M and (span M)+ are
invariant with respect to both T and T*.

(d) LetY C H be a closed subspace invariant with
respect to both T and T*. Then (T }y)* = T* }'y. So if
T is self-adjoint, resp. normal, then T |'y € £(Y) is
self-adjoint, resp. normal.



Theorem 154 (spectral decomposition of a hormal compact operator;
D. Hilbert (1904), Erhard Schmidt (1907))
Let H be a Hilbert space and T € K (H). Suppose further that

® T s self-adjoint or

® Hiscomplex and T is normal.

Then there exist an orthonormal basis B of H consisting of eigenvectors of T.
The set of all vectors from B corresponding to non-zero eigenvalues of T is

countable and if we enumerate it by an arbitrary injective sequence {en}ﬁ:1 ,
N € Ny U {00}, then {en} is an orthonormal basis of Rng T and
N

Tx = Z An(X, en)en
n=1
for every x € H, where A, is the eigenvalue corresponding to the
eigenvector ep.



Theorem 154 (spectral decomposition of a hormal compact operator;
D. Hilbert (1904), Erhard Schmidt (1907))
Let H be a Hilbert space and T € K (H). Suppose further that

® T s self-adjoint or

® Hiscomplex and T is normal.

Then there exist an orthonormal basis B of H consisting of eigenvectors of T.
The set of all vectors from B corresponding to non-zero eigenvalues of T is

countable and if we enumerate it by an arbitrary injective sequence {ep}N
N e Ng U {oo}, then {en} is an orthonormal basis of Rng T and
N

Tx = Z An(X, en)en

n=1
for every x € H, where A, is the eigenvalue corresponding to the
eigenvector ep.

If{A ,,}n"”:1, M e Ng U {oo} is an injective sequence of all eigenvalues of T and
P, is the orthogonal projection onto Ker()t nl—T), then

/—ZP,,,

where the series converges po:ntw:se uncondlt/onal/y (ie.x=yM n=1 Pnx
unconditionally for every x € H) and

T=> AnPn.

where the series converges unconditionally in the space £(H).

n=1’



Theorem 155 (representation of a compact
operator; E. Schmidt (1907))

Let H;, H, be Hilbert spaces and T € K (H,, H>). Then
there exist N € Ny U {c0}, a sequence of positive numbers
{An}N_,, and orthonormal systems {u,}N_, c H, and
{va}N_, C H. such that

for every x € H.



Theorem 155 (representation of a compact
operator; E. Schmidt (1907))

Let H;, H, be Hilbert spaces and T € K (H,, H>). Then
there exist N € Ny U {c0}, a sequence of positive numbers
{)L,,}n 1, and orthonormal systems {u,}_, c H; and
{v,,} _, C H> such that

N

Tx = an(x, Un) Vi

n=1

for every x € H. Further, {A\2}"_. is a sequence of all
non-zero eigenvalues of the operator T*o T, and for every
A > 0 the number of elements of the set {n € N; A2 = 1}
is equal to dimKer(Al — T* o T). So the sequence {),}_,
is determined uniquely up to a permutation and if N = oo,
then A, — 0.



2. Bounded Borel calculus
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Definition 156
Let X, Y be normed linear spaces. We define the
following locally convex topologies on the space £(X, Y):
¢ the strong operator topology tsor is generated by the
system of seminorms {p,(T) = || Tx|; x € X},
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2. Bounded Borel calculus

Definition 156
Let X, Y be normed linear spaces. We define the
following locally convex topologies on the space £(X, Y):
¢ the strong operator topology tsor is generated by the
system of seminorms {p,(T) = || Tx|; x € X},
¢ the weak operator topology twor is generated by the
system of seminorms {p, ((T) = |f(Tx)|;
xe X, feY*}.

The symbol Bf,,(X) denotes the set of all bounded Borel
functions on a topological space X.



Definition 157

Let X be a Banach space over K and T € £(X). We say
that a mapping ¥ : Bfy(a(T)) — £(X) is a Borel functional
calculus for T if ¥ is an algebra homomorphism,
v()=1Lv(d)=T,andif {f,} C Bfy(o(T)) is a bounded
sequence converging pointwise to f € Bf,(a(T)), then

¥ (f,) — w(f) in the topology twor-



Let A be an algebra over K with a unit, ¢ a Hausdorff
topology on A, x,y € A, and F C K closed. A
homomorphism @ : Bf,(F) — A will be called a Borel
calculus on F for t and a pair (x, y) if ®(1) = e,
@(ld) = x, ®(Id) = y, and ¥(f,) - ¥(f) whenever
{f,} C Bfy(F) is a bounded sequence converging
pointwise to f € Bf,(F).



Let A be an algebra over K with a unit, ¢ a Hausdorff
topology on A, x,y € A, and F C K closed. A
homomorphism @ : Bf,(F) — A will be called a Borel
calculus on F for t and a pair (x, y) if ®(1) = e,
@(ld) = x, ®(Id) = y, and ¥(f,) - ¥(f) whenever
{f,} C Bfy(F) is a bounded sequence converging
pointwise to f € Bf,(F).

Theorem 158

Let A be a Banach algebra over K with a unit, t a
Hausdorff topology on A (non-strictly) weaker than norm,
and x, y € A. Assume that there exists a Borel calculus ¥
on aclosed F C K fort and a pair (x, y). Then there is a
Borel calculus ® on o (x) fort and a pair (x, y). If
moreover ¥ is a Borel calculus on F; for T and a pair
(x,y), then W (f) = @(f () for every f € Bfy(Fy).



Lemma 159
Let H be a Hilbert space and {x,};>, C H. If x, - x € H
weakly and || x»|| — | x||, then x, — x (in the norm).



Let H be a complex Hilbert space and let T € £(H) be a
normal operator. For fixed x, y € H consider the function
¢x,y: C(o(T)) — C defined by

exy () = (f(T)x,y).
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o(T) such that
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Let H be a complex Hilbert space and let T € £(H) be a
normal operator. For fixed x, y € H consider the function
¢x,y: C(o(T)) — C defined by

‘Px,y(f) = (f(T)x,y).

There exist a regular Borel complex measure 4, on
o(T) such that

(px,y(f) = / fde,y
a(T)

for every f € C(a(T)), and [[pxyll = llexyll < IXIHYII-
For f € Bf,(o(T)) there exist a unique operator
f(T) € £(H) such that

(H(T)x.y) = / Fdiny @)

a(T)

for every x, y € H. Moreover, || f(T)| < ||l co-



Theorem 160

Let H be a complex Hilbert space, let T € £(H) be a normal operator
and f € Bfy,(a(T)). The mapping @ : Bf,(a(T)) — L(H), where

@(g) = g(T7) is defined above, is a Borel functional calculus for T with
the following properties:

(a) @ is a*-homomorphism and if we denote by ¥ the continuous
calculus for T from Theorem 117, then @ | ¢y = ¥. IfH is
non-trivial, then | ®@| = 1.
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Theorem 160

Let H be a complex Hilbert space, let T € £(H) be a normal operator
and f € Bfy,(a(T)). The mapping @ : Bf,(a(T)) — L(H), where

@(g) = g(T7) is defined above, is a Borel functional calculus for T with
the following properties:

(@)

@ is a *-homomorphism and if we denote by ¥ the continuous
calculus for T from Theorem 117, then @ | ¢y = ¥. IfH is
non-trivial, then | ®@| = 1.

If{f,} € Bf,(o(T)) is a bounded sequence converging pointwise
to f, then &(f,) — @(f) in the topology tsor-

If ¥ is a Borel functional calculus for T which is moreover a
*-homomorphism, then W (g) = &(g) for every g € Bfy,(a(T)).

f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| =1,
then f(T) is unitary.

o(f(T)) C f(o(T)).
If g € Bfy(Rng f), then (g o /)(T) = g(f(T)).

If S € £(H) commutes with T, then S commutes also with f(T).



Theorem 160

Let H be a complex Hilbert space, let T € £(H) be a normal operator
and f € Bfy,(a(T)). The mapping @ : Bf,(a(T)) — L(H), where

@(g) = g(T7) is defined above, is a Borel functional calculus for T with
the following properties:

(a) @ is a*-homomorphism and if we denote by ¥ the continuous
calculus for T from Theorem 117, then @ | ¢y = ¥. IfH is
non-trivial, then | ®@| = 1.

(b) If{f,} C Bfy(a(T)) is a bounded sequence converging pointwise
to f, then &(f,) — @(f) in the topology tsor-

(c) Ifw is a Borel functional calculus for T which is moreover a
*-homomorphism, then W (g) = &(g) for every g € Bfy,(a(T)).

(d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| =1,
then f(T) is unitary.

) o(f(T)) C f(o(T)).

(f) Ifg e Bf,(Rngf), then (go f)(T) = g(f(T)).
) If S e £(H) commutes with T, then S commutes also with f(T).
) IfU e £(H) is unitary, then f(UTU*) = Uf(T)U*.
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Theorem 161 (polar decomposition)

Let H be a complex Hilbert space and T € £(H). Then T
is normal if and only if there exist a unitary U € £(H) and
a non-negative A € £(H) such that T = UA = AU. This
decomposition is unique if and only if T is one-to one.



3. Polar decomposition

Theorem 161 (polar decomposition)

Let H be a complex Hilbert space and T € £(H). Then T
is normal if and only if there exist a unitary U € £(H) and
a non-negative A € £(H) such that T = UA = AU. This
decomposition is unique if and only if T is one-to one.

Corollary 162

Let H be a complex Hilbert space and T € £(H). Then T
is normal if and only if there exists a unitary U € £(H)
such that T* = UT = TU.



Theorem 163

Let H;, H> be complex Hilbert spaces and T € £(H;, H>).
Then there exists a unique pair of operators A € £(H,)
and U e £(RngA,Rng T) suchthat T = U- A, Ais
non-negative, and U is unitary. If T is an isomorphism,
then A is an automorphism of H;.



Proposition 164

Let T € £(C"). Then there exist a unitary U € £(C") and
a non-negative A € £(C") such that T = UA.
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Let § be a o-algebra and X a topological vector space. A
mapping n: § — X is called a vector measure if

n(Upey An) = p2 n(Ay) for every sequence {A,}22; of
pairwise disjoint sets from §.



4. Spectral decomposition of an operator

Definition 165

Let § be a o-algebra and X a topological vector space. A
mapping n: § — X is called a vector measure if

n(Upey An) = p2 n(Ay) for every sequence {A,}22; of
pairwise disjoint sets from §.

Fact 166

Let X, Y be topological vector spaces, iu.: 8 — X a vector
measure, and T: X — Y a continuous linear mapping.
Then T o is also a vector measure.



Proposition 167

Let X, Y be normed linear spaces over K, 8 a o-algebra,
andu: 8 — (£(X,Y), twor) a vector measure. Then for
every x € X and f € Y* the function . ¢: 8 — K given by

fix,t(A) = F(1(A)x)

is a complex measure on 8. The mapping B: (x,f) — px¢
is a bilinear mapping from X x Y* to a normed linear
space of complex measures on 8. If moreover X is a
Banach space, then sup,csl|lit(A)|| < 400 and B is
bounded.



Theorem 168 (B. J. Pettis (1938))

Let X be a normed linear space and : 8§ — (X, w) a

vector measure. Then p is also a vector measure as a
mapping into (X, [|-|))-



Theorem 168 (B. J. Pettis (1938))

Let X be a normed linear space and i1: 8§ — (X, w) a
vector measure. Then p is also a vector measure as a
mapping into (X, |||).

Corollary 169

Let X, Y be normed linear spaces, § a o-algebra, and
w: 8 — (L(X,Y), wwor) @ vector measure. Then . is also
a vector measure as a mapping into (£(X, Y), tsor)-
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topological space X.

Definition 170

Let X be a Banach space over K. A resolution of the
identity on X is a vector measure

E: Bs(K) — (£(X), tsor) with the following properties:

(i) E(A) is a projection for every Borel A C K.
(i) E(K) = 1.
(i) E(AN B) = E(A)E(B) for every Borel A, B C K.



By Bs(X) we denote the o-algebra of Borel subsets of a
topological space X.

Definition 170
Let X be a Banach space over K. A resolution of the
identity on X is a vector measure
E: Bs(K) — (£(X), tsor) with the following properties:
(i) E(A) is a projection for every Borel A C K.
(i) E(K) = 1.
(i) E(AN B) = E(A)E(B) for every Borel A, B C K.
If X is a Hilbert space and all projections E(A) are
orthogonal, then E is called an orthogonal resolution of
the identity on X.



Fact 171
Let X be a Banach space over K and E a resolution of
the identity on X.

(a) The projections E(A) and E(B) commute for every
A, B € Bs(K).
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Fact 171
Let X be a Banach space over K and E a resolution of
the identity on X.

(a) The projections E(A) and E(B) commute for every
A, B € Bs(K).

(b) IfA, B € Bs(K), B C A, thenRng E(B) C Rng E(A)
and Ker E(B) D Ker E(A).

(c) If{A,} C Bs(K), then
Mooy Ker E(An) C Ker E(IUpZ; An)-

(d) Ex is a regular Borel complex measure on K for
everyx e X afe X*.
Let moreover X be a Hilbert space and E orthogonal.

(e) If A, B € Bs(K) are disjoint, then
Rng E(A) L Rng E(B).

(f) Ex.x Is a finite regular Borel non-negative measure
onK and | Exx|| = || x||? for every x € X.



Lemma 172
Let X be a Banach space over K and suppose
E: Bs(K) — £(X) has the following properties:

(i) E(A) is a projection for every Borel A C K.

(i) E(K) = 1.

(i) E(AN B) = E(A)E(B) for every Borel A, B C K.
) E

(iv) Exr: Bs(K) — K, Ex¢(A) = f(E(A)X) is a Borel
complex measure on K for every x € X and f € X*.
Then E is a resolution of the identity on X.



Lemma 172
Let X be a Banach space over K and suppose
E: Bs(K) — £(X) has the following properties:

(i) E(A) is a projection for every Borel A C K.
(i) E(K) = 1.
(i) E(AN B) = E(A)E(B) for every Borel A, B C K.
) Exr:Bs(K) = K, Ex (A = f(E(A)x) is a Borel
complex measure on K for every x € X and f € X*.

Then E is a resolution of the identity on X.

If X is a complex Hilbert space, then instead of (iv) it
suffices to assume that Ey : Bs(K) — C,

E, x(A) = (E(A)x, x) is a finite Borel measure on C for
every x € X.

(iv



Proposition 173

Let X, Y be Banach spaces overK, let E be a resolution
of the identity on X, and let S: X — Y be a linear
isomorphism. Then F: A So E(A) o S™', Ac Bs(K) is a
resolution of the identity on Y.



Proposition 173

Let X, Y be Banach spaces overK, let E be a resolution
of the identity on X, and let S: X — Y be a linear
isomorphism. Then F: A So E(A) o S™', Ac Bs(K) is a
resolution of the identity on Y. If moreover X, Y are
Hilbert spaces, S is an isometry (and so unitary), and E is
orthogonal, then F is also orthogonal.



Definition 174
Let X be a Banach space over K and T € £(X). We say

that E is a resolution of the identity with respect to the
operator T if E is a resolution of the identity on X such
that for every Borel A C K the following holds:

() the projection E(A) commutes with T,
(ii) if we set Ta = T MrngE(a), then o(Ta) C A.



Proposition 175

Let X be a Banach space overK, T € £(X), and E a
resolution of the identity with respectto T.

(@) o(Ty) C a(T) for every Borel A C K.
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Proposition 175

Let X be a Banach space overK, T € £(X), and E a
resolution of the identity with respectto T.

(@) o(Ty) C a(T) for every Borel A C K.

(b) In the complex case E(o(T)) = 1.

(c) IfE(o(T)) = I (in particular if X is complex), then
E(G) # 0 for every (relatively) open non-empty
G Co(T).

(d) Ker(Al—T) Cc Rng E({1}) forevery A € K. In
particular, if A is an eigenvalue of T, then E({1}) # 0.



Lemma 176

Let X, Y be normed linear spaces, T € £(X), letZ C X
be a subspace invariant with respect to T, and let

S: X — Y be a linear isomorphism. Then S(2) is
invariant with respectto U = So T o S™' € £(Y) and

o(Utsiz) =0o(T12).



Lemma 176

Let X, Y be normed linear spaces, T € £(X), letZ C X
be a subspace invariant with respect to T, and let

S: X — Y be a linear isomorphism. Then S(2) is
invariant with respectto U = So T o S™' € £(Y) and
o(Ulsiz) =0o(Tt2).

Proposition 177

Let X, Y be Banach spaces overK, T € £(X), and

S: X — Y alinear isomorphism. If E is a resolution of the
identity with respectto T, then F: A So E(A)o S,

A € Bs(K), is a resolution of the identity with respect to
the operator U = So To S € (V).



Theorem 178

Let X be a Banach space over K. If ¥ is a Borel functional calculus for

T € £(X), then there exists a resolution of the identity E with respectto T
such that

d(Tx) = /(T)XdEX,(p(A)

for every x € X and ¢ € X*. This resolution has the following properties:
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Let X be a Banach space over K. If ¥ is a Borel functional calculus for

T € £(X), then there exists a resolution of the identity E with respectto T
such that

d(Tx) = /(T)XdEX,qg(A)
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(@) E(A) = ¥(xans(t)) for every Borel A C K.
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Theorem 178
Let X be a Banach space over K. If W is a Borel functional calculus for

T € £(X), then there exists a resolution of the identity E with respectto T
such that

d(Tx) = /(T)AdEX,q;(A)

for every x € X and ¢ € X*. This resolution has the following properties:
(@) E(A) = ¥(xans(t)) for every Borel A C K.
(b)

S (HX) = / (

g

fdE.
n X,¢

for every f € Bfy(o(T)) and every x € X and ¢ € X*.
(c) E(A}) is a projection onto Ker(Al — T) for every A € K.
(d) A eop(T) ifand only if E({A}) # 0.
(e) If X is complex and A an isolated point of o(T), then A € o,(T).
f) If X is a Hilbert space and ¥ is a *-homomorphism, then E is
orthogonal.
On the other hand, if E is a resolution of the identity on X such that E(K) = |
for some compact K C K, then there exists a unique mapping
v Bfy(K) — £(X) such that (b) holds. This W is a Borel functional calculus
for T = w(Id), E is a resolution of the identity with respect to T, and (a)—(e)

holds. If moreover X is a complex Hilbert space and E is orthogonal, then ¥
is a *-homomorphism and T is normal.

—



Corollary 179

Let H be a complex Hilbert space and T € £(H) a normal
operator. Then there exists a unique orthogonal resolution
of the identity E on H such that there is a compact K C C
containing o (T), E(K) = I, and

(Tx, x) = /K)LdEx,x()t)

for every x € H. This resolution is given by the formula
E(A) = xa(T). Itis an orthogonal resolution of the identity
with respectto T.

(F(Tx,y) = / fdEy,
o(T)

for every f € Bfy(o(T)) and every x,y € H. Further, (c),
(d), (e) of Theorem 178 hold.



Definition 180

Let (S, 9), (T, T) be measurable spaces, X a topological
vector space, u: 8§ — X a vector measure,and f: S — T
a measurable mapping. The mapping f(u): 7 — X
defined by the formula f(u)(A) = w(f~'(A)) for Ae T is
called an image of the vector measure L.



Definition 180

Let (S, 9), (T, T) be measurable spaces, X a topological
vector space, u: 8§ — X a vector measure,and f: S — T
a measurable mapping. The mapping f(u): 7 — X
defined by the formula f(u)(A) = w(f~'(A)) for Ae T is
called an image of the vector measure L.

Proposition 181

Let X be a Banach space over K, E a resolution of the
identity with respect to T € £(X) such that E(K) = | for
some compact K C K, and f € Bfy,(K). Then f(E) is a
resolution of the identity with respect to f(T) = ¥ (f),
where W is the Borel functional calculus for T from
Theorem 178.
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