Functional analysis 2

• Banach algebras

- Banach algebras
- Continuous linear operators on Hilbert spaces

- Banach algebras
- Continuous linear operators on Hilbert spaces
- Spectral decomposition

- Banach algebras
- Continuous linear operators on Hilbert spaces
- Spectral decomposition
- Unbounded operators

I. Banach algebras

1. Basic properties

1. Basic properties

Definition 1

We say that $(A, +, -, 0, \cdot_s, \cdot)$ is an algebra over \mathbb{K} if $(A, +, -, 0, \cdot_s)$ is a vector space over \mathbb{K} , $(A, +, -, \cdot, 0)$ is a ring, and moreover $(\alpha \cdot_s a) \cdot b = a \cdot (\alpha \cdot_s b) = \alpha \cdot_s (a \cdot b)$ for all $a, b \in A$ and $\alpha \in \mathbb{K}$.

1. Basic properties

Definition 1

We say that $(A, +, -, 0, \cdot_s, \cdot)$ is an algebra over \mathbb{K} if $(A, +, -, 0, \cdot_s)$ is a vector space over \mathbb{K} , $(A, +, -, \cdot, 0)$ is a ring, and moreover $(\alpha \cdot_s a) \cdot b = a \cdot (\alpha \cdot_s b) = \alpha \cdot_s (a \cdot b)$ for all $a, b \in A$ and $\alpha \in \mathbb{K}$. An algebra over \mathbb{K} is called commutative if its ring multiplication \cdot is commutative.

Let A be an algebra over \mathbb{K} . Put $A_e = A \times \mathbb{K}$ and define vector operations on A_e in the usual way (i.e. componentwise) and further multiplication of the elements of A_e by the formula

 $(a, \alpha)(b, \beta) = (ab + \alpha b + \beta a, \alpha \beta)$ for $a, b \in A, \alpha, \beta \in \mathbb{K}$.

Then A_e is an algebra with the unit (0, 1) and A can be identified with its subalgebra $A \times \{0\}$. If A is commutative, then so is A_e .

Let *A*, *B* be algebras over \mathbb{K} . (Algebra) homomorphism $\Phi: A \rightarrow B$ is a mapping which is a homomorphism between the respective vector spaces (i.e. it is linear) and also it is a homomorphism between the respective rings (i.e. it is multiplicative, or $\Phi(ab) = \Phi(a)\Phi(b)$).

Let *A*, *B* be algebras over \mathbb{K} . (Algebra) homomorphism $\Phi: A \to B$ is a mapping which is a homomorphism between the respective vector spaces (i.e. it is linear) and also it is a homomorphism between the respective rings (i.e. it is multiplicative, or $\Phi(ab) = \Phi(a)\Phi(b)$). Φ is called an (algebraic) isomorphism of algebras *A* and *B* if Φ is a bijection.

Fact 3

Let A be an algebra, B an algebra with a unit e, and $\Phi: A \rightarrow B$ a homomorphism. Then $\widetilde{\Phi}: A_e \rightarrow B$, $\widetilde{\Phi}(x, \lambda) = \Phi(x) + \lambda e$ is a homomorphism extending Φ .

Fact 3

Let A be an algebra, B an algebra with a unit e, and $\Phi: A \rightarrow B$ a homomorphism. Then $\widetilde{\Phi}: A_e \rightarrow B$, $\widetilde{\Phi}(x, \lambda) = \Phi(x) + \lambda e$ is a homomorphism extending Φ .

Proposition 4

Let A be an algebra with a unit e and B a subalgebra of A not containing e. Then $C = B + \text{span}\{e\}$ is a subalgebra of A and the mapping $\Phi : B_e \to C$, $\Phi(x, \lambda) = x + \lambda e$ is an isomorphism.

Definition 5

A pair $(A, \|\cdot\|)$ is called a normed algebra if *A* is an algebra, $(A, \|\cdot\|)$ is a normed linear space, and $\|ab\| \le \|a\| \|b\|$ for each $a, b \in A$. If the metric generated by $\|\cdot\|$ is complete, then $(A, \|\cdot\|)$ is called a Banach algebra.

Let $(A, \|\cdot\|)$ be a normed algebra. The multiplication of elements of A is Lipschitz on bounded sets (and in particular continuous) as a mapping from $A \times A$ to A.

Let $(A, \|\cdot\|)$ be a normed algebra. The multiplication of elements of A is Lipschitz on bounded sets (and in particular continuous) as a mapping from $A \times A$ to A.

Corollary 7

Let A be a normed algebra and B a subalgebra of A. Then \overline{B} is also a subalgebra of A.

Let $(A, \|\cdot\|)$ be a normed algebra. The multiplication of elements of A is Lipschitz on bounded sets (and in particular continuous) as a mapping from $A \times A$ to A.

Corollary 7

Let A be a normed algebra and B a subalgebra of A. Then \overline{B} is also a subalgebra of A.

Corollary 8

Every normed algebra A has a completion, i.e. a Banach algebra such that A is its dense subalgebra. This completion is unique up to an isometry. If A has a unit e, then e is also a unit in the completion of A.

Let $(A, \|\cdot\|)$ be a normed algebra. If we define a norm on A_e by the formula $\|(a, \alpha)\|_{A_e} = \|a\| + |\alpha|$ (i.e. $A_e = A \oplus_1 \mathbb{K}$), then A_e with this norm is a normed algebra. If $(A, \|\cdot\|)$ is a Banach algebra, then so is A_e with the norm above.

Definition 10

Let *A* and *B* be normed algebras and $\Phi: A \rightarrow B$ an (algebra) homomorphism. We say that Φ is an isomorphism of normed algebras *A* and *B* (or just an isomorphism) if Φ is a homeomorphism of *A* onto *B*; we say that Φ is an isomorphism of *A* into *B* (or just an isomorphism into) if Φ is an isomorphism of *A* onto Rng Φ .

Let A be a normed algebra. For each $a \in A$ we define a left translation L_a : $A \to A$ by the formula $L_a(x) = ax$. Then $L_a \in \mathcal{L}(A)$ and the mapping I: $A \to \mathcal{L}(A)$, $I(a) = L_a$ is a continuous algebra homomorphism with $||I|| \le 1$.

Let A be a normed algebra. For each $a \in A$ we define a left translation L_a : $A \to A$ by the formula $L_a(x) = ax$. Then $L_a \in \mathcal{L}(A)$ and the mapping I: $A \to \mathcal{L}(A)$, $I(a) = L_a$ is a continuous algebra homomorphism with $||I|| \le 1$. If A has a unit e, then I is an isomorphism into and I(e) = Id.

Let A be a normed algebra. For each $a \in A$ we define a left translation L_a : $A \to A$ by the formula $L_a(x) = ax$. Then $L_a \in \mathcal{L}(A)$ and the mapping I: $A \to \mathcal{L}(A)$, $I(a) = L_a$ is a continuous algebra homomorphism with $||I|| \leq 1$. If A has a unit e, then I is an isomorphism into and I(e) = Id. If ||e|| = 1 or $||x^2|| = ||x||^2$ for each $x \in A$ (e.g. if A is a subalgebra of $\ell_{\infty}(\Gamma)$), then I is an isometry into.

Let A be a normed algebra. For each $a \in A$ we define a left translation L_a : $A \to A$ by the formula $L_a(x) = ax$. Then $L_a \in \mathcal{L}(A)$ and the mapping I: $A \to \mathcal{L}(A)$, $I(a) = L_a$ is a continuous algebra homomorphism with $||I|| \leq 1$. If A has a unit e, then I is an isomorphism into and I(e) = Id. If ||e|| = 1 or $||x^2|| = ||x||^2$ for each $x \in A$ (e.g. if A is a subalgebra of $\ell_{\infty}(\Gamma)$), then I is an isometry into.

Corollary 12

Let $(A, \|\cdot\|)$ be a non-trivial normed algebra with a unit. Then there exists an equivalent norm $\||\cdot\||$ on A such that $(A, \||\cdot\||)$ is a normed algebra and $\||e\|| = 1$. Recall that in a ring with a unit (or more generally in a monoid) the following holds: if *x* has a left and a right inverse, then these are equal (and it is then and inverse to *x*). In particular, inverses to invertible elements are uniquely determined. Further, the invertible elements form a group, i.e. if $x, y \in A$ are invertible, then also xy is invertible and $(xy)^{-1} = y^{-1}x^{-1}$. This group of invertible elements will be denoted by A^{\times} .

Recall that in a ring with a unit (or more generally in a monoid) the following holds: if *x* has a left and a right inverse, then these are equal (and it is then and inverse to *x*). In particular, inverses to invertible elements are uniquely determined. Further, the invertible elements form a group, i.e. if $x, y \in A$ are invertible, then also xy is invertible and $(xy)^{-1} = y^{-1}x^{-1}$. This group of invertible elements will be denoted by A^{\times} .

Fact 13

Let A be an algebra with a unit and B its subalgebra containing e. Then $B^{\times} \subset A^{\times} \cap B$.

Fact 14

Let A, B be semigroups, $\Phi : A \to B$ a homomorphism onto, and let A be moreover a monoid with a unit e. Then B is a monoid with a unit $\Phi(e)$ and if $x \in A$ is invertible, then $\Phi(x)$ is invertible and $\Phi(x)^{-1} = \Phi(x^{-1})$. If moreover Φ is a bijection, then $\Phi \upharpoonright_{A^{\times}}$ is an isomorphism of the groups A^{\times} and B^{\times} .

Lemma 15

Let A be a normed algebra wit a unit and $x \in A$. If the series $\sum_{n=0}^{\infty} x^n$ converges, then $\sum_{n=0}^{\infty} x^n = (e - x)^{-1}$.

Lemma 15

Let A be a normed algebra wit a unit and $x \in A$. If the series $\sum_{n=0}^{\infty} x^n$ converges, then $\sum_{n=0}^{\infty} x^n = (e - x)^{-1}$.

Lemma 16

Let A be a Banach algebra with a unit.

(a) If $x \in U_A$, then the series $\sum_{n=0}^{\infty} x^n$ converges absolutely and so $\sum_{n=0}^{\infty} x^n = (e - x)^{-1}$.

Lemma 15

Let A be a normed algebra wit a unit and $x \in A$. If the series $\sum_{n=0}^{\infty} x^n$ converges, then $\sum_{n=0}^{\infty} x^n = (e - x)^{-1}$.

Lemma 16

Let A be a Banach algebra with a unit.

- (a) If $x \in U_A$, then the series $\sum_{n=0}^{\infty} x^n$ converges absolutely and so $\sum_{n=0}^{\infty} x^n = (e x)^{-1}$.
- (b) Let $x \in A^{\times}$ and let $h \in A$ be such that $||h|| < \frac{1}{||x^{-1}||}$. Then $x + h \in A^{\times}$. If moreover $||h|| \le \frac{1}{2||x^{-1}||}$, then $||(x + h)^{-1} - x^{-1} + x^{-1}hx^{-1}|| \le 2||x^{-1}||^{3}||h||^{2}$.

Definition 17

Let *G* be a group and τ a topology on *G*. We say that (G, τ) is a topological group if the group operations (i.e. multiplication $\cdot: G \times G \to G$ and inversion $^{-1}: G \to G$) are continuous.

Definition 17

Let *G* be a group and τ a topology on *G*. We say that (G, τ) is a topological group if the group operations (i.e. multiplication $\cdot: G \times G \to G$ and inversion $^{-1}: G \to G$) are continuous.

Theorem 18

Let A be a Banach algebra with a unit. Then A^{\times} is an open subset of A and it is a topological group.

Let A be a Banach algebra with a unit and B its closed subalgebra containing e. Then $(\partial_B B^*) \cap A^* = \emptyset$ and

 $B^{\times} = \bigcup \{ C \subset B; C \text{ is a component of } A^{\times} \cap B \text{ intersecting } B^{\times} \}.$

2. Spectral theory

Definition 20

Let A be an algebra with a unit. For $x \in A$ we define the resolvent set of x as

$$\rho(\mathbf{x}) = \{\lambda \in \mathbb{K}; \ \lambda \mathbf{e} - \mathbf{x} \in \mathbf{A}^{\times}\}$$

and the spectrum of *x* as

$$\sigma(\mathbf{X}) = \mathbb{K} \setminus \rho(\mathbf{X}).$$

Definition 20

Let A be an algebra with a unit. For $x \in A$ we define the resolvent set of x as

$$\rho(\mathbf{x}) = \{\lambda \in \mathbb{K}; \ \lambda \mathbf{e} - \mathbf{x} \in \mathbf{A}^{\times}\}$$

and the spectrum of *x* as

$$\sigma(\mathbf{X}) = \mathbb{K} \setminus \rho(\mathbf{X}).$$

If *A* does not have a unit, then for $x \in A$ we define the above notions with respect to the algebra A_e .

Definition 21 An element x of a groupoid is called idempotent if $x^2 = x$.
Let A, B be algebras and $\Phi : A \rightarrow B$ an algebraic isomorphism. Then $\sigma(\Phi(x)) = \sigma(x)$ for every $x \in A$.

Lemma 23

Let *M* be a monoid and $x, y \in M$. If at least two of the elements x, y, xy, and yx are invertible, then all four are invertible.

Let A be an algebra over \mathbb{K} .

(a) If A is non-trivial, then $\sigma(0) = \{0\}$.

Let A be an algebra over \mathbb{K} .

- (a) If A is non-trivial, then $\sigma(0) = \{0\}$.
- (b) If A has a unit, then $\sigma(\alpha e + \beta x) = \alpha + \beta \sigma(x)$ for every $x \in A$ and $\alpha, \beta \in \mathbb{K}$.

Let A be an algebra over \mathbb{K} .

(a) If A is non-trivial, then $\sigma(0) = \{0\}$.

- (b) If A has a unit, then $\sigma(\alpha e + \beta x) = \alpha + \beta \sigma(x)$ for every $x \in A$ and $\alpha, \beta \in \mathbb{K}$.
- (c) If $x \in A$, $n \in \mathbb{N}$, and $\lambda \in \sigma(x)$, then $\lambda^n \in \sigma(x^n)$.

Let A be an algebra over \mathbb{K} .

(a) If A is non-trivial, then $\sigma(0) = \{0\}$.

- (b) If A has a unit, then $\sigma(\alpha e + \beta x) = \alpha + \beta \sigma(x)$ for every $x \in A$ and $\alpha, \beta \in \mathbb{K}$.
- (c) If $x \in A$, $n \in \mathbb{N}$, and $\lambda \in \sigma(x)$, then $\lambda^n \in \sigma(x^n)$.
- (d) If $x \in A^{\times}$, then $\lambda \in \sigma(x)$ if and only if $\frac{1}{\lambda} \in \sigma(x^{-1})$.

Let A be an algebra over \mathbb{K} .

(a) If A is non-trivial, then $\sigma(0) = \{0\}$.

- (b) If A has a unit, then $\sigma(\alpha e + \beta x) = \alpha + \beta \sigma(x)$ for every $x \in A$ and $\alpha, \beta \in \mathbb{K}$.
- (c) If $x \in A$, $n \in \mathbb{N}$, and $\lambda \in \sigma(x)$, then $\lambda^n \in \sigma(x^n)$.

(d) If $x \in A^{\times}$, then $\lambda \in \sigma(x)$ if and only if $\frac{1}{\lambda} \in \sigma(x^{-1})$.

(e) If x, y ∈ A, then the sets σ(xy) and σ(yx) differ at most by the element 0. If moreover x ∈ A[×], then σ(xy) = σ(yx).

Let A be an algebra over \mathbb{K} .

(a) If A is non-trivial, then $\sigma(0) = \{0\}$.

- (b) If A has a unit, then $\sigma(\alpha e + \beta x) = \alpha + \beta \sigma(x)$ for every $x \in A$ and $\alpha, \beta \in \mathbb{K}$.
- (c) If $x \in A$, $n \in \mathbb{N}$, and $\lambda \in \sigma(x)$, then $\lambda^n \in \sigma(x^n)$.

(d) If $x \in A^{\times}$, then $\lambda \in \sigma(x)$ if and only if $\frac{1}{\lambda} \in \sigma(x^{-1})$.

(e) If x, y ∈ A, then the sets σ(xy) and σ(yx) differ at most by the element 0. If moreover x ∈ A[×], then σ(xy) = σ(yx).

(f) If
$$z \in A^{\times}$$
, then $\sigma(x) = \sigma(zxz^{-1})$ for every $x \in A$.

Let X, Y be normed linear spaces, $T \in \mathcal{L}(X)$, and let S: $X \to Y$ be a linear isomorphism. Then the operator $S \circ T \circ S^{-1} \in \mathcal{L}(Y)$ has the following property: $\sigma(S \circ T \circ S^{-1}) = \sigma(T) \ a \ \sigma_p(S \circ T \circ S^{-1}) = \sigma_p(T).$

Fact 26 Let A be an algebra and B an ideal in A. Then B is also an ideal in A_e .

Let A be an algebra.

(a) $0 \in \sigma_{A_e}(x)$ for every $x \in A$. So, if A does not have a unit, then $0 \in \sigma(x)$ for every $x \in A$.

- (a) $0 \in \sigma_{A_e}(x)$ for every $x \in A$. So, if A does not have a unit, then $0 \in \sigma(x)$ for every $x \in A$.
- (b) If A has a unit, then $\sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}$ for every $x \in A$.

- (a) $0 \in \sigma_{A_e}(x)$ for every $x \in A$. So, if A does not have a unit, then $0 \in \sigma(x)$ for every $x \in A$.
- (b) If A has a unit, then $\sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}$ for every $x \in A$.
- (c) Suppose that A has a unit e, B is a subalgebra of A not containing e, and $C = B + \text{span}\{e\}$. Then $\sigma_C(x) = \sigma_{B_e}(x)$ for every $x \in B$.

- (a) $0 \in \sigma_{A_e}(x)$ for every $x \in A$. So, if A does not have a unit, then $0 \in \sigma(x)$ for every $x \in A$.
- (b) If A has a unit, then $\sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}$ for every $x \in A$.
- (c) Suppose that A has a unit e, B is a subalgebra of A not containing e, and $C = B + \text{span}\{e\}$. Then $\sigma_C(x) = \sigma_{B_e}(x)$ for every $x \in B$.
- (d) Let *B* be a subalgebra of *A* and $x \in B$. If *B* has a unit which is not a unit in *A*, then $\sigma_A(x) \subset \sigma_B(x) \cup \{0\}$, in the other cases $\sigma_A(x) \subset \sigma_B(x)$.

- (a) $0 \in \sigma_{A_e}(x)$ for every $x \in A$. So, if A does not have a unit, then $0 \in \sigma(x)$ for every $x \in A$.
- (b) If A has a unit, then $\sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}$ for every $x \in A$.
- (c) Suppose that A has a unit e, B is a subalgebra of A not containing e, and $C = B + \text{span}\{e\}$. Then $\sigma_C(x) = \sigma_{B_e}(x)$ for every $x \in B$.
- (d) Let *B* be a subalgebra of *A* and $x \in B$. If *B* has a unit which is not a unit in *A*, then $\sigma_A(x) \subset \sigma_B(x) \cup \{0\}$, in the other cases $\sigma_A(x) \subset \sigma_B(x)$.
- (e) If B is a proper ideal in A, then $\sigma_{B_e}(x) = \sigma_A(x)$ for every $x \in B$.

Let A, B be algebras, $\Phi : A \to B$ a homomorphism, and $x \in A$. If A has a unit e and $\Phi(e)$ is not a unit in B, then $\sigma_B(\Phi(x)) \subset \sigma_A(x) \cup \{0\}$, in the other cases $\sigma_B(\Phi(x)) \subset \sigma_A(x)$.

Definition 29 Let *A* be an algebra. For $x \in A$ we define the spectral radius of *x* as

$$r(x) = \sup\{|\lambda| \in [0, +\infty); \ \lambda \in \sigma(x)\}.$$

Theorem 30 Let A be a Banach algebra and $x \in A$. Then $\rho(x)$ is open, $\sigma(x)$ is compact, and

$$r(x) \leq \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Theorem 30 Let A be a Banach algebra and $x \in A$. Then $\rho(x)$ is open, $\sigma(x)$ is compact, and

$$r(x) \leq \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Lemma 31
Let {a_n} be a sequence of real numbers.
(a) If
$$a_{m+n} \le a_m + a_n$$
 for all $m, n \in \mathbb{N}$, then
 $\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n} < +\infty$.

Theorem 30 Let A be a Banach algebra and $x \in A$. Then $\rho(x)$ is open, $\sigma(x)$ is compact, and

$$r(x) \leq \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Lemma 31

Let $\{a_n\}$ be a sequence of real numbers.

(a) If
$$a_{m+n} \leq a_m + a_n$$
 for all $m, n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n} < +\infty.$$

(b) If $\{a_n\}$ is non-negative and $a_{m+n} \leq a_m a_n$ for all $m, n \in \mathbb{N}$, then $\lim_{n \to \infty} \sqrt[n]{a_n} = \inf_{n \in \mathbb{N}} \sqrt[n]{a_n} \in \mathbb{R}$.

Let A be a Banach algebra with a unit, B its closed subalgebra containing e, and $x \in B$. Then the following hold:

(a) $\partial \rho_B(x) \subset \partial \rho_A(x)$ and

 $\rho_B(x) = \bigcup \{ C \subset \mathbb{K}; C \text{ is a component of } \rho_A(x) \\$ *intersecting* $\rho_B(x) \}.$

Let A be a Banach algebra with a unit, B its closed subalgebra containing e, and $x \in B$. Then the following hold:

(a) $\partial \rho_B(x) \subset \partial \rho_A(x)$ and

 $\rho_B(x) = \bigcup \{ C \subset \mathbb{K}; C \text{ is a component of } \rho_A(x) \\$ *intersecting* $\rho_B(x) \}.$

(b) If *C* is a component of $\rho_A(x)$, then either $C \subset \sigma_B(x)$, or $C \cap \sigma_B(x) = \emptyset$. Further, $\partial \sigma_B(x) \subset \partial \sigma_A(x)$.

Let A be a Banach algebra with a unit, B its closed subalgebra containing e, and $x \in B$. Then the following hold:

(a) $\partial \rho_B(x) \subset \partial \rho_A(x)$ and

 $\rho_B(x) = \bigcup \{ C \subset \mathbb{K}; C \text{ is a component of } \rho_A(x) \\$ *intersecting* $\rho_B(x) \}.$

(b) If *C* is a component of $\rho_A(x)$, then either $C \subset \sigma_B(x)$, or $C \cap \sigma_B(x) = \emptyset$. Further, $\partial \sigma_B(x) \subset \partial \sigma_A(x)$.

(c) If $\rho_A(x)$ is connected, then $\sigma_B(x) = \sigma_A(x)$.

Let A be a Banach algebra with a unit, B its closed subalgebra containing e, and $x \in B$. Then the following hold:

(a) $\partial \rho_B(x) \subset \partial \rho_A(x)$ and

 $\rho_B(x) = \bigcup \{ C \subset \mathbb{K}; C \text{ is a component of } \rho_A(x) \\$ *intersecting* $\rho_B(x) \}.$

(b) If C is a component of ρ_A(x), then either C ⊂ σ_B(x), or C ∩ σ_B(x) = Ø. Further, ∂σ_B(x) ⊂ ∂σ_A(x).
(c) If ρ_A(x) is connected, then σ_B(x) = σ_A(x).

(d) If $\sigma_B(x)$ has an empty interior, then $\sigma_B(x) = \sigma_A(x)$.

Let *Y* be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \in Y$ exists, then this limit is called the derivative of the mapping *f* at *a* and it is denoted by f'(a).

Let *Y* be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \in Y$ exists, then this limit is called the derivative of the mapping *f* at *a* and it is denoted by f'(a).

Fact 34 Let Y be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If f'(a) exists, then $(\phi \circ f)'(a) = \phi(f'(a))$ for every $\phi \in Y^*$.

Let *Y* be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \in Y$ exists, then this limit is called the derivative of the mapping *f* at *a* and it is denoted by f'(a).

Fact 34 Let Y be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If f'(a) exists, then $(\phi \circ f)'(a) = \phi(f'(a))$ for every $\phi \in Y^*$.

Fact 35

Let Y be a normed linear space over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f: \Omega \to Y$, and $a \in \Omega$. If f'(a) exists, then f is continuous at a.

Let *A* be an algebra over \mathbb{K} with a unit. On $\rho(x)$ we define the resolvent (or the resolvent mapping) of the element *x* by the formula

$$R_x(\lambda) = (\lambda e - x)^{-1}, \quad \lambda \in \rho(x).$$

Let *A* be an algebra over \mathbb{K} with a unit. On $\rho(x)$ we define the resolvent (or the resolvent mapping) of the element *x* by the formula

$$R_x(\lambda) = (\lambda e - x)^{-1}, \quad \lambda \in \rho(x).$$

If A does not have a unit, then we define the resolvent with respect to the algebra A_e .

Let *A* be an algebra over \mathbb{K} with a unit. On $\rho(x)$ we define the resolvent (or the resolvent mapping) of the element *x* by the formula

$$R_x(\lambda) = (\lambda e - x)^{-1}, \quad \lambda \in \rho(x).$$

If A does not have a unit, then we define the resolvent with respect to the algebra A_e .

Proposition 37

Let A be a Banach algebra and $x \in A$. Then the mapping $\lambda \mapsto R_x(\lambda)$ has a derivative at every point of the set $\rho(x)$.

Let *Y* be a complex normed linear space, $\Omega \subset \mathbb{C}$ an open set, and $f: \Omega \to Y$. We say that *f* is holomorphic on Ω , if f'(z) exists for every $z \in \Omega$.

Let *Y* be a complex normed linear space, $\Omega \subset \mathbb{C}$ an open set, and $f: \Omega \to Y$. We say that *f* is holomorphic on Ω , if f'(z) exists for every $z \in \Omega$.

Theorem 39 (Liouville's theorem)

Let Y be a complex normed linear space and let $f: \mathbb{C} \to Y$ be holomorphic on \mathbb{C} . If f is bounded, then it is constant.

Let A be a complex Banach algebra and $x \in A$.

- (a) The resolvent mapping R_x is holomorphic on $\rho(x)$.
- (b) If A is non-trivial, then $\sigma(x) \neq \emptyset$.
- (c) $r(x) = \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}$ (the Beurling-Gelfand formula).

Let A be a complex Banach algebra and $x \in A$.

(a) The resolvent mapping R_x is holomorphic on $\rho(x)$.

(b) If A is non-trivial, then $\sigma(x) \neq \emptyset$.

(c) $r(x) = \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}$ (the Beurling-Gelfand formula).

Corollary 41

If A is a complex Banach algebra, $x \in A$, and $\lambda \in \mathbb{C}$, $|\lambda| > r(x)$, then the sum $\sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}$ converges absolutely. So if A has a unit, then $R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$.

Theorem 42 (S. Mazur (1938), I. M. Gelfand (1941))

Let A be a non-trivial complex Banach algebra with a unit. If $A^{\times} = A \setminus \{0\}$, then A is isomorphic to \mathbb{C} . If moreover ||e|| = 1, then A is isometrically isomorphic to \mathbb{C} .

3. Holomorphic calculus
Let *A* be a Banach algebra over \mathbb{K} with a unit and $x \in A$. Further let \mathcal{F} be some algebra of functions defined on a subset of \mathbb{K} that contains polynomials. A functional calculus for *x* will be some homomorphism $\Phi : \mathcal{F} \to A$ such that $\Phi(1) = e, \Phi(Id) = x$, and which is moreover continuous, resp. sequentially continuous, in some convenient topologies on \mathcal{F} and *A*.

Let A be a complex algebra with a unit and $x \in A$. Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ be open neighbourhoods of $\sigma(x)$ and let $\Phi_i: H(\Omega_i) \to A$ be an algebra homomorphism such that $\Phi_i(1) = e, \Phi_i(Id) = x$, and Φ_i is sequentially continuous from the topology of locally uniform convergence on $H(\Omega_i)$ to some Hausdorff topology τ on A, i = 1, 2. If $f_i \in H(\Omega_i), i = 1, 2$ are such that $f_1 = f_2$ on $\Omega_1 \cap \Omega_2$, then $\Phi_1(f_1) = \Phi_2(f_2)$.

Let *X* be a complex Banach space, $\gamma : [a, b] \to \mathbb{C}$ a path, and $f : \langle \gamma \rangle \to X$ a continuous mapping. The integral of *f* along γ is defined by

$$\int_{\gamma} f = \int_{[a,b]} \gamma'(t) f(\gamma(t)) \, \mathrm{d}\lambda(t).$$

Let *X* be a complex Banach space, $\gamma : [a, b] \to \mathbb{C}$ a path, and $f : \langle \gamma \rangle \to X$ a continuous mapping. The integral of *f* along γ is defined by

$$\int_{\gamma} f = \int_{[a,b]} \gamma'(t) f(\gamma(t)) \, \mathrm{d}\lambda(t).$$

The integral along a chain $\Gamma = \gamma_1 \dotplus \cdots \dotplus \gamma_n$ in \mathbb{C} of a continuous mapping $f: \langle \Gamma \rangle \to X$ is defined by

$$\int_{\Gamma} f = \int_{\gamma_1} f + \dots + \int_{\gamma_n} f.$$

Lemma 44 Let Γ be a chain in \mathbb{C} , X a complex Banach space, $f: \langle \Gamma \rangle \to X$ continuous, and $\phi \in X^*$. Then $\phi(\int_{\Gamma} f) = \int_{\Gamma} \phi \circ f$.

If $\Omega \subset \mathbb{C}$ is open and $K \subset \Omega$ compact, then we say that a cycle Γ surrounds K in Ω if $\langle \Gamma \rangle \subset \Omega \setminus K$, ind_{Γ} z = 1 for $z \in K$, and ind_{Γ} z = 0 for $z \in \mathbb{C} \setminus \Omega$.

Let $\Omega \subset \mathbb{C}$ be open, X a complex Banach space, and let $f: \Omega \to X$ be holomorphic. If Γ_1 , Γ_2 are two cycles in Ω such that $\operatorname{ind}_{\Gamma_1}(z) = \operatorname{ind}_{\Gamma_2}(z)$ for every $z \in \mathbb{C} \setminus \Omega$, then $\int_{\Gamma_1} f = \int_{\Gamma_2} f$.

Theorem 45 Let $\Omega \subset \mathbb{C}$ be open, X a complex Banach space, and let $f: \Omega \to X$ be holomorphic. If Γ_1 , Γ_2 are two cycles in Ω such that $\operatorname{ind}_{\Gamma_1}(z) = \operatorname{ind}_{\Gamma_2}(z)$ for every $z \in \mathbb{C} \setminus \Omega$, then $\int_{\Gamma_1} f = \int_{\Gamma_2} f$.

Definition 46

Let *A* be a complex Banach algebra with a unit and $x \in A$. If $f \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then we define

$$f(x) = \frac{1}{2\pi i} \int_{\Gamma} f \mathcal{R}_x = \frac{1}{2\pi i} \int_{\Gamma} f(\alpha) (\alpha e - x)^{-1} \, \mathrm{d}\alpha,$$

where Γ is any cycle surrounding $\sigma(x)$ in Ω .

Lemma 47 Let (Ω, μ) be a space with a complete measure, A a Banach algebra and $f \in L_1(\mu, A)$. Then

$$x\left(\int_{E} f d\mu\right) = \int_{E} x f(t) d\mu(t) \text{ and } \left(\int_{E} f d\mu\right) x = \int_{E} f(t) x d\mu(t)$$

for every $x \in A$ and every measurable $E \subset \Omega$.

Fact 48 Let G be a group. If $u, v \in G$ commute, then also u, v, u^{-1}, v^{-1} commute.

Fact 48 Let G be a group. If $u, v \in G$ commute, then also u, v, u^{-1} , v^{-1} commute.

Lemma 49 Let A be an algebra with a unit, $x \in A$, and $\mu, \nu \in \rho(x)$. (a) $R_x(\mu)R_x(\nu) = R_x(\nu)R_x(\mu)$. (b) $R_x(\mu) - R_x(\nu) = (\nu - \mu)R_x(\mu)R_x(\nu)$ (resolvent identity).

Let A be a complex Banach algebra with a unit, $x \in A$, $\Omega \subset \mathbb{C}$ an open neighbourhood of $\sigma(x)$, and $f \in H(\Omega)$. The mapping $\Phi: H(\Omega) \to A$, where $\Phi(g) = g(x)$ from Definition 46, has the following properties:

(a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.

- (a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.

- (a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (c) $\sigma(f(x)) = f(\sigma(x))$ (spectral mapping theorem).

- (a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (c) $\sigma(f(x)) = f(\sigma(x))$ (spectral mapping theorem).
- (d) If $g \in H(\Omega_1)$, where Ω_1 is an open neighbourhood of $f(\sigma(x))$, then $(g \circ f)(x) = g(f(x))$.

- (a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (c) $\sigma(f(x)) = f(\sigma(x))$ (spectral mapping theorem).
- (d) If $g \in H(\Omega_1)$, where Ω_1 is an open neighbourhood of $f(\sigma(x))$, then $(g \circ f)(x) = g(f(x))$.
- (e) If $y \in A$ commutes with x, then y commutes also with f(x).

Let A be a complex Banach algebra with a unit, $x \in A$, $\Omega \subset \mathbb{C}$ an open neighbourhood of $\sigma(x)$, and $f \in H(\Omega)$. The mapping $\Phi: H(\Omega) \to A$, where $\Phi(g) = g(x)$ from Definition 46, has the following properties:

- (a) Consider $H(\Omega)$ with the topology of locally uniform convergence. Then Φ is a continuous algebra homomorphism for which $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (c) $\sigma(f(x)) = f(\sigma(x))$ (spectral mapping theorem).
- (d) If $g \in H(\Omega_1)$, where Ω_1 is an open neighbourhood of $f(\sigma(x))$, then $(g \circ f)(x) = g(f(x))$.
- (e) If $y \in A$ commutes with x, then y commutes also with f(x).
- (f) If B is a complex Banach algebra and Θ: A → B a continuous homomorphism such that Θ(e) is a unit in B, then f(Θ(x)) = Θ(f(x)). In particular, if z ∈ A[×], then f(zxz⁻¹) = zf(x)z⁻¹.

L47, L49(b), T45, C41; L23; F48; P28, T43

4. Multiplicative linear functionals

Let *A* be an algebra over \mathbb{K} . A homomorphism $\varphi : A \to \mathbb{K}$ is called a multiplicative linear functional (i.e. φ is linear and $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in A$).

Let *A* be an algebra over \mathbb{K} . A homomorphism $\varphi : A \to \mathbb{K}$ is called a multiplicative linear functional (i.e. φ is linear and $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in A$). The set of all non-zero multiplicative linear functionals on *A* is denoted by $\Delta(A)$.

Let A be an algebra over \mathbb{K} . Then $\Delta(A)$ is a linearly independent set.

Let A be an algebra. Every multiplicative linear functional φ on A has a unique extension $\tilde{\varphi} \in \Delta(A_e)$ given by $\tilde{\varphi}(x, \lambda) = \varphi(x) + \lambda$ and $\Delta(A_e) = \{\tilde{\varphi}; \varphi \in \Delta(A) \cup \{0\}\}.$

Let A be an algebra and $\varphi \in \Delta(A)$. Then $\varphi(x) \in \sigma(x)$ for every $x \in A$ and so $|\varphi(x)| \leq r(x)$.

Let A be an algebra and $\varphi \in \Delta(A)$. Then $\varphi(x) \in \sigma(x)$ for every $x \in A$ and so $|\varphi(x)| \leq r(x)$.

Corollary 55

Let A be a Banach algebra. Then $\Delta(A) \subset B_{A^*}$ (in particular, every multiplicative linear functional on A is automatically continuous). If A has a unit, then $\|\varphi\| \ge \frac{1}{\|e\|}$ for every $\varphi \in \Delta(A)$. In particular, if $\|e\| = 1$, then $\Delta(A) \subset S_{A^*}$.

Let *A* be an algebra. A maximal ideal in *A* is a proper ideal in *A* that is maximal with respect to the ordering of all proper ideals in *A* by inclusion.

Let *A* be an algebra. A maximal ideal in *A* is a proper ideal in *A* that is maximal with respect to the ordering of all proper ideals in *A* by inclusion.

Proposition 57

Let A be an algebra with a unit. Then every proper ideal in A is contained in some maximal ideal in A.

Let *A* be an algebra. A maximal ideal in *A* is a proper ideal in *A* that is maximal with respect to the ordering of all proper ideals in *A* by inclusion.

Proposition 57

Let A be an algebra with a unit. Then every proper ideal in A is contained in some maximal ideal in A.

Proposition 58

Let A be a Banach algebra with a unit. If I is a proper ideal in A, then also \overline{I} is a proper ideal in A. So every maximal ideal in A is closed.

Lemma 59

Let A be a commutative algebra with a unit and suppose that $x \in A$ is not invertible. Then the principal ideal xA is proper.

Let A be a complex commutative Banach algebra with a unit and let I be a proper ideal in A. Then there exists $\varphi \in \Delta(A)$ such that $\varphi \upharpoonright_I = 0$.

Let A be a complex commutative Banach algebra with a unit and let I be a proper ideal in A. Then there exists $\varphi \in \Delta(A)$ such that $\varphi \upharpoonright_I = 0$.

Corollary 61

If A is a non-trivial complex commutative Banach algebra with a unit, then $\Delta(A) \neq \emptyset$.

Let A be a complex commutative Banach algebra with a unit and let I be a proper ideal in A. Then there exists $\varphi \in \Delta(A)$ such that $\varphi \upharpoonright_I = 0$.

Corollary 61

If A is a non-trivial complex commutative Banach algebra with a unit, then $\Delta(A) \neq \emptyset$.

Corollary 62

Let A be a complex commutative Banach algebra with a unit. Then the mapping $\Phi : \varphi \mapsto \text{Ker } \varphi$ is a bijection between $\Delta(A)$ and the set of all maximal ideals in A.

Let A be a Banach algebra and $M = \Delta(A) \cup \{0\} \subset (B_{A^*}, w^*)$ is the set of all linear multiplicative functionals on A. Then M is compact, $\Delta(A)$ is locally compact, and if A has a unit, then $\Delta(A)$ is compact. If $\Delta(A)$ is not compact, then M is the Alexandrov compactification of $\Delta(A)$.

Let A be a Banach algebra and

 $M = \Delta(A) \cup \{0\} \subset (B_{A^*}, w^*)$ is the set of all linear multiplicative functionals on A. Then M is compact, $\Delta(A)$ is locally compact, and if A has a unit, then $\Delta(A)$ is compact. If $\Delta(A)$ is not compact, then M is the Alexandrov compactification of $\Delta(A)$.

The mapping $\Phi: M \to \Delta(A_e)$, where $\Phi(\varphi) = \tilde{\varphi}$ is the unique extension of φ to the element of $\Delta(A_e)$, is a homeomorphism.

Let *X*, *Y* be vector spaces and $T: X \to Y$ be a linear mapping. Then we define the algebraically dual mapping $T^{\#}: Y^{\#} \to X^{\#}$ by the formula $T^{\#}f(x) = f(Tx)$ for $f \in Y^{\#}$ and $x \in X$.

Let *X*, *Y* be vector spaces and $T: X \to Y$ be a linear mapping. Then we define the algebraically dual mapping $T^{#}: Y^{#} \to X^{#}$ by the formula $T^{#}f(x) = f(Tx)$ for $f \in Y^{#}$ and $x \in X$.

Lemma 64

Let X, Y be vector spaces and T: $X \rightarrow Y$ a linear bijection. Then T[#] is a bijection and $(T^{#})^{-1} = (T^{-1})^{#}$.

Let *X*, *Y* be vector spaces and $T: X \to Y$ be a linear mapping. Then we define the algebraically dual mapping $T^{#}: Y^{#} \to X^{#}$ by the formula $T^{#}f(x) = f(Tx)$ for $f \in Y^{#}$ and $x \in X$.

Lemma 64

Let X, Y be vector spaces and T: $X \rightarrow Y$ a linear bijection. Then T[#] is a bijection and $(T^{#})^{-1} = (T^{-1})^{#}$.

Proposition 65

Let A, B be Banach algebras and $\Phi : A \to B$ an algebraic isomorphism. Then the mapping $\Psi = \Phi^{\#} \upharpoonright_{\Delta(B)}$ is a homeomorphism of $\Delta(B)$ onto $\Delta(A)$.
Proposition 66

Let *S*, *T* be topological spaces and let $h: S \to T$ be continuous and onto. Then $\Phi: C_b(T) \to C_b(S)$, $\Phi(f) = f \circ h$ is an isometric isomorphism of the Banach algebra $C_b(T)$ into the Banach algebra $C_b(S)$.

Proposition 66

Let *S*, *T* be topological spaces and let $h: S \to T$ be continuous and onto. Then $\Phi: C_b(T) \to C_b(S)$, $\Phi(f) = f \circ h$ is an isometric isomorphism of the Banach algebra $C_b(T)$ into the Banach algebra $C_b(S)$. If *S* and *T* are locally compact Hausdorff spaces and *h* is a homeomorphism, then $\Phi \upharpoonright_{C_0(T)}$ is an isometric isomorphism of Banach algebras $C_0(T)$ and $C_0(S)$.

Let K, L be locally compact Hausdorff topological spaces. Then the following statements are equivalent:

- (i) The Banach algebras *C*₀(*K*) and *C*₀(*L*) are isometrically isomorphic.
- (ii) The algebras $C_0(K)$ and $C_0(L)$ are algebraically isomorphic.
- (iii) The spaces K and L are homeomorphic.

Definition 68 A commutative algebra *A* is called semi-simple if $\Delta(A)$ separates the points of *A*, i.e. if \bigcap {Ker φ ; $\varphi \in \Delta(A)$ } = {0}.

Definition 68 A commutative algebra *A* is called semi-simple if $\Delta(A)$ separates the points of *A*, i.e. if $\bigcap \{ \text{Ker } \varphi; \ \varphi \in \Delta(A) \} = \{ 0 \}.$

Theorem 69

Let A, B be Banach algebras and suppose B is commutative and semi-simple. Then every homomorphism from A to B is automatically continuous. Also every conjugate-linear multiplicative mapping from A to B is automatically continuous.

Definition 68 A commutative algebra *A* is called semi-simple if $\Delta(A)$ separates the points of *A*, i.e. if $\bigcap \{ \text{Ker } \varphi; \ \varphi \in \Delta(A) \} = \{ 0 \}.$

Theorem 69

Let A, B be Banach algebras and suppose B is commutative and semi-simple. Then every homomorphism from A to B is automatically continuous. Also every conjugate-linear multiplicative mapping from A to B is automatically continuous.

Corollary 70

Let A be a commutative semi-simple algebra. Then all norms on A in which A is a Banach algebra are equivalent.

5. Gelfand transform

Let *A* be a Banach algebra over \mathbb{K} . For $x \in A$ we define $\hat{x}: \Delta(A) \to \mathbb{K}$ by the formula $\hat{x}(\varphi) = \varphi(x)$, i.e. $\hat{x} = \varepsilon_x \upharpoonright_{\Delta(A)}$. The function \hat{x} is called the Gelfand transform of the element *x*.

Let *A* be a Banach algebra over \mathbb{K} . For $x \in A$ we define $\hat{x}: \Delta(A) \to \mathbb{K}$ by the formula $\hat{x}(\varphi) = \varphi(x)$, i.e. $\hat{x} = \varepsilon_x \upharpoonright_{\Delta(A)}$. The function \hat{x} is called the Gelfand transform of the element *x*.

Theorem 72

Let A be a complex commutative Banach algebra and $x \in A$. If A has a unit, then $\operatorname{Rng} \hat{x} = \sigma(x)$. If A does not have a unit, then $\sigma(x) \setminus \{0\} \subset \operatorname{Rng} \hat{x} \subset \sigma(x)$.

Let *A* be a Banach algebra over \mathbb{K} . For $x \in A$ we define $\hat{x}: \Delta(A) \to \mathbb{K}$ by the formula $\hat{x}(\varphi) = \varphi(x)$, i.e. $\hat{x} = \varepsilon_x \upharpoonright_{\Delta(A)}$. The function \hat{x} is called the Gelfand transform of the element *x*.

Theorem 72

Let A be a complex commutative Banach algebra and $x \in A$. If A has a unit, then $\operatorname{Rng} \hat{x} = \sigma(x)$. If A does not have a unit, then $\sigma(x) \setminus \{0\} \subset \operatorname{Rng} \hat{x} \subset \sigma(x)$.

Corollary 73

Let A be a complex commutative Banach algebra and $x \in A$. Then $\|\hat{x}\|_{C_0(\Delta(A))} = r(x)$.

Let *A* be a Banach algebra. The mapping $\Gamma : A \to C_0(\Delta(A)), \Gamma(x) = \hat{x}$ is called the Gelfand transform of the algebra *A*.

Let *A* be a Banach algebra. The mapping $\Gamma : A \to C_0(\Delta(A)), \Gamma(x) = \hat{x}$ is called the Gelfand transform of the algebra *A*.

Proposition 75

Let A be a Banach algebra and let Γ be its Gelfand transform. Then the following hold:

(a) Γ is a continuous homomorphism and $\|\Gamma\| \leq 1$.

Let *A* be a Banach algebra. The mapping $\Gamma : A \to C_0(\Delta(A)), \Gamma(x) = \hat{x}$ is called the Gelfand transform of the algebra *A*.

Proposition 75

Let A be a Banach algebra and let Γ be its Gelfand transform. Then the following hold:

- (a) Γ is a continuous homomorphism and $\|\Gamma\| \leq 1$.
- (b) The subalgebra Γ(A) ⊂ C₀(Δ(A)) separates the points of Δ(A).

Let *A* be a Banach algebra. The mapping $\Gamma : A \to C_0(\Delta(A)), \Gamma(x) = \hat{x}$ is called the Gelfand transform of the algebra *A*.

Proposition 75

Let A be a Banach algebra and let Γ be its Gelfand transform. Then the following hold:

- (a) Γ is a continuous homomorphism and $\|\Gamma\| \leq 1$.
- (b) The subalgebra Γ(A) ⊂ C₀(Δ(A)) separates the points of Δ(A).
- (c) Γ is one-to-one if and only if $\Delta(A)$ separates the points of A, i.e. if and only if A is commutative and semi-simple.

Let A be a complex commutative Banach algebra and let Γ be its Gelfand transform. Then the following hold:

- (a) Γ is an isomorphism into if and only if there exists K > 0 such that $||x^2|| \ge K ||x||^2$ for every $x \in A$.
- (b) Γ is an isometry into if and only if $||x^2|| = ||x||^2$ for every $x \in A$.

Let *A* be a groupoid and $M \subset A$. Then the set $M^c = \{a \in A; ax = xa \text{ for every } x \in M\}$, i.e. the set of all elements of *A* commuting with every element of *M*, is called the commutant of the set *M*.

Let *A* be a groupoid and $M \subset A$. Then the set $M^c = \{a \in A; ax = xa \text{ for every } x \in M\}$, i.e. the set of all elements of *A* commuting with every element of *M*, is called the commutant of the set *M*.

Proposition 78

Let A be a groupoid and $M \subset A$. Then the following hold:

(a)
$$M \subset (M^c)^c$$
.

- (b) The set $M \cap M^c$ commutes.
- (c) If M commutes, then also $(M^c)^c$ commutes.

Proposition 79

Let A be an algebra and $M \subset A$. Then the following hold:

(a) M^c is a subalgebra of A.

(b) If A has a unit, then $e \in M^c$.

(c) If A is normed, then M^c is closed.

Proposition 79

Let A be an algebra and $M \subset A$. Then the following hold:

(a) M^c is a subalgebra of A.

(b) If A has a unit, then $e \in M^c$.

(c) If A is normed, then M^c is closed.

Proposition 80

Let A be an algebra with a unit e and suppose that $M \subset A$ commutes. Then $B = (M^c)^c$ is a commutative algebra with a unit e, $M \subset B$, and $B^* = A^* \cap B$. So $\sigma_A(x) = \sigma_B(x)$ for every $x \in B$.

Let A be a complex Banach algebra and suppose that $x, y \in A$ commute. Then the following hold:

(a) $\sigma(x + y) \subset \sigma(x) + \sigma(y)$ and $\sigma(xy) \subset \sigma(x)\sigma(y)$.

(b) $r(x + y) \le r(x) + r(y)$ and $r(xy) \le r(x)r(y)$.

6. B*-algebras

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then there exists a unique operator $T^* \in \mathcal{L}(H_2, H_1)$ such that

$$\langle Tx, y \rangle_{H_2} = \langle x, T^*y \rangle_{H_1}$$

for every $y \in H_2$ and $x \in H_1$.

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then there exists a unique operator $T^* \in \mathcal{L}(H_2, H_1)$ such that

$$\langle Tx, y \rangle_{H_2} = \langle x, T^*y \rangle_{H_1}$$

for every $y \in H_2$ and $x \in H_1$. Further, $T^* = I_1^{-1} \circ T^* \circ I_2$, where $I_j: H_j \rightarrow H_j^*$, j = 1, 2 are the corresponding conjugate-linear isometries from the Löwig-Fréchet-Riesz theorem.

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then there exists a unique operator $T^* \in \mathcal{L}(H_2, H_1)$ such that

$$\langle Tx, y \rangle_{H_2} = \langle x, T^*y \rangle_{H_1}$$

for every $y \in H_2$ and $x \in H_1$. Further, $T^* = I_1^{-1} \circ T^* \circ I_2$, where $I_j: H_j \rightarrow H_j^*$, j = 1, 2 are the corresponding conjugate-linear isometries from the Löwig-Fréchet-Riesz theorem.

Definition 83

The operator T^* from the preceding theorem is called the hilbertian adjoint operator to T.

Theorem 84 Let H_1 , H_2 , H_3 be Hilbert spaces. (a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.

- Let H_1 , H_2 , H_3 be Hilbert spaces.
- (a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.
- (b) The mapping $T \mapsto T^*$ is a conjugate-linear isometry of $\mathcal{L}(H_1, H_2)$ onto $\mathcal{L}(H_2, H_1)$.

Let H_1 , H_2 , H_3 be Hilbert spaces.

(a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.

- (b) The mapping $T \mapsto T^*$ is a conjugate-linear isometry of $\mathcal{L}(H_1, H_2)$ onto $\mathcal{L}(H_2, H_1)$.
- (c) Let $T \in \mathcal{L}(H_1, H_2)$ and $S \in \mathcal{L}(H_2, H_3)$. Then $(S \circ T)^* = T^* \circ S^*$. Also, $(Id_{H_1})^* = Id_{H_1}$.

Let H_1 , H_2 , H_3 be Hilbert spaces.

(a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.

- (b) The mapping $T \mapsto T^*$ is a conjugate-linear isometry of $\mathcal{L}(H_1, H_2)$ onto $\mathcal{L}(H_2, H_1)$.
- (c) Let $T \in \mathcal{L}(H_1, H_2)$ and $S \in \mathcal{L}(H_2, H_3)$. Then $(S \circ T)^* = T^* \circ S^*$. Also, $(Id_{H_1})^* = Id_{H_1}$.

(d) Let $T \in \mathcal{L}(H_1, H_2)$. Then $||T^* \circ T|| = ||T \circ T^*|| = ||T||^2$.

Let H_1 , H_2 , H_3 be Hilbert spaces.

(a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.

- (b) The mapping $T \mapsto T^*$ is a conjugate-linear isometry of $\mathcal{L}(H_1, H_2)$ onto $\mathcal{L}(H_2, H_1)$.
- (c) Let $T \in \mathcal{L}(H_1, H_2)$ and $S \in \mathcal{L}(H_2, H_3)$. Then $(S \circ T)^* = T^* \circ S^*$. Also, $(Id_{H_1})^* = Id_{H_1}$.

(d) Let $T \in \mathcal{L}(H_1, H_2)$. Then $||T^* \circ T|| = ||T \circ T^*|| = ||T||^2$.

(e) *T** is an isomorphism if and only if *T* is an isomorphism.

Let H_1 , H_2 , H_3 be Hilbert spaces.

(a) If $T \in \mathcal{L}(H_1, H_2)$, then $T^{**} = (T^*)^* = T$.

- (b) The mapping $T \mapsto T^*$ is a conjugate-linear isometry of $\mathcal{L}(H_1, H_2)$ onto $\mathcal{L}(H_2, H_1)$.
- (c) Let $T \in \mathcal{L}(H_1, H_2)$ and $S \in \mathcal{L}(H_2, H_3)$. Then $(S \circ T)^* = T^* \circ S^*$. Also, $(Id_{H_1})^* = Id_{H_1}$.

(d) Let $T \in \mathcal{L}(H_1, H_2)$. Then $||T^* \circ T|| = ||T \circ T^*|| = ||T||^2$.

- (e) *T*^{*} is an isomorphism if and only if *T* is an isomorphism.
 - (f) T^* is compact if and only if T is compact.

Let *A* be an algebra over \mathbb{K} . The mapping $*: A \rightarrow A$ is called an algebra involution if it has the following properties:

•
$$(x + y)^* = x^* + y^*$$
 for every $x, y \in A$,

•
$$(\lambda x)^* = \overline{\lambda} x^*$$
 for every $x \in A$ and $\lambda \in \mathbb{K}$,

•
$$(xy)^* = y^*x^*$$
 for every $x, y \in A$,

(x^{*})^{*} = x for every x ∈ A (i.e. the mapping * is an involution).

Let *A* be an algebra over \mathbb{K} . The mapping $*: A \rightarrow A$ is called an algebra involution if it has the following properties:

•
$$(x + y)^* = x^* + y^*$$
 for every $x, y \in A$,

•
$$(\lambda x)^* = \overline{\lambda} x^*$$
 for every $x \in A$ and $\lambda \in \mathbb{K}$,

•
$$(xy)^* = y^*x^*$$
 for every $x, y \in A$,

(x^{*})^{*} = x for every x ∈ A (i.e. the mapping * is an involution).

An algebra on which there is an algebra involution is called an algebra with an involution.

Fact 86 Let A be an algebra with an involution. Then $(a, \alpha)^* = (a^*, \overline{\alpha})$ for $(a, \alpha) \in A_e$ is an algebra involution on A_e that extends the involution from A.

Fact 86

Let A be an algebra with an involution. Then $(a, \alpha)^* = (a^*, \overline{\alpha})$ for $(a, \alpha) \in A_e$ is an algebra involution on A_e that extends the involution from A.

Proposition 87

Let A be an algebra with an involution and $x \in A$. Then the following hold:

(a) If e is a left or right unit in A, then e is a unit and $e^* = e$.

Fact 86

Let A be an algebra with an involution. Then $(a, \alpha)^* = (a^*, \overline{\alpha})$ for $(a, \alpha) \in A_e$ is an algebra involution on A_e that extends the involution from A.

Proposition 87

Let A be an algebra with an involution and $x \in A$. Then the following hold:

- (a) If e is a left or right unit in A, then e is a unit and $e^* = e$.
- (b) Suppose A has a unit. Then $x^* \in A^*$ if and only if $x \in A^*$. In this case $(x^*)^{-1} = (x^{-1})^*$.

Fact 86

Let A be an algebra with an involution. Then $(a, \alpha)^* = (a^*, \overline{\alpha})$ for $(a, \alpha) \in A_e$ is an algebra involution on A_e that extends the involution from A.

Proposition 87

Let A be an algebra with an involution and $x \in A$. Then the following hold:

- (a) If e is a left or right unit in A, then e is a unit and $e^* = e$.
- (b) Suppose A has a unit. Then $x^* \in A^*$ if and only if $x \in A^*$. In this case $(x^*)^{-1} = (x^{-1})^*$.
- (c) $\lambda \in \sigma(x)$ if and only if $\overline{\lambda} \in \sigma(x^*)$. Therefore $r(x^*) = r(x)$.
Proposition 88

Let A be a commutative semi-simple Banach algebra. Then every algebra involution on A is continuous.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Fact 90

Let A be an algebra with an involution and $x, y \in A$. Then the following hold:

(a) The elements $x + x^*$, x^*x , xx^* , and in the complex case also $i(x - x^*)$ are self-adjoint.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Fact 90

- (a) The elements $x + x^*$, x^*x , xx^* , and in the complex case also $i(x x^*)$ are self-adjoint.
- (b) If x is self-adjoint, then also tx is self-adjoint for every $t \in \mathbb{R}$.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Fact 90

- (a) The elements $x + x^*$, x^*x , xx^* , and in the complex case also $i(x x^*)$ are self-adjoint.
- (b) If x is self-adjoint, then also tx is self-adjoint for every $t \in \mathbb{R}$.
- (c) If A is complex, then there exist unique self-adjoint elements $u, v \in A$ such that x = u + iv. Then $x^* = u iv$.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Fact 90

- (a) The elements $x + x^*$, x^*x , xx^* , and in the complex case also $i(x x^*)$ are self-adjoint.
- (b) If x is self-adjoint, then also tx is self-adjoint for every $t \in \mathbb{R}$.
- (c) If A is complex, then there exist unique self-adjoint elements $u, v \in A$ such that x = u + iv. Then $x^* = u iv$.
- (d) If x, y are self-adjoint and commute, then xy is self-adjoint.

Let *A* be an algebra with an involution. An element $x \in A$ is called self-adjoint if $x^* = x$.

Fact 90

- (a) The elements $x + x^*$, x^*x , xx^* , and in the complex case also $i(x x^*)$ are self-adjoint.
- (b) If x is self-adjoint, then also tx is self-adjoint for every $t \in \mathbb{R}$.
- (c) If A is complex, then there exist unique self-adjoint elements $u, v \in A$ such that x = u + iv. Then $x^* = u iv$.
- (d) If x, y are self-adjoint and commute, then xy is self-adjoint.
- (e) If x is self-adjoint, then yxy* is self-adjoint.

Definition 91 A Banach algebra *A* with an involution is called a B*-algebra if

$$||x^*x|| = ||x||^2$$

for every $x \in A$.

Definition 91 A Banach algebra *A* with an involution is called a B*-algebra if

$$||x^*x|| = ||x||^2$$

for every $x \in A$.

Lemma 92

Let A be a normed algebra with an involution. Then the following statements are equivalent:

(i)
$$||x^*x|| \ge ||x||^2$$
 for every $x \in A$.

(ii)
$$||xx^*|| \ge ||x||^2$$
 for every $x \in A$.

(iii)
$$||x^*x|| = ||x||^2$$
 for every $x \in A$.

(iv)
$$||xx^*|| = ||x||^2$$
 for every $x \in A$.

In all cases then $||x^*|| = ||x||$ for every $x \in A$.

Proposition 93

Let A be a B^{*}-algebra without a unit. Then there exists a norm $\|\|\cdot\|\|$ on A_e with the involution from Fact 86 extending the original norm on A (and equivalent to the norm from Proposition 9) such that A_e is a B^{*}-algebra.

Let *A* be an algebra with an involution.

• If *A* has a unit, then an element $x \in A$ is called unitary if $x^*x = xx^* = e$, or in other words $x^{-1} = x^*$.

Let *A* be an algebra with an involution.

- If *A* has a unit, then an element $x \in A$ is called unitary if $x^*x = xx^* = e$, or in other words $x^{-1} = x^*$.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Let *A* be an algebra with an involution.

- If *A* has a unit, then an element $x \in A$ is called unitary if $x^*x = xx^* = e$, or in other words $x^{-1} = x^*$.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Fact 95

Let *A* be an algebra with an involution.

- If *A* has a unit, then an element $x \in A$ is called unitary if $x^*x = xx^* = e$, or in other words $x^{-1} = x^*$.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Fact 95

Let A be an algebra over \mathbb{K} with an involution and $x, y \in A$.

(a) If A has a unit and if x, y are unitary, then xy is unitary.

Let *A* be an algebra with an involution.

- If A has a unit, then an element x ∈ A is called unitary if x*x = xx* = e, or in other words x⁻¹ = x*.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Fact 95

- (a) If A has a unit and if x, y are unitary, then xy is unitary.
- (b) If x is normal, then x^n is normal for every $n \in \mathbb{N}$.

Let *A* be an algebra with an involution.

- If A has a unit, then an element x ∈ A is called unitary if x*x = xx* = e, or in other words x⁻¹ = x*.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Fact 95

- (a) If A has a unit and if x, y are unitary, then xy is unitary.
- (b) If x is normal, then x^n is normal for every $n \in \mathbb{N}$.
- (c) If A has a unit and if x is normal and y is unitary, then yxy* is normal.

Let *A* be an algebra with an involution.

- If *A* has a unit, then an element $x \in A$ is called unitary if $x^*x = xx^* = e$, or in other words $x^{-1} = x^*$.
- An element x ∈ A is called normal if it commutes with x*, i.e. if x*x = xx*.

Fact 95

- (a) If A has a unit and if x, y are unitary, then xy is unitary.
- (b) If x is normal, then x^n is normal for every $n \in \mathbb{N}$.
- (c) If A has a unit and if x is normal and y is unitary, then yxy* is normal.
- (d) If A has a unit and if x is normal and $\lambda \in \mathbb{K}$, then $\lambda e x$ is normal.

Theorem 96 Let A be a B^* -algebra and $x \in A$.

(a) If x is normal, then $||x^n|| = ||x||^n$ for every $n \in \mathbb{N}$ and if A is complex, then r(x) = ||x||.

Theorem 96 Let A be a B^* -algebra and $x \in A$.

- (a) If x is normal, then $||x^n|| = ||x||^n$ for every $n \in \mathbb{N}$ and if A is complex, then r(x) = ||x||.
- (b) If *A* is complex, then $r(x^*x) = r(xx^*) = ||x||^2$.

Theorem 96

Let A be a B^* -algebra and $x \in A$.

- (a) If x is normal, then $||x^n|| = ||x||^n$ for every $n \in \mathbb{N}$ and if A is complex, then r(x) = ||x||.
- (b) If *A* is complex, then $r(x^*x) = r(xx^*) = ||x||^2$.
- (c) If A has a unit and x is unitary, then $\sigma(x) \subset \{\lambda \in \mathbb{K}; |\lambda| = 1\}$. If moreover A is non-trivial, then ||x|| = 1.

Theorem 96

Let A be a B^* -algebra and $x \in A$.

- (a) If x is normal, then $||x^n|| = ||x||^n$ for every $n \in \mathbb{N}$ and if A is complex, then r(x) = ||x||.
- (b) If *A* is complex, then $r(x^*x) = r(xx^*) = ||x||^2$.
- (c) If A has a unit and x is unitary, then $\sigma(x) \subset \{\lambda \in \mathbb{K}; |\lambda| = 1\}$. If moreover A is non-trivial, then ||x|| = 1.
- (d) If x is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.

Corollary 97

Let A be a non-trivial complex commutative B^* -algebra. Then $\Delta(A) \neq \emptyset$.

Corollary 97

Let A be a non-trivial complex commutative B^{*}-algebra. Then $\Delta(A) \neq \emptyset$.

Corollary 98

Let A be a complex algebra with an involution. Then there exists at most one norm on A with which A is a *B**-algebra.

Let *A* and *B* be algebras with an involution. Then an algebra homomorphism $\Phi: A \rightarrow B$ is called a

*-homomorphism if it preserves the operation *, i.e. if $\Phi(x^*) = \Phi(x)^*$ for every $x \in A$.

Let *A* and *B* be algebras with an involution. Then an algebra homomorphism $\Phi: A \rightarrow B$ is called a

*-homomorphism if it preserves the operation *, i.e. if $\Phi(x^*) = \Phi(x)^*$ for every $x \in A$.

Corollary 100

Let A be a complex B*-algebra. Then every multiplicative linear functional on A is a *-homomorphism.

Let *A* and *B* be algebras with an involution. Then an algebra homomorphism $\Phi: A \rightarrow B$ is called a

*-homomorphism if it preserves the operation *, i.e. if $\Phi(x^*) = \Phi(x)^*$ for every $x \in A$.

Corollary 100

Let A be a complex B*-algebra. Then every multiplicative linear functional on A is a *-homomorphism.

Corollary 101

Let A, B be complex B*-algebras and $\Phi : A \rightarrow B$ a *-homomorphism. Then Φ is automatically continuous and moreover $\|\Phi\| \le 1$.

Corollary 102

Let A be a complex B^{*}-algebra and B its B^{*}-subalgebra. If A and B has a common unit, then $B^{\times} = A^{\times} \cap B$.

Corollary 102

Let A be a complex B^* -algebra and B its B^* -subalgebra. If A and B has a common unit, then $B^* = A^* \cap B$. Further, let $x \in B$. If B has a unit which is not a unit in A, then $\sigma_A(x) = \sigma_B(x) \cup \{0\}$, in the other cases $\sigma_A(x) = \sigma_B(x)$.

Theorem 103 (I. M. Gelfand a M. A. Naĭmark (1943))

Let A be a complex commutative B*-algebra. Then the Gelfand transform is an isometric *-isomorphism of A onto $C_0(\Delta(A))$.

Corollary 104

A complex commutative B^* -algebra A has a unit if and only if $\Delta(A)$ is compact.

Corollary 104

A complex commutative B^* -algebra A has a unit if and only if $\Delta(A)$ is compact.

Corollary 105

Let A and B are complex commutative B*-algebras. Then the following statements are equivalent:

- (i) A and B are isometrically *-isomorphic.
- (ii) A and B are algebraically isomorphic.
- (iii) The spaces $\Delta(A)$ and $\Delta(B)$ are homeomorphic.

Theorem 106 (I. M. Gelfand a M. A. Naĭmark (1943), I. Kaplansky (1953))

Every complex B^* -algebra can be embedded by an isometric *-isomorphism into $\mathcal{L}(H)$ for some suitable complex Hilbert space H.

Continuous calculus for normal elements of B*-algebras

Continuous calculus for normal elements of B*-algebras

Proposition 107

Let A be a normed algebra over \mathbb{K} , $\Omega \subset \mathbb{K}$, $f, g: \Omega \to A$, and $t \in \Omega$. If f'(t) and g'(t) exist, then (fg)'(t) = f'(t)g(t) + f(t)g'(t). Let *A* be a (real) Banach algebra with a unit and $x \in A$. Then we define

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Theorem 108

Let A be a Banach algebra over \mathbb{K} with a unit e and $x \in A$.

(a) If $y \in A$ commutes with x, then $\exp x \exp y = \exp(x + y)$.
Let A be a Banach algebra over \mathbb{K} with a unit e and $x \in A$.

(a) If y ∈ A commutes with x, then exp x exp y = exp(x + y).
(b) exp x ∈ A[×] and (exp x)⁻¹ = exp(-x).

Let A be a Banach algebra over \mathbb{K} with a unit e and $x \in A$.

- (a) If $y \in A$ commutes with x, then $\exp x \exp y = \exp(x + y)$.
- (b) $\exp x \in A^{\times}$ and $(\exp x)^{-1} = \exp(-x)$.
- (c) Put $f(\lambda) = \exp(\lambda x)$ for $\lambda \in \mathbb{K}$. Then $f'(\lambda) = \exp(\lambda x)x$ for every $\lambda \in \mathbb{K}$.

Let A be a Banach algebra over \mathbb{K} with a unit e and $x \in A$.

- (a) If $y \in A$ commutes with x, then $\exp x \exp y = \exp(x + y)$.
- (b) $\exp x \in A^{\times}$ and $(\exp x)^{-1} = \exp(-x)$.
- (c) Put $f(\lambda) = \exp(\lambda x)$ for $\lambda \in \mathbb{K}$. Then $f'(\lambda) = \exp(\lambda x)x$ for every $\lambda \in \mathbb{K}$.
- (d) If A is an algebra with a continuous involution, then $(\exp x)^* = \exp x^*$.

Let A be a Banach algebra over \mathbb{K} with a unit e and $x \in A$.

- (a) If $y \in A$ commutes with x, then $\exp x \exp y = \exp(x + y)$.
- (b) $\exp x \in A^{\times}$ and $(\exp x)^{-1} = \exp(-x)$.
- (c) Put $f(\lambda) = \exp(\lambda x)$ for $\lambda \in \mathbb{K}$. Then $f'(\lambda) = \exp(\lambda x)x$ for every $\lambda \in \mathbb{K}$.
- (d) If A is an algebra with a continuous involution, then (exp x)* = exp x*.
- (e) If A is a complex algebra with a continuous involution and x is self-adjoint, then exp(ix) is unitary.

Theorem 109 (Bent Fuglede (1950), Calvin R. Putnam (1951))

Let A be a complex B^* -algebra, $x \in A$, and let $a, b \in A$ be normal and such that ax = xb. Then $a^*x = xb^*$.

Definition 110 Let *A* be an algebra and $M \subset A$. The set

alg $M = \bigcap \{B \supset M; B \text{ is a subalgebra of } A\}$

is called algebra hull of *M*.

Definition 110 Let A be an algebra and $M \subset A$. The set

alg $M = \bigcap \{B \supset M; B \text{ is a subalgebra of } A\}$

is called algebra hull of *M*.

Proposition 111

Let A be an algebra and $M \subset A$. Then

alg M = span{ $x_1 x_2 \cdots x_n$; $x_1, \ldots, x_n \in M, n \in \mathbb{N}$ }.

Let *A* be a normed algebra and $M \subset A$. Then we define a closed algebra hull of *M* as

 $\overline{\text{alg }} M = \bigcap \{B \supset M; B \text{ is a closed subalgebra of } A\}.$

Let *A* be a normed algebra and $M \subset A$. Then we define a closed algebra hull of *M* as

 $\overline{\text{alg }} M = \bigcap \{B \supset M; B \text{ is a closed subalgebra of } A\}.$

Proposition 113

Let A be a normed algebra and $M \subset A$. Then $\overline{\text{alg } M} = \overline{\text{alg } M}$.

Fact 114 Let A, B be algebras and $M \subset A$. Then every algebra homomorphism Φ : alg $M \rightarrow B$ is uniquely determined by its values on M.

Fact 114

Let A, B be algebras and $M \subset A$. Then every algebra homomorphism Φ : alg $M \to B$ is uniquely determined by its values on M. If A, B are normed algebras, then every continuous algebra homomorphism Φ : alg $M \to B$ is uniquely determined by its values on M.

Proposition 115

Let A be a B^{*}-algebra and suppose that $M \subset A$ commutes and is closed under the involution. Then $\overline{\text{alg }} M$ is a commutative B^{*}-subalgebra of A.

Let A be an algebra over \mathbb{K} with a unit and $x \in A$. Let $\Omega_2 \subset \mathbb{K}$ be closed and $\Omega_1 \subset \Omega_2$. Let $\Phi_i \colon C(\Omega_i) \to A$ be an algebra homomorphism such that $\Phi_i(1) = e, \Phi_i(Id) = x$, in the complex case moreover $\Phi_1(\overline{Id}) = \Phi_2(\overline{Id})$, and let Φ_i be sequentially continuous from the topology of locally uniform convergence on $C(\Omega_i)$ to some Hausdorff topology τ on A, i = 1, 2. Then $\Phi_1(f \upharpoonright_{\Omega_1}) = \Phi_2(f)$ for every $f \in C(\Omega_2)$. Let *A* be a complex B^* -algebra with a unit and let $x \in A$ be normal. Set $B = \overline{alg}\{e, x, x^*\}$. Then we can define

$$f(x) = \Gamma_B^{-1}(f \circ \Gamma_B(x)).$$
(1)

Let A be a complex B*-algebra with a unit, let $x \in A$ be normal and $f \in C(\sigma(x))$. The mapping $\Phi : C(\sigma(x)) \to A$, where $\Phi(g) = g(x)$ is given by the formula (1), has the following properties:

(a) Φ is an isometric *-isomorphism of $C(\sigma(x))$ onto $B = \overline{alg}\{e, x, x^*\}$, for which moreover $\Phi(1) = e$ and $\Phi(Id) = x$.

Let A be a complex B*-algebra with a unit, let $x \in A$ be normal and $f \in C(\sigma(x))$. The mapping $\Phi : C(\sigma(x)) \to A$, where $\Phi(g) = g(x)$ is given by the formula (1), has the following properties:

(a) Φ is an isometric *-isomorphism of $C(\sigma(x))$ onto $B = \overline{alg}\{e, x, x^*\}$, for which moreover $\Phi(1) = e$ and $\Phi(Id) = x$.

(b) If
$$\Psi$$
: $C(\sigma(x)) \rightarrow A$ is a *-homomorphism for which $\Psi(1) = e$ and $\Psi(Id) = x$, then $\Psi = \Phi$.

Let A be a complex B*-algebra with a unit, let $x \in A$ be normal and $f \in C(\sigma(x))$. The mapping $\Phi : C(\sigma(x)) \to A$, where $\Phi(g) = g(x)$ is given by the formula (1), has the following properties:

(a) Φ is an isometric *-isomorphism of $C(\sigma(x))$ onto $B = \overline{alg}\{e, x, x^*\}$, for which moreover $\Phi(1) = e$ and $\Phi(Id) = x$.

- (b) If Ψ : $C(\sigma(x)) \rightarrow A$ is a *-homomorphism for which $\Psi(1) = e$ and $\Psi(Id) = x$, then $\Psi = \Phi$.
- (c) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.

Let A be a complex B*-algebra with a unit, let $x \in A$ be normal and $f \in C(\sigma(x))$. The mapping $\Phi : C(\sigma(x)) \to A$, where $\Phi(g) = g(x)$ is given by the formula (1), has the following properties:

- (a) Φ is an isometric *-isomorphism of $C(\sigma(x))$ onto $B = \overline{alg}\{e, x, x^*\}$, for which moreover $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) If Ψ : $C(\sigma(x)) \rightarrow A$ is a *-homomorphism for which $\Psi(1) = e$ and $\Psi(Id) = x$, then $\Psi = \Phi$.
- (c) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (d) f(x) is normal, it is self-adjoint if and only if f is real, and it is unitary if and only if |f| = 1.

Let A be a complex B*-algebra with a unit, let $x \in A$ be normal and $f \in C(\sigma(x))$. The mapping $\Phi : C(\sigma(x)) \to A$, where $\Phi(g) = g(x)$ is given by the formula (1), has the following properties:

- (a) Φ is an isometric *-isomorphism of $C(\sigma(x))$ onto $B = \overline{alg}\{e, x, x^*\}$, for which moreover $\Phi(1) = e$ and $\Phi(Id) = x$.
- (b) If Ψ : $C(\sigma(x)) \rightarrow A$ is a *-homomorphism for which $\Psi(1) = e$ and $\Psi(Id) = x$, then $\Psi = \Phi$.
- (c) $f(x) \in A^{\times}$ if and only if $f(\lambda) \neq 0$ for every $\lambda \in \sigma(x)$. In this case $f(x)^{-1} = \frac{1}{f}(x)$.
- (d) f(x) is normal, it is self-adjoint if and only if f is real, and it is unitary if and only if |f| = 1.

(e) $\sigma(f(x)) = f(\sigma(x))$ (spectral mapping theorem).

(f) If $C \subset A$ is a commutative B^{*}-subalgebra containing *e* and *x*, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.

C102, T72, P66, T103; T43; P79, T109; P28, C101, T116; P27(a)

- (f) If $C \subset A$ is a commutative B*-subalgebra containing e and x, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.

- (f) If $C \subset A$ is a commutative B*-subalgebra containing *e* and *x*, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.
- (h) If $g \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then $\Phi(g \upharpoonright_{\sigma(x)}) = \Psi(g)$, where Ψ is the holomorphic calculus from Theorem 50.

- (f) If $C \subset A$ is a commutative B^{*}-subalgebra containing e and x, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.
- (h) If $g \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then $\Phi(g \upharpoonright_{\sigma(x)}) = \Psi(g)$, where Ψ is the holomorphic calculus from Theorem 50.
 - (i) If $y \in A$ commutes with x, then y commutes also with f(x).

- (f) If $C \subset A$ is a commutative B^{*}-subalgebra containing e and x, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.
- (h) If $g \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then $\Phi(g \upharpoonright_{\sigma(x)}) = \Psi(g)$, where Ψ is the holomorphic calculus from Theorem 50.
 - (i) If $y \in A$ commutes with x, then y commutes also with f(x).
 - (j) If *D* is a complex B*-algebra and $\Theta: A \to D$ is a *-homomorphism such that $\Theta(e)$ is a unit in *D*, then $f(\Theta(x)) = \Theta(f(x))$. In particular, if $u \in A$ is unitary, then $f(uxu^*) = uf(x)u^*$.

- (f) If $C \subset A$ is a commutative B^{*}-subalgebra containing e and x, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.
- (h) If $g \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then $\Phi(g \upharpoonright_{\sigma(x)}) = \Psi(g)$, where Ψ is the holomorphic calculus from Theorem 50.
 - (i) If $y \in A$ commutes with x, then y commutes also with f(x).
 - (j) If *D* is a complex B*-algebra and $\Theta: A \to D$ is a *-homomorphism such that $\Theta(e)$ is a unit in *D*, then $f(\Theta(x)) = \Theta(f(x))$. In particular, if $u \in A$ is unitary, then $f(uxu^*) = uf(x)u^*$.
- (k) If $0 \in \sigma(x)$ and f(0) = 0, then $f(x) \in \overline{\operatorname{alg}}\{x, x^*\}$.

- (f) If $C \subset A$ is a commutative B*-subalgebra containing e and x, then $\Gamma_C^{-1}(f \circ \Gamma_C(x)) = f(x)$.
- (g) If $g \in C(f(\sigma(x)))$, then $(g \circ f)(x) = g(f(x))$.
- (h) If $g \in H(\Omega)$, where $\Omega \subset \mathbb{C}$ is an open neighbourhood of $\sigma(x)$, then $\Phi(g \upharpoonright_{\sigma(x)}) = \Psi(g)$, where Ψ is the holomorphic calculus from Theorem 50.
 - (i) If $y \in A$ commutes with x, then y commutes also with f(x).
 - (j) If *D* is a complex B*-algebra and $\Theta: A \to D$ is a *-homomorphism such that $\Theta(e)$ is a unit in *D*, then $f(\Theta(x)) = \Theta(f(x))$. In particular, if $u \in A$ is unitary, then $f(uxu^*) = uf(x)u^*$.

(k) If $0 \in \sigma(x)$ and f(0) = 0, then $f(x) \in \overline{\text{alg}}\{x, x^*\}$.

If *A* does not have a unit, then we carry out the whole construction in A_e . If $f \in C(\sigma(x))$ is such that f(0) = 0, then $f(x) \in A$.

Theorem 119 Let A be a complex B^* -algebra and $x \in A$.

(a) The element x is self-adjoint if and only if it is normal and $\sigma(x) \subset \mathbb{R}$.

Let A be a complex B^* -algebra and $x \in A$.

- (a) The element x is self-adjoint if and only if it is normal and $\sigma(x) \subset \mathbb{R}$.
- (b) If A has a unit, then x is unitary if and only if it is normal and $\sigma(x) \subset \{\lambda \in \mathbb{C}; |\lambda| = 1\}.$

8. Non-negative elements of B*-algebras

T119(a); F90, P24(d); T96; T81

Let *A* be an algebra with an involution and let $x \in A$ be self-adjoint. We say that *x* is non-negative, if $\sigma(x) \subset [0, +\infty)$.

Let *A* be an algebra with an involution and let $x \in A$ be self-adjoint. We say that *x* is non-negative, if $\sigma(x) \subset [0, +\infty)$.

Fact 121

An element x of a complex B^* -algebra is non-negative, if and only if it is normal and $\sigma(x) \subset [0, +\infty)$.

Let *A* be an algebra with an involution and let $x \in A$ be self-adjoint. We say that *x* is non-negative, if $\sigma(x) \subset [0, +\infty)$.

Fact 121

An element x of a complex B^* -algebra is non-negative, if and only if it is normal and $\sigma(x) \subset [0, +\infty)$.

Proposition 122

Let A be an algebra with an involution and let $x, y \in A$ be non-negative.

- (a) If $t \ge 0$, then tx is non-negative.
- (b) If A is a complex B*-algebra, then x + y is non-negative.
- (c) If A is a complex Banach algebra and x and y commute, then xy is non-negative.

Fact 123

Let A be a complex B^* -algebra and $x \in A$.

- (a) If x is non-negative, then |x| = x.
- (b) If x is self-adjoint, then $|x|^2 = x^2$.
- (c) If x is non-negative, then $(\sqrt{x})^2 = x$. Moreover, \sqrt{x} is the only non-negative $y \in A$ satisfying $y^2 = x$.

(d) If x is self-adjoint, then $\sqrt{x^2} = |x|$.

Proposition 124

Let A be a complex B*-algebra. Then for every self-adjoint element $x \in A$ there exists a unique pair of non-negative elements $x^+, x^- \in A$ such that $x = x^+ - x^-$ and $x^-x^+ = x^+x^- = 0$. Moreover, $x^+ + x^- = |x|$.

Proposition 124

Let A be a complex B^* -algebra. Then for every self-adjoint element $x \in A$ there exists a unique pair of non-negative elements $x^+, x^- \in A$ such that $x = x^+ - x^-$ and $x^-x^+ = x^+x^- = 0$. Moreover, $x^+ + x^- = |x|$.

Theorem 125 (I. Kaplansky (1953))

Let A be a complex B^* -algebra and $x \in A$. Then x^*x and xx^* are non-negative.

Theorem 126 (polar decomposition)

Let A be a complex B^* -algebra with a unit and let $x \in A$ be invertible. Then there exist a unitary $u \in A$ and a non-negative $a \in A$ satisfying x = ua. This decomposition is unique.
II. Continuous linear operators on Hilbert spaces

1. Basic properties

II. Continuous linear operators on Hilbert spaces

1. Basic properties

Theorem 127 If H_1 , H_2 are Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$, then (a) Ker $T^* = (\text{Rng } T)^{\perp}$, (b) Ker $T = (\text{Rng } T^*)^{\perp}$, (c) $\overline{\text{Rng } T} = (\text{Ker } T^*)^{\perp}$, (d) $\overline{\text{Png } T^*} = (\text{Ker } T)^{\perp}$

(d) $\overline{\operatorname{Rng} T^{\star}} = (\operatorname{Ker} T)^{\perp}$.

Let *X*, *Y*, and *Z* be vector spaces over \mathbb{K} . A mapping *B*: *X* × *Y* \rightarrow *Z* is called bilinear if it is linear separately in the first and in the second coordinate, i.e. the mapping *x* \mapsto *B*(*x*, *y*) is linear for every *y* \in *Y* and *y* \mapsto *B*(*x*, *y*) is linear for every *x* \in *X*.

Let *X*, *Y*, and *Z* be vector spaces over \mathbb{K} . A mapping *B*: *X* × *Y* → *Z* is called bilinear if it is linear separately in the first and in the second coordinate, i.e. the mapping $x \mapsto B(x, y)$ is linear for every $y \in Y$ and $y \mapsto B(x, y)$ is linear for every $x \in X$. The mapping *B* is called sesquilinear, if it is linear in the first coordinate and conjugate-linear in the second coordinate.

Let *X*, *Y*, and *Z* be vector spaces over \mathbb{K} . A mapping $B: X \times Y \to Z$ is called bilinear if it is linear separately in the first and in the second coordinate, i.e. the mapping $x \mapsto B(x, y)$ is linear for every $y \in Y$ and $y \mapsto B(x, y)$ is linear for every $x \in X$. The mapping *B* is called sesquilinear, if it is linear in the first coordinate and conjugate-linear in the second coordinate. If $Z = \mathbb{K}$, then *B* is called bilinear, resp. sesquilinear form.

Proposition 129 (polarisation formula)

Let *X*, *Y* be vector spaces over \mathbb{K} and let $S: X \times X \rightarrow Y$ be a sesquilinear mapping. Then

$$S(x, y) + S(y, x) = \frac{1}{2} \big(S(x + y, x + y) - S(x - y, x - y) \big)$$

for every $x, y \in X$.

Proposition 129 (polarisation formula) Let X, Y be vector spaces over \mathbb{K} and let S: $X \times X \rightarrow Y$

be a sesquilinear mapping. Then

$$S(x, y) + S(y, x) = \frac{1}{2} \big(S(x + y, x + y) - S(x - y, x - y) \big)$$

for every $x, y \in X$. If $\mathbb{K} = \mathbb{C}$, then

$$S(x, y) = \frac{1}{4} (S(x + y, x + y) - S(x - y, x - y) + iS(x + iy, x + iy) - iS(x - iy, x - iy))$$

for every $x, y \in X$.

Let X be an inner-product space and let $T: X \rightarrow X$ be a linear operator. Suppose moreover that at least one of the following condition holds:

- X is complex.
- X is a Hilbert space and T is continuous and self-adjoint.
- If $\langle Tx, x \rangle = 0$ for every $x \in X$, then T = 0.

Let X be an inner-product space and let $T: X \rightarrow X$ be a linear operator. Suppose moreover that at least one of the following condition holds:

- X is complex.
- X is a Hilbert space and T is continuous and self-adjoint.
- If $\langle Tx, x \rangle = 0$ for every $x \in X$, then T = 0.

Corollary 131

Let X be an inner-product space and let S, T : $X \rightarrow X$ be linear operators. Suppose moreover that at least one of the following condition holds:

- X is complex.
- X is a Hilbert space and S, T are continuous and self-adjoint.
- If $\langle Sx, x \rangle = \langle Tx, x \rangle$ for every $x \in X$, then S = T.

Let *X*, *Y*, *Z* be normed linear spaces and let *B*: *X* × *Y* → *Z* be a bilinear, resp. sesquilinear mapping. We say that *B* is bounded if $\sup_{x \in B_X, y \in B_Y} ||B(x, y)|| < +\infty$. In this case we define $||B|| = \sup_{x \in B_Y, y \in B_Y} ||B(x, y)||$.

Let *X*, *Y*, *Z* be normed linear spaces and let *B*: *X* × *Y* → *Z* be a bilinear, resp. sesquilinear mapping. We say that *B* is bounded if $\sup_{x \in B_X, y \in B_Y} ||B(x, y)|| < +\infty$. In this case we define $||B|| = \sup_{x \in B_X, y \in B_Y} ||B(x, y)||$.

Proposition 133

Let *H* be a Hilbert space. If *S* is a bounded sesquilinear form on *H*, then there exists a unique $T \in \mathcal{L}(H)$ such that $S(x, y) = \langle Tx, y \rangle$ for all $x, y \in H$. Moreover, ||T|| = ||S||.

Fact 134 Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then Ker $T^* \circ T = \text{Ker } T$.

Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Then the following statements are equivalent:

(i) T is normal.

(ii)
$$\langle T^*x, T^*y \rangle = \langle Tx, Ty \rangle$$
 for every $x, y \in H$.

(iii)
$$||T^*x|| = ||Tx||$$
 for every $x \in H$.

Let *X* be a normed linear spacer over \mathbb{K} and $T \in \mathcal{L}(X)$. A number $\lambda \in \mathbb{K}$ is called an approximate eigenvalue of the operator *T* if there exists a sequence $\{x_n\} \subset S_X$ such that $(\lambda I - T)x_n \to 0$.

Let *X* be a normed linear spacer over \mathbb{K} and $T \in \mathcal{L}(X)$. A number $\lambda \in \mathbb{K}$ is called an approximate eigenvalue of the operator *T* if there exists a sequence $\{x_n\} \subset S_X$ such that $(\lambda I - T)x_n \to 0$. The set of all approximate eigenvalues of the operator *T* is called an approximate point spectrum of the operator *T* and it is denoted by $\sigma_{ap}(T)$.

Let *X* be a normed linear spacer over \mathbb{K} and $T \in \mathcal{L}(X)$. A number $\lambda \in \mathbb{K}$ is called an approximate eigenvalue of the operator *T* if there exists a sequence $\{x_n\} \subset S_X$ such that $(\lambda I - T)x_n \to 0$. The set of all approximate eigenvalues of the operator *T* is called an approximate point spectrum of the operator *T* and it is denoted by $\sigma_{ap}(T)$.

Fact 137

Let X be a normed linear space over \mathbb{K} and $T \in \mathcal{L}(X)$. Then $\lambda \in \mathbb{K}$ is an approximate eigenvalue of T if and only if $\lambda I - T$ is not an isomorphism into.

Let *X* be a normed linear spacer over \mathbb{K} and $T \in \mathcal{L}(X)$. A number $\lambda \in \mathbb{K}$ is called an approximate eigenvalue of the operator *T* if there exists a sequence $\{x_n\} \subset S_X$ such that $(\lambda I - T)x_n \to 0$. The set of all approximate eigenvalues of the operator *T* is called an approximate point spectrum of the operator *T* and it is denoted by $\sigma_{ap}(T)$.

Fact 137

Let X be a normed linear space over \mathbb{K} and $T \in \mathcal{L}(X)$. Then $\lambda \in \mathbb{K}$ is an approximate eigenvalue of T if and only if $\lambda I - T$ is not an isomorphism into.

Proposition 138

Let X, Y be normed linear spaces, $T \in \mathcal{L}(X)$, and let $S: X \to Y$ be a linear isomorphism. Then $\sigma_{ap}(S \circ T \circ S^{-1}) = \sigma_{ap}(T)$, where $S \circ T \circ S^{-1} \in \mathcal{L}(Y)$.

Let *X* be an inner-product space and $T \in \mathcal{L}(X)$. The set $N_T = \{\langle Tx, x \rangle; x \in S_X\}$ is called a numerical range of the operator *T*.

Fact 140

Let X be a normed linear space with dim $X_{\mathbb{R}} \neq 1$ (i.e. X is either complex, or real of dimension not equal to 1). Then S_X is pathwise connected.

Let X be an inner-product space over \mathbb{K} and $T \in \mathcal{L}(X)$. (a) $N_{\alpha l+\beta T} = \alpha + \beta N_T$ for any $\alpha, \beta \in \mathbb{K}$.

Let X be an inner-product space over \mathbb{K} and $T \in \mathcal{L}(X)$.

(a) $N_{\alpha I+\beta T} = \alpha + \beta N_T$ for any $\alpha, \beta \in \mathbb{K}$.

(b) The set N_T is pathwise connected.

Let X be an inner-product space over \mathbb{K} and $T \in \mathcal{L}(X)$.

(a)
$$N_{\alpha I+\beta T} = \alpha + \beta N_T$$
 for any $\alpha, \beta \in \mathbb{K}$.

(b) The set N_T is pathwise connected.

(c)
$$\sigma_{\mathbf{p}}(T) \subset N_T \subset B_{\mathbb{K}}(0, ||T||).$$

Let X be an inner-product space over \mathbb{K} and $T \in \mathcal{L}(X)$.

(a)
$$N_{\alpha l+\beta T} = \alpha + \beta N_T$$
 for any $\alpha, \beta \in \mathbb{K}$.

(b) The set N_T is pathwise connected.

(c)
$$\sigma_{\mathbf{p}}(T) \subset N_T \subset B_{\mathbb{K}}(0, ||T||).$$

(d) $\sigma_{ap}(T) \subset \overline{N_T}$. If X is a Hilbert space, then $\sigma(T) \setminus \sigma_{ap}(T) \subset N_T$, and so $\sigma(T) \subset \overline{N_T}$.

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

(a) Ker $T = \text{Ker } T^*$.

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

(a) Ker $T = \text{Ker } T^*$.

(b) Rng T is dense in H if and only if T is one-to-one.

Let H be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

- (a) Ker $T = \text{Ker } T^*$.
- (b) Rng T is dense in H if and only if T is one-to-one.
- (c) *T* is invertible if and only if there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$.

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

(a) Ker $T = \text{Ker } T^*$.

- (b) Rng T is dense in H if and only if T is one-to-one.
- (c) *T* is invertible if and only if there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$.

(d) $\sigma(T) = \sigma_{ap}(T)$.

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

(a) Ker $T = \text{Ker } T^*$.

- (b) Rng T is dense in H if and only if T is one-to-one.
- (c) *T* is invertible if and only if there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$.

(d)
$$\sigma(T) = \sigma_{ap}(T)$$
.

(e) $\lambda \in \sigma_p(T)$ if and only if $\overline{\lambda} \in \sigma_p(T^*)$. The eigenspace of *T* corresponding to an eigenvalue λ is equal to the eigenspace of T^* corresponding to the eigenvalue $\overline{\lambda}$.

Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be normal. Then the following hold:

(a) Ker $T = \text{Ker } T^*$.

- (b) Rng T is dense in H if and only if T is one-to-one.
- (c) *T* is invertible if and only if there exists c > 0 such that $||Tx|| \ge c||x||$ for every $x \in H$.

(d)
$$\sigma(T) = \sigma_{ap}(T)$$
.

- (e) $\lambda \in \sigma_p(T)$ if and only if $\overline{\lambda} \in \sigma_p(T^*)$. The eigenspace of *T* corresponding to an eigenvalue λ is equal to the eigenspace of T^* corresponding to the eigenvalue $\overline{\lambda}$.
 - (f) If λ_1, λ_2 are different eigenvalues of *T*, then $\text{Ker}(\lambda_1 I T) \perp \text{Ker}(\lambda_2 I T)$.

Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Then *T* is self-adjoint if and only if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every $x, y \in H$.

Let H be a Hilbert space and $T \in \mathcal{L}(H)$. Then T is self-adjoint if and only if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every $x, y \in H$. For T self-adjoint the following holds:

(a) $\langle Tx, x \rangle \in \mathbb{R}$ for every $x \in H$.

Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Then *T* is self-adjoint if and only if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every $x, y \in H$. For *T* self-adjoint the following holds:

(a)
$$\langle Tx, x \rangle \in \mathbb{R}$$
 for every $x \in H$.

Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. Then *T* is self-adjoint if and only if $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every $x, y \in H$. For *T* self-adjoint the following holds:

(a)
$$\langle Tx, x \rangle \in \mathbb{R}$$
 for every $x \in H$.

(c)
$$r(T) = \sup\{|\lambda|; \lambda \in N_T\} = ||T||.$$

Let *H* be a complex Hilbert space and $T \in \mathcal{L}(H)$. Then *T* is self-adjoint if and only if $N_T \subset \mathbb{R}$.

Let *H* be a complex Hilbert space and $T \in \mathcal{L}(H)$. Then *T* is self-adjoint if and only if $N_T \subset \mathbb{R}$.

Corollary 145

Let *H* be a Hilbert space and $T \in \mathcal{L}(H)$. If *T* is self-adjoint, then $\sigma(T) \subset [0, +\infty)$ if and only if $\langle Tx, x \rangle \ge 0$ for every $x \in H$. If *H* is complex, then *T* is non-negative (element of the algebra $\mathcal{L}(H)$) if and only if $\langle Tx, x \rangle \ge 0$ for every $x \in H$.

Let H be a Hilbert space and let $P \in \mathcal{L}(H)$ be a

projection. Then the following statements are equivalent:

- (i) P is self-adjoint.
- (ii) P is normal.
- (iii) P is orthogonal.
- (iv) P is non-negative.
Let H be a Hilbert space and let $P \in \mathcal{L}(H)$ be a

projection. Then the following statements are equivalent:

- (i) P is self-adjoint.
- (ii) P is normal.
- (iii) P is orthogonal.
- (iv) P is non-negative.

Lemma 147

Let H be a Hilbert space, $S, T \in \mathcal{L}(H)$ and assume that S is self-adjoint. Then Rng $S \perp$ Rng T if and only if ST = 0.

Definition 148 Let H_1 , H_2 be Hilbert spaces. An operator $T \in \mathcal{L}(H_1, H_2)$ is called unitary if $T^* \circ T = I_{H_1}$ and $T \circ T^* = I_{H_2}$, or in other words $T^{-1} = T^*$.

Let H_1 , H_2 be Hilbert spaces. An operator $T \in \mathcal{L}(H_1, H_2)$ is called unitary if $T^* \circ T = I_{H_1}$ and $T \circ T^* = I_{H_2}$, or in other words $T^{-1} = T^*$.

Theorem 149

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then the following statements are equivalent:

- (i) T is unitary.
- (ii) *T* is onto and $\langle Tx, Ty \rangle = \langle x, y \rangle$ for every $x, y \in H$.
- (iii) T is an isometry onto.

Lemma 150

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Let Y be a closed subspace of H_2 such that Rng $T \subset Y$ and let $S \in \mathcal{L}(H_1, Y)$ be defined as Sx = Tx for $x \in H_1$. Then $S^* = T^* \upharpoonright_Y$. Theorem 151 Let *H* be a Hilbert space. Then $\mathcal{K}(H) = \overline{\mathcal{F}(H)}$.

Let *A* be a set and let $f: A \rightarrow A$ be a mapping. A set $B \subset A$ is called invariant with respect to *f* if $f(B) \subset B$, i.e. $f \upharpoonright_B : B \rightarrow B$.

Fact 153

Let *H* be a Hilbert space, $T \in \mathcal{L}(H)$, and let $M \subset H$ be a set of eigenvectors of *T* (not necessarily all).

- (a) If $Y \subset H$ is invariant with respect to T, then Y^{\perp} is invariant with respect to T^* .
- (b) $\overline{\text{span}} M$ is invariant with respect to T.
- (c) If T normal, then both $\overline{\text{span}} M$ and $(\overline{\text{span}} M)^{\perp}$ are invariant with respect to both T and T^* .
- (d) Let Y ⊂ H be a closed subspace invariant with respect to both T and T*. Then (T ↾_Y)* = T* ↾_Y. So if T is self-adjoint, resp. normal, then T ↾_Y ∈ ℒ(Y) is self-adjoint, resp. normal.

Theorem 154 (spectral decomposition of a normal compact operator; D. Hilbert (1904), Erhard Schmidt (1907))

Let *H* be a Hilbert space and $T \in \mathcal{K}(H)$. Suppose further that

- T is self-adjoint or
- H is complex and T is normal.

Then there exist an orthonormal basis B of H consisting of eigenvectors of T. The set of all vectors from B corresponding to non-zero eigenvalues of T is countable and if we enumerate it by an arbitrary injective sequence $\{e_n\}_{n=1}^N$, $N \in \mathbb{N}_0 \cup \{\infty\}$, then $\{e_n\}$ is an orthonormal basis of $\overline{\operatorname{Rng } T}$ and

$$Tx = \sum_{n=1}^{N} \lambda_n \langle x, e_n \rangle e_n$$

for every $x \in H$, where λ_n is the eigenvalue corresponding to the eigenvector e_n .

Theorem 154 (spectral decomposition of a normal compact operator; D. Hilbert (1904), Erhard Schmidt (1907))

Let *H* be a Hilbert space and $T \in \mathcal{K}(H)$. Suppose further that

- T is self-adjoint or
- H is complex and T is normal.

Then there exist an orthonormal basis B of H consisting of eigenvectors of T. The set of all vectors from B corresponding to non-zero eigenvalues of T is countable and if we enumerate it by an arbitrary injective sequence $\{e_n\}_{n=1}^N$, $N \in \mathbb{N}_0 \cup \{\infty\}$, then $\{e_n\}$ is an orthonormal basis of $\overline{\operatorname{Rng } T}$ and

$$Tx = \sum_{n=1}^{N} \lambda_n \langle x, e_n \rangle e_n$$

for every $x \in H$, where λ_n is the eigenvalue corresponding to the eigenvector e_n .

If $\{\lambda_n\}_{n=1}^M$, $M \in \mathbb{N}_0 \cup \{\infty\}$ is an injective sequence of all eigenvalues of T and P_n is the orthogonal projection onto $\operatorname{Ker}(\lambda_n I - T)$, then

$$I=\sum_{n=1}^{M}P_{n},$$

where the series converges pointwise unconditionally (i.e. $x = \sum_{n=1}^{M} P_n x$ unconditionally for every $x \in H$) and

$$T = \sum_{n=1}^{M} \lambda_n P_n,$$

where the series converges unconditionally in the space $\mathcal{L}(H)$.

Theorem 155 (representation of a compact operator; E. Schmidt (1907))

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{K}(H_1, H_2)$. Then there exist $N \in \mathbb{N}_0 \cup \{\infty\}$, a sequence of positive numbers $\{\lambda_n\}_{n=1}^N$, and orthonormal systems $\{u_n\}_{n=1}^N \subset H_1$ and $\{v_n\}_{n=1}^N \subset H_2$ such that

$$Tx = \sum_{n=1}^{N} \lambda_n \langle x, u_n \rangle v_n$$

for every $x \in H$.

Theorem 155 (representation of a compact operator; E. Schmidt (1907))

Let H_1 , H_2 be Hilbert spaces and $T \in \mathcal{K}(H_1, H_2)$. Then there exist $N \in \mathbb{N}_0 \cup \{\infty\}$, a sequence of positive numbers $\{\lambda_n\}_{n=1}^N$, and orthonormal systems $\{u_n\}_{n=1}^N \subset H_1$ and $\{v_n\}_{n=1}^N \subset H_2$ such that

$$Tx = \sum_{n=1}^{N} \lambda_n \langle x, u_n \rangle v_n$$

for every $x \in H$. Further, $\{\lambda_n^2\}_{n=1}^N$ is a sequence of all non-zero eigenvalues of the operator $T^* \circ T$, and for every $\lambda > 0$ the number of elements of the set $\{n \in \mathbb{N}; \lambda_n^2 = \lambda\}$ is equal to dim Ker $(\lambda I - T^* \circ T)$. So the sequence $\{\lambda_n\}_{n=1}^N$ is determined uniquely up to a permutation and if $N = \infty$, then $\lambda_n \to 0$.

2. Bounded Borel calculus

Let *X*, *Y* be normed linear spaces. We define the following locally convex topologies on the space $\mathcal{L}(X, Y)$:

the strong operator topology τ_{SOT} is generated by the system of seminorms {p_x(T) = ||Tx||; x ∈ X},

Let *X*, *Y* be normed linear spaces. We define the following locally convex topologies on the space $\mathcal{L}(X, Y)$:

- the strong operator topology τ_{SOT} is generated by the system of seminorms {p_x(T) = ||Tx||; x ∈ X},
- the weak operator topology τ_{WOT} is generated by the system of seminorms {p_{x,f}(T) = |f(Tx)|; x ∈ X, f ∈ Y*}.

Let *X*, *Y* be normed linear spaces. We define the following locally convex topologies on the space $\mathcal{L}(X, Y)$:

- the strong operator topology τ_{SOT} is generated by the system of seminorms {p_x(T) = ||Tx||; x ∈ X},
- the weak operator topology τ_{WOT} is generated by the system of seminorms {p_{x,f}(T) = |f(Tx)|; x ∈ X, f ∈ Y*}.

The symbol $Bf_b(X)$ denotes the set of all bounded Borel functions on a topological space *X*.

Let *X* be a Banach space over \mathbb{K} and $T \in \mathcal{L}(X)$. We say that a mapping Ψ : Bf_b($\sigma(T)$) $\rightarrow \mathcal{L}(X)$ is a Borel functional calculus for *T* if Ψ is an algebra homomorphism, $\Psi(1) = I$, $\Psi(Id) = T$, and if $\{f_n\} \subset Bf_b(\sigma(T))$ is a bounded sequence converging pointwise to $f \in Bf_b(\sigma(T))$, then $\Psi(f_n) \rightarrow \Psi(f)$ in the topology τ_{WOT} .

Let *A* be an algebra over \mathbb{K} with a unit, τ a Hausdorff topology on *A*, $x, y \in A$, and $F \subset \mathbb{K}$ closed. A homomorphism $\Phi : \operatorname{Bf}_{b}(F) \to A$ will be called a Borel calculus on *F* for τ and a pair (x, y) if $\Phi(1) = e$, $\Phi(Id) = x, \Phi(\overline{Id}) = y$, and $\Psi(f_n) \xrightarrow{\tau} \Psi(f)$ whenever $\{f_n\} \subset \operatorname{Bf}_{b}(F)$ is a bounded sequence converging pointwise to $f \in \operatorname{Bf}_{b}(F)$. Let *A* be an algebra over \mathbb{K} with a unit, τ a Hausdorff topology on *A*, $x, y \in A$, and $F \subset \mathbb{K}$ closed. A homomorphism $\Phi : \operatorname{Bf}_{b}(F) \to A$ will be called a Borel calculus on *F* for τ and a pair (x, y) if $\Phi(1) = e$, $\Phi(Id) = x, \Phi(\overline{Id}) = y$, and $\Psi(f_n) \xrightarrow{\tau} \Psi(f)$ whenever $\{f_n\} \subset \operatorname{Bf}_{b}(F)$ is a bounded sequence converging pointwise to $f \in \operatorname{Bf}_{b}(F)$.

Theorem 158

Let A be a Banach algebra over \mathbb{K} with a unit, τ a Hausdorff topology on A (non-strictly) weaker than norm, and $x, y \in A$. Assume that there exists a Borel calculus Ψ on a closed $F \subset \mathbb{K}$ for τ and a pair (x, y). Then there is a Borel calculus Φ on $\sigma(x)$ for τ and a pair (x, y). If moreover Ψ_1 is a Borel calculus on F_1 for τ and a pair (x, y), then $\Psi_1(f) = \Phi(f \upharpoonright_{\sigma(x)})$ for every $f \in Bf_b(F_1)$.

Lemma 159 Let *H* be a Hilbert space and $\{x_n\}_{n=1}^{\infty} \subset H$. If $x_n \to x \in H$ weakly and $||x_n|| \to ||x||$, then $x_n \to x$ (in the norm).

Let *H* be a complex Hilbert space and let $T \in \mathcal{L}(H)$ be a normal operator. For fixed $x, y \in H$ consider the function $\varphi_{x,y} \colon C(\sigma(T)) \to \mathbb{C}$ defined by

$$\varphi_{\mathbf{X},\mathbf{y}}(f) = \langle f(T)\mathbf{X},\mathbf{y} \rangle.$$

Let *H* be a complex Hilbert space and let $T \in \mathcal{L}(H)$ be a normal operator. For fixed $x, y \in H$ consider the function $\varphi_{x,y} \colon C(\sigma(T)) \to \mathbb{C}$ defined by

$$\varphi_{\mathbf{X},\mathbf{y}}(f) = \langle f(T)\mathbf{X},\mathbf{y} \rangle.$$

There exist a regular Borel complex measure $\mu_{x,y}$ on $\sigma(T)$ such that

$$\varphi_{x,y}(f) = \int_{\sigma(T)} f \, \mathrm{d}\mu_{x,y}$$

for every $f \in C(\sigma(T))$, and $\|\mu_{x,y}\| = \|\varphi_{x,y}\| \le \|x\| \|y\|$.

Let *H* be a complex Hilbert space and let $T \in \mathcal{L}(H)$ be a normal operator. For fixed $x, y \in H$ consider the function $\varphi_{x,y} \colon C(\sigma(T)) \to \mathbb{C}$ defined by

$$\varphi_{\mathbf{x},\mathbf{y}}(f) = \langle f(T)\mathbf{x},\mathbf{y} \rangle.$$

There exist a regular Borel complex measure $\mu_{x,y}$ on $\sigma(T)$ such that

$$\varphi_{x,y}(f) = \int_{\sigma(T)} f \, \mathrm{d}\mu_{x,y}$$

for every $f \in C(\sigma(T))$, and $\|\mu_{x,y}\| = \|\varphi_{x,y}\| \le \|x\| \|y\|$. For $f \in Bf_b(\sigma(T))$ there exist a unique operator $f(T) \in \mathcal{L}(H)$ such that

$$\langle f(T)x, y \rangle = \int_{\sigma(T)} f \, \mathrm{d}\mu_{x,y}$$
 (2)

for every $x, y \in H$. Moreover, $||f(T)|| \le ||f||_{\infty}$.

T117, P133, C145

Let H be a complex Hilbert space, let $T \in \mathcal{L}(H)$ be a normal operator and $f \in Bf_b(\sigma(T))$. The mapping $\Phi : Bf_b(\sigma(T)) \to \mathcal{L}(H)$, where $\Phi(g) = g(T)$ is defined above, is a Borel functional calculus for T with the following properties:

(a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.
- (d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| = 1, then f(T) is unitary.

Let H be a complex Hilbert space, let $T \in \mathcal{L}(H)$ be a normal operator and $f \in Bf_b(\sigma(T))$. The mapping $\Phi : Bf_b(\sigma(T)) \to \mathcal{L}(H)$, where $\Phi(g) = g(T)$ is defined above, is a Borel functional calculus for T with the following properties:

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.
- (d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| = 1, then f(T) is unitary.

(e) $\sigma(f(T)) \subset \overline{f(\sigma(T))}$.

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.
- (d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| = 1, then f(T) is unitary.
- (e) $\sigma(f(T)) \subset \overline{f(\sigma(T))}$.
- (f) If $g \in Bf_b(\overline{Rng f})$, then $(g \circ f)(T) = g(f(T))$.

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.
- (d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| = 1, then f(T) is unitary.
- (e) $\sigma(f(T)) \subset \overline{f(\sigma(T))}$.
- (f) If $g \in Bf_b(\overline{Rng f})$, then $(g \circ f)(T) = g(f(T))$.
- (g) If $S \in \mathcal{L}(H)$ commutes with T, then S commutes also with f(T).

- (a) Φ is a *-homomorphism and if we denote by Ψ the continuous calculus for T from Theorem 117, then $\Phi \upharpoonright_{C(\sigma(T))} = \Psi$. If H is non-trivial, then $\|\Phi\| = 1$.
- (b) If {f_n} ⊂ Bf_b(σ(T)) is a bounded sequence converging pointwise to f, then Φ(f_n) → Φ(f) in the topology τ_{SOT}.
- (c) If Ψ is a Borel functional calculus for T which is moreover a *-homomorphism, then $\Psi(g) = \Phi(g)$ for every $g \in Bf_b(\sigma(T))$.
- (d) f(T) is normal. If f is real, then f(T) is self-adjoint. If |f| = 1, then f(T) is unitary.
- (e) $\sigma(f(T)) \subset \overline{f(\sigma(T))}$.
- (f) If $g \in Bf_b(\overline{Rng f})$, then $(g \circ f)(T) = g(f(T))$.
- (g) If $S \in \mathcal{L}(H)$ commutes with T, then S commutes also with f(T).
- (h) If $U \in \mathcal{L}(H)$ is unitary, then $f(UTU^*) = Uf(T)U^*$.

3. Polar decomposition

Theorem 161 (polar decomposition)

Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$. Then T is normal if and only if there exist a unitary $U \in \mathcal{L}(H)$ and a non-negative $A \in \mathcal{L}(H)$ such that T = UA = AU. This decomposition is unique if and only if T is one-to one.

Theorem 161 (polar decomposition)

Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$. Then T is normal if and only if there exist a unitary $U \in \mathcal{L}(H)$ and a non-negative $A \in \mathcal{L}(H)$ such that T = UA = AU. This decomposition is unique if and only if T is one-to one.

Corollary 162

Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$. Then T is normal if and only if there exists a unitary $U \in \mathcal{L}(H)$ such that $T^* = UT = TU$.

Let H_1 , H_2 be complex Hilbert spaces and $T \in \mathcal{L}(H_1, H_2)$. Then there exists a unique pair of operators $A \in \mathcal{L}(H_1)$ and $U \in \mathcal{L}(\overline{\operatorname{Rng} A}, \overline{\operatorname{Rng} T})$ such that $T = U \circ A$, A is non-negative, and U is unitary. If T is an isomorphism, then A is an automorphism of H_1 .

Proposition 164

Let $T \in \mathcal{L}(\mathbb{C}^n)$. Then there exist a unitary $U \in \mathcal{L}(\mathbb{C}^n)$ and a non-negative $A \in \mathcal{L}(\mathbb{C}^n)$ such that T = UA.

4. Spectral decomposition of an operator
Definition 165

Let \mathscr{S} be a σ -algebra and X a topological vector space. A mapping $\mu: \mathscr{S} \to X$ is called a vector measure if $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for every sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoint sets from \mathscr{S} .

Definition 165

Let \mathscr{S} be a σ -algebra and X a topological vector space. A mapping $\mu: \mathscr{S} \to X$ is called a vector measure if $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for every sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoint sets from \mathscr{S} .

Fact 166

Let X, Y be topological vector spaces, $\mu: \mathscr{S} \to X$ a vector measure, and T: $X \to Y$ a continuous linear mapping. Then T $\circ \mu$ is also a vector measure.

Let X, Y be normed linear spaces over \mathbb{K} , \mathscr{S} a σ -algebra, and $\mu : \mathscr{S} \to (\mathscr{L}(X, Y), \tau_{WOT})$ a vector measure. Then for every $x \in X$ and $f \in Y^*$ the function $\mu_{x,f} : \mathscr{S} \to \mathbb{K}$ given by

$$\mu_{x,f}(A) = f(\mu(A)x)$$

is a complex measure on \mathscr{S} . The mapping $B: (x, f) \mapsto \mu_{x,f}$ is a bilinear mapping from $X \times Y^*$ to a normed linear space of complex measures on \mathscr{S} . If moreover X is a Banach space, then $\sup_{A \in \mathscr{S}} \|\mu(A)\| < +\infty$ and B is bounded.

Theorem 168 (B. J. Pettis (1938))

Let X be a normed linear space and $\mu : \mathscr{S} \to (X, w)$ a vector measure. Then μ is also a vector measure as a mapping into $(X, \|\cdot\|)$.

Theorem 168 (B. J. Pettis (1938))

Let X be a normed linear space and $\mu : \mathscr{S} \to (X, w)$ a vector measure. Then μ is also a vector measure as a mapping into $(X, \|\cdot\|)$.

Corollary 169

Let *X*, *Y* be normed linear spaces, \mathscr{S} a σ -algebra, and $\mu : \mathscr{S} \to (\mathscr{L}(X, Y), \tau_{WOT})$ a vector measure. Then μ is also a vector measure as a mapping into $(\mathscr{L}(X, Y), \tau_{SOT})$.

By Bs(X) we denote the σ -algebra of Borel subsets of a topological space *X*.

By Bs(X) we denote the σ -algebra of Borel subsets of a topological space *X*.

Definition 170

Let X be a Banach space over \mathbb{K} . A resolution of the identity on X is a vector measure

 $E: Bs(\mathbb{K}) \to (\mathcal{L}(X), \tau_{SOT})$ with the following properties:

- (i) E(A) is a projection for every Borel $A \subset \mathbb{K}$.
- (ii) $E(\mathbb{K}) = I$.
- (iii) $E(A \cap B) = E(A)E(B)$ for every Borel $A, B \subset \mathbb{K}$.

By Bs(X) we denote the σ -algebra of Borel subsets of a topological space *X*.

Definition 170

Let X be a Banach space over \mathbb{K} . A resolution of the identity on X is a vector measure

 $E: Bs(\mathbb{K}) \to (\mathcal{L}(X), \tau_{SOT})$ with the following properties:

- (i) E(A) is a projection for every Borel $A \subset \mathbb{K}$.
- (ii) $E(\mathbb{K}) = I$.

(iii) $E(A \cap B) = E(A)E(B)$ for every Borel $A, B \subset \mathbb{K}$.

If X is a Hilbert space and all projections E(A) are orthogonal, then E is called an orthogonal resolution of the identity on X.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

(a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

- (a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.
- (b) If $A, B \in Bs(\mathbb{K}), B \subset A$, then $Rng E(B) \subset Rng E(A)$ and $Ker E(B) \supset Ker E(A)$.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

- (a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.
- (b) If $A, B \in Bs(\mathbb{K}), B \subset A$, then $Rng E(B) \subset Rng E(A)$ and $Ker E(B) \supset Ker E(A)$.

(c) If
$$\{A_n\} \subset Bs(\mathbb{K})$$
, then
 $\bigcap_{n=1}^{\infty} \operatorname{Ker} E(A_n) \subset \operatorname{Ker} E(\bigcup_{n=1}^{\infty} A_n)$.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

- (a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.
- (b) If $A, B \in Bs(\mathbb{K}), B \subset A$, then $Rng E(B) \subset Rng E(A)$ and $Ker E(B) \supset Ker E(A)$.
- (c) If $\{A_n\} \subset Bs(\mathbb{K})$, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} E(A_n) \subset \operatorname{Ker} E(\bigcup_{n=1}^{\infty} A_n)$.
- (d) $E_{x,f}$ is a regular Borel complex measure on \mathbb{K} for every $x \in X$ a $f \in X^*$.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

- (a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.
- (b) If $A, B \in Bs(\mathbb{K}), B \subset A$, then $Rng E(B) \subset Rng E(A)$ and $Ker E(B) \supset Ker E(A)$.
- (c) If $\{A_n\} \subset Bs(\mathbb{K})$, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} E(A_n) \subset \operatorname{Ker} E(\bigcup_{n=1}^{\infty} A_n)$.
- (d) $E_{x,f}$ is a regular Borel complex measure on \mathbb{K} for every $x \in X$ a $f \in X^*$.

Let moreover X be a Hilbert space and E orthogonal.

(e) If $A, B \in Bs(\mathbb{K})$ are disjoint, then Rng $E(A) \perp Rng E(B)$.

Let X be a Banach space over \mathbb{K} and E a resolution of the identity on X.

- (a) The projections E(A) and E(B) commute for every $A, B \in Bs(\mathbb{K})$.
- (b) If $A, B \in Bs(\mathbb{K}), B \subset A$, then $Rng E(B) \subset Rng E(A)$ and $Ker E(B) \supset Ker E(A)$.
- (c) If $\{A_n\} \subset Bs(\mathbb{K})$, then $\bigcap_{n=1}^{\infty} \operatorname{Ker} E(A_n) \subset \operatorname{Ker} E(\bigcup_{n=1}^{\infty} A_n)$.
- (d) $E_{x,f}$ is a regular Borel complex measure on \mathbb{K} for every $x \in X$ a $f \in X^*$.

Let moreover X be a Hilbert space and E orthogonal.

- (e) If $A, B \in Bs(\mathbb{K})$ are disjoint, then Rng $E(A) \perp Rng E(B)$.
- (f) $E_{x,x}$ is a finite regular Borel non-negative measure on \mathbb{K} and $||E_{x,x}|| = ||x||^2$ for every $x \in X$.

Lemma 172

Let *X* be a Banach space over \mathbb{K} and suppose $E: Bs(\mathbb{K}) \to \mathcal{L}(X)$ has the following properties:

- (i) E(A) is a projection for every Borel $A \subset \mathbb{K}$.
- (ii) $E(\mathbb{K}) = I$.
- (iii) $E(A \cap B) = E(A)E(B)$ for every Borel A, $B \subset \mathbb{K}$.
- (iv) *E_{x,f}*: Bs(K) → K, *E_{x,f}(A) = f(E(A)x)* is a Borel complex measure on K for every *x* ∈ *X* and *f* ∈ *X**.
 Then E is a resolution of the identity on *X*.

Lemma 172

Let *X* be a Banach space over \mathbb{K} and suppose $E: Bs(\mathbb{K}) \to \mathcal{L}(X)$ has the following properties:

- (i) E(A) is a projection for every Borel $A \subset \mathbb{K}$.
- (ii) $E(\mathbb{K}) = I$.
- (iii) $E(A \cap B) = E(A)E(B)$ for every Borel A, $B \subset \mathbb{K}$.
- (iv) $E_{x,f}$: Bs(K) \rightarrow K, $E_{x,f}(A) = f(E(A)x)$ is a Borel complex measure on K for every $x \in X$ and $f \in X^*$.

Then *E* is a resolution of the identity on *X*. If *X* is a complex Hilbert space, then instead of (iv) it suffices to assume that $E_{x,x}$: Bs(\mathbb{K}) $\to \mathbb{C}$, $E_{x,x}(A) = \langle E(A)x, x \rangle$ is a finite Borel measure on \mathbb{C} for every $x \in X$.

Let X, Y be Banach spaces over \mathbb{K} , let E be a resolution of the identity on X, and let $S: X \to Y$ be a linear isomorphism. Then $F: A \mapsto S \circ E(A) \circ S^{-1}$, $A \in Bs(\mathbb{K})$ is a resolution of the identity on Y.

Let X, Y be Banach spaces over \mathbb{K} , let E be a resolution of the identity on X, and let $S: X \to Y$ be a linear isomorphism. Then $F: A \mapsto S \circ E(A) \circ S^{-1}$, $A \in Bs(\mathbb{K})$ is a resolution of the identity on Y. If moreover X, Y are Hilbert spaces, S is an isometry (and so unitary), and E is orthogonal, then F is also orthogonal.

Definition 174

Let *X* be a Banach space over \mathbb{K} and $T \in \mathcal{L}(X)$. We say that *E* is a resolution of the identity with respect to the operator *T* if *E* is a resolution of the identity on *X* such that for every Borel $A \subset \mathbb{K}$ the following holds:

(i) the projection E(A) commutes with T,

(ii) if we set
$$T_A = T \upharpoonright_{\operatorname{Rng} E(A)}$$
, then $\sigma(T_A) \subset \overline{A}$.

Let X be a Banach space over \mathbb{K} , $T \in \mathcal{L}(X)$, and E a resolution of the identity with respect to T.

(a) $\sigma(T_A) \subset \sigma(T)$ for every Borel $A \subset \mathbb{K}$.

Let X be a Banach space over \mathbb{K} , $T \in \mathcal{L}(X)$, and E a resolution of the identity with respect to T.

(a) $\sigma(T_A) \subset \sigma(T)$ for every Borel $A \subset \mathbb{K}$.

(b) In the complex case $E(\sigma(T)) = I$.

Let X be a Banach space over \mathbb{K} , $T \in \mathcal{L}(X)$, and E a resolution of the identity with respect to T.

- (a) $\sigma(T_A) \subset \sigma(T)$ for every Borel $A \subset \mathbb{K}$.
- (b) In the complex case $E(\sigma(T)) = I$.
- (c) If $E(\sigma(T)) = I$ (in particular if X is complex), then $E(G) \neq 0$ for every (relatively) open non-empty $G \subset \sigma(T)$.

Let X be a Banach space over \mathbb{K} , $T \in \mathcal{L}(X)$, and E a resolution of the identity with respect to T.

- (a) $\sigma(T_A) \subset \sigma(T)$ for every Borel $A \subset \mathbb{K}$.
- (b) In the complex case $E(\sigma(T)) = I$.
- (c) If $E(\sigma(T)) = I$ (in particular if X is complex), then $E(G) \neq 0$ for every (relatively) open non-empty $G \subset \sigma(T)$.
- (d) Ker $(\lambda I T) \subset$ Rng $E(\{\lambda\})$ for every $\lambda \in \mathbb{K}$. In particular, if λ is an eigenvalue of T, then $E(\{\lambda\}) \neq 0$.

Lemma 176

Let X, Y be normed linear spaces, $T \in \mathcal{L}(X)$, let $Z \subset X$ be a subspace invariant with respect to T, and let $S: X \to Y$ be a linear isomorphism. Then S(Z) is invariant with respect to $U = S \circ T \circ S^{-1} \in \mathcal{L}(Y)$ and $\sigma(U \upharpoonright_{S(Z)}) = \sigma(T \upharpoonright_Z)$.

Lemma 176

Let X, Y be normed linear spaces, $T \in \mathcal{L}(X)$, let $Z \subset X$ be a subspace invariant with respect to T, and let $S: X \to Y$ be a linear isomorphism. Then S(Z) is invariant with respect to $U = S \circ T \circ S^{-1} \in \mathcal{L}(Y)$ and $\sigma(U \upharpoonright_{S(Z)}) = \sigma(T \upharpoonright_Z)$.

Proposition 177

Let X, Y be Banach spaces over \mathbb{K} , $T \in \mathcal{L}(X)$, and S: $X \to Y$ a linear isomorphism. If E is a resolution of the identity with respect to T, then F: $A \mapsto S \circ E(A) \circ S^{-1}$, $A \in Bs(\mathbb{K})$, is a resolution of the identity with respect to the operator $U = S \circ T \circ S^{-1} \in \mathcal{L}(Y)$.

Let *X* be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity *E* with respect to *T* such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties:

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$.

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

for every $f \in Bf_b(\sigma(T))$ and every $x \in X$ and $\phi \in X^*$.

(c) $E(\{\lambda\})$ is a projection onto $\text{Ker}(\lambda I - T)$ for every $\lambda \in \mathbb{K}$.

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

- (c) $E(\{\lambda\})$ is a projection onto $\text{Ker}(\lambda I T)$ for every $\lambda \in \mathbb{K}$.
- (d) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$.

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

- (c) $E(\{\lambda\})$ is a projection onto $\text{Ker}(\lambda I T)$ for every $\lambda \in \mathbb{K}$.
- (d) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$.
- (e) If X is complex and λ an isolated point of $\sigma(T)$, then $\lambda \in \sigma_p(T)$.

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

- (c) $E(\{\lambda\})$ is a projection onto $\text{Ker}(\lambda I T)$ for every $\lambda \in \mathbb{K}$.
- (d) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$.
- (e) If X is complex and λ an isolated point of $\sigma(T)$, then $\lambda \in \sigma_p(T)$.
- (f) If X is a Hilbert space and Ψ is a *-homomorphism, then E is orthogonal.

Let X be a Banach space over \mathbb{K} . If Ψ is a Borel functional calculus for $T \in \mathcal{L}(X)$, then there exists a resolution of the identity E with respect to T such that

$$\phi(Tx) = \int_{\sigma(T)} \lambda \, \mathrm{d}E_{x,\phi}(\lambda)$$

for every $x \in X$ and $\phi \in X^*$. This resolution has the following properties: (a) $E(A) = \Psi(\chi_{A \cap \sigma(T)})$ for every Borel $A \subset \mathbb{K}$. (b)

$$\phi(\Psi(f)x) = \int_{\sigma(T)} f \, \mathrm{d}E_{x,\phi}$$

for every $f \in Bf_b(\sigma(T))$ and every $x \in X$ and $\phi \in X^*$.

- (c) $E(\{\lambda\})$ is a projection onto $\text{Ker}(\lambda I T)$ for every $\lambda \in \mathbb{K}$.
- (d) $\lambda \in \sigma_p(T)$ if and only if $E(\{\lambda\}) \neq 0$.
- (e) If X is complex and λ an isolated point of $\sigma(T)$, then $\lambda \in \sigma_p(T)$.
- (f) If X is a Hilbert space and Ψ is a *-homomorphism, then E is orthogonal.

On the other hand, if *E* is a resolution of the identity on *X* such that E(K) = I for some compact $K \subset \mathbb{K}$, then there exists a unique mapping $\Psi : Bf_b(K) \to \mathcal{X}(X)$ such that (b) holds. This Ψ is a Borel functional calculus for $T = \Psi(Id)$, *E* is a resolution of the identity with respect to *T*, and (a)–(e) holds. If moreover *X* is a complex Hilbert space and *E* is orthogonal, then Ψ is a *-homomorphism and *T* is normal.

Corollary 179

Let *H* be a complex Hilbert space and $T \in \mathcal{L}(H)$ a normal operator. Then there exists a unique orthogonal resolution of the identity *E* on *H* such that there is a compact $K \subset \mathbb{C}$ containing $\sigma(T)$, E(K) = I, and

$$\langle Tx, x \rangle = \int_{\mathcal{K}} \lambda \, \mathrm{d} E_{x,x}(\lambda)$$

for every $x \in H$. This resolution is given by the formula $E(A) = \chi_A(T)$. It is an orthogonal resolution of the identity with respect to T.

$$\langle f(T)x,y\rangle = \int_{\sigma(T)} f \,\mathrm{d}E_{x,y}$$

for every $f \in Bf_b(\sigma(T))$ and every $x, y \in H$. Further, (c), (d), (e) of Theorem 178 hold.

Definition 180

Let (S, \mathscr{S}) , (T, \mathscr{T}) be measurable spaces, X a topological vector space, $\mu : \mathscr{S} \to X$ a vector measure, and $f : S \to T$ a measurable mapping. The mapping $f(\mu) : \mathscr{T} \to X$ defined by the formula $f(\mu)(A) = \mu(f^{-1}(A))$ for $A \in \mathscr{T}$ is called an image of the vector measure μ .

Definition 180

Let (S, \mathscr{S}) , (T, \mathscr{T}) be measurable spaces, X a topological vector space, $\mu : \mathscr{S} \to X$ a vector measure, and $f : S \to T$ a measurable mapping. The mapping $f(\mu) : \mathscr{T} \to X$ defined by the formula $f(\mu)(A) = \mu(f^{-1}(A))$ for $A \in \mathscr{T}$ is called an image of the vector measure μ .

Proposition 181

Let X be a Banach space over \mathbb{K} , E a resolution of the identity with respect to $T \in \mathcal{L}(X)$ such that E(K) = I for some compact $K \subset \mathbb{K}$, and $f \in Bf_b(K)$. Then f(E) is a resolution of the identity with respect to $f(T) = \Psi(f)$, where Ψ is the Borel functional calculus for T from Theorem 178.