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ABSTRACT. We show that in any separable Banach space containing c0 which admits a Ck-smooth bump, every continuous function
can be approximated by a Ck-smooth function whose range of derivative is of the first category. Moreover, the approximation can be
constructed in such a way that its derivative avoids a prescribedK� set (in particular the approximation can have no critical points). On the
other hand, in a Banach space with the RNP, the range of the derivative of every smooth bounded bump contains a set residual in some
neighbourhood of 0.

In the last few years there has been a growing interest in the general problem: Given a (separable) Banach space X and a
C k-smooth function f W X ! R, what can be said about the set f 0.X/ � X�. Early results in this area were obtained by Azagra
and Deville in [AD], where they construct a C 1-smooth bump function f , such that f 0.X/ D X�, on every Banach space X
admitting a C 1-smooth Lipschitz bump function. This surprising result contrasts James’ characterisation of reflexive spaces as
those for which kSXk

0
D SX� whenever k�k is an equivalent C 1 renorming of X . Also, by [H], C 1 smoothness cannot be in

general replaced by C 2 smoothness. Subsequently, the possible shape of f 0.X/ has been investigated e.g. in [ADJ], [AFJ], [AJ],
[AJ2], [BFKL], [BFL], [FKK] and [G].

Recently, Azagra and Cepedello in [AC] proved that every continuous function on `2 can be uniformly approximated by a
C1-smooth function without critical points (i.e. the points where f 0 D 0). Their proof is rather technical and does not seem to
generalise to other spaces. In our note we give a simpler proof of a stronger statement for every separable Asplund space X (i.e.
Banach space with a separable dual, cf. [DGZ]) containing a copy of c0. We show that for any fixed K� set N � X�, the set
of smooth functions ff I f 0.X/ \ N D ;g is dense among the continuous functions with uniform topology. However, due to
(probably folklore) Fact 3, our method cannot be used for spaces with the Radon-Nikodým Property (RNP), in particular `2 or
any reflexive space. This leaves open the natural conjecture that in every infinite-dimensional separable Asplund space the set
of smooth functions without critical points is dense among all continuous functions. Let us recall that all these spaces admit a
C 1 bump without a critical point ([AJ]).

First let us fix some notation. LetX be a Banach space. We denote byBr D f x 2 X I kxk � r g,Ur D f x 2 X I kxk < r g and
Sr D f x 2 X I kxk D r g the closed ball, the open ball and the sphere respectively. Sometimes we will write BXr to distinguish
the space in which we take the ball. We say that a subset of a topological space belongs to the K� class if it can be written as
a countable union of compact sets. If Y is a subspace of X and L 2 X�, by L�Y we denote the restriction of L to Y (thus
L�Y 2 Y �). For a set N � X�, we write N�Y D fL�Y I L 2 N g. We say a function f W X ! R is Gâteaux differentiable at
x 2 X if there is L 2 X� such that limt!0

1
t

�
f .x C th/ � f .x/

�
D L.h/ for every h 2 X . If moreover this limit is uniform for

h 2 SX , we say that f is Fréchet differentiable at x. This L is then called the Gâteaux (Fréchet) derivative of f at x and is denoted
by L D f 0.x/. In this paper, all derivatives are Fréchet unless stated otherwise. If X D Z ˚ Y , x D .´; y/ and f W X ! R, we
use the notation @f

@Z
.x/ D f 0y.´/, where fy W Z ! R, fy.´/ D f .´; y/. A bump function (or a bump for short) is a non-constant

function f W X ! R with bounded and non-empty support.

Theorem 1. Let X be a separable Banach space that contains c0 and admits a C k bump, k 2 N [ f1g. Let f 2 C.X/ and
" > 0. Then there is a function g 2 C k.X/ such that g0.X/ is of the first category in X� and kf � gk < ".

In the proof we will use the notions of partition of unity and of functions which locally depend on finitely many coordinates. A
collection f  I  2 � g of real valued functions onX is called a (locally finite) partition of unity on X if for every x 2 X there is a
neighbourhood of x which meets only finite number of supp  ,  2 � and

P
�   .x/ D 1 for each x 2 X . If U D fU I  2 � g

is an open covering of X , the partition of unity f  I  2 � g is said to be subordinated to U if supp  � U for every  2 � .
Recall that an open covering U of X is called locally finite if for each x 2 X there is a neighbourhood of x that meets only finitely
many members of U. An open covering V D fV˛I ˛ 2 �g is a refinement of an open covering U D fU I  2 � g if for each
˛ 2 � there is a  2 � such that V˛ � U . For more information about smooth partitions of unity and approximation we refer e.g.
to [DGZ, VIII.3].

We say that f W X ! E (where E is a Banach space) locally depends on finitely many coordinates if for each x 2 X there
are a neighbourhood U of x, n 2 N, a finite collection of functionals x�1 ; : : : ; x

�
n 2 X

� and a mapping g W Rn ! E such that
f .y/ D g

�
x�1 .y/; : : : ; x

�
n.y/

�
for y 2 U . Note that the canonical supremum norm k�k1 on c0 locally depends on finitely many

coordinates on c0 n f0g. Indeed, given 0 ¤ x D .xi / 2 c0, let M � N satisfy jxnj D kxk1 if and only if n 2M . Clearly, M is
a finite set and k�k1 depends only on coordinates fxigi2M in the 1

2

�
kxk1 � supfjxi j ; i 2 N nM g

�
neighbourhood of x. It is
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shown in [DGZ, VIII.3] how using compositions, shifts and other operations starting from k�k1 we can generate a dense subset of
C.c0/ consisting of C1-smooth functions locally depending on finitely many coordinates.

By [Sob] we know that c0 is complemented in every separable overspace. Hence in the situation of Theorem 1, X D c0 ˚ Y ,
where Y is a separable Banach space that admits a C k bump. The following lemma will provide us with partition of unity
convenient for our purpose.

Lemma 2. Let X D c0 ˚ Y , such that Y is a separable Banach space that admits a C k bump, k 2 N [ f1g, and U be a
countable open covering of X . Then there is a C k-smooth partition of unity f ng subordinated to U such that for each n, @ n

@c0
.X/

is contained in a K� set in `1.

Proof. Denote by S0 the set of functions in C1.c0/ which locally depend on finitely many coordinates, and further denote
B0 D ff

�1.0;C1/I f 2 S0; 0 � f � 1g and Bk D ff
�1.0;C1/I f 2 C k.Y /; 0 � f � 1g. Let V be a countable

refinement of U of the form V D fUn � VnI Un 2 B0; Vn 2 Bkg. Such refinement exists, as B0 and Bk form bases of topologies
in the respective spaces (see e.g. [DGZ, VIII.3]) and it can be made countable because X is separable. Now we need to construct
locally finite refinement of V along with the partition of unity subordinated to this refinement.

For n 2 N, let un 2 S0, 0 � un � 1, be such that Un D u�1n .0;C1/ and similarly vn 2 C k.Y /, 0 � vn � 1, be such that
Vn D v�1n .0;C1/. Let gn 2 C1.R/ be such that gn D 0 on Œ1=n;C1/, gn D 1 on .�1; 0� and 0 < gn < 1 on .0; 1=n/.
Denote the coordinates of x 2 X as x D .´; y/, ´ 2 c0, y 2 Y .

Put W1 D U1 � V1 and '1.x/ D u1.´/v1.y/. Then W1 D '�11 .0;C1/ and @'1
@c0
.x/ D u01.´/v1.y/. As u01 locally depends

only on finitely many coordinates, for every ´ 2 c0 there is a neighbourhood N´ of ´ in c0 such that u01.N´/ is relatively compact
in `1 (it is a continuous image of a finite-dimensional bounded set). Since c0 is separable, u01.c0/ is contained in a K� subset of `1.
We can see that @'1

@c0
.X/ is contained in a K� set, because it is a subset of a continuous image of a product of two K� sets (one of

them being the set that contains u01.c0/, the other one R).
We continue by induction. For n > 1, put

Wn D .Un � Vn/ \
\
i<n

'�1i .�1; 1=n/ and

'n.x/ D un.´/vn.y/
Y
i<n

gn
�
'i .x/

�
:

Clearly, Wn D '�1n .0;C1/. Further, by the Leibniz rule,

@'n

@c0
.x/ D u0n.´/vn.y/

Y
i<n

gn
�
'i .x/

�
C

X
j<n

 
@'j

@c0
.x/g0n

�
'j .x/

�
un.´/vn.y/

Y
i<n
i¤j

gn
�
'i .x/

�!
;

the summands are all of the form a.x/b.x/, where a W X ! R and b W X ! `1 with b.X/ contained in a K� set (for u0n it is by
the same reason as for u01 and for @'j

@c0
it follows from the induction) and so @'n

@c0
.X/ is also contained in a K� set. (It is again a

subset of a continuous image of products of K� sets.)
For each x 2 X , there is an n.x/ 2 N such that x 2 Un.x/ � Vn.x/ and x … Ui � Vi for i < n.x/. Then x … Wi for i < n.x/

and so x 2 Wn.x/. Therefore fWng is an open covering of X . Moreover, it is a locally finite covering of X . Indeed, given x 2 X ,
put W D '�1

n.x/

�
'n.x/.x/=2;C1

�
. Then W is a neighbourhood of x and if m > max

˚
2='n.x/.x/; n.x/

	
, then W \Wm D ;.

To see this, assume that w 2 W \ Wm. According to the definition of Wm, we have that 'n.x/.w/ < 1=m. Because w 2 W ,
'n.x/.w/ > 'n.x/.x/=2, which contradicts the choice of m.

To build a partition of unity from the collection f'ng, define  n D 'n=
P
i 'i and notice that since the sum is locally finite, the

image of @ n
@c0

is still contained in some K� set.
The partition of unity f ng is subordinated to fWng which is a refinement of U. To finish the proof we simply add the

appropriate functions from the collection f ng to make the partition of unity subordinated to U.
�

Proof of Theorem 1. We construct the function g by a standard procedure using the partition of unity supplied by Lemma 2: Let 	

be a countable open covering of R by intervals with the length ". Then U D f �1.	/ D ff �1.I /I I 2 	g is a countable open
covering of X . Let f ng be a partition of unity from Lemma 2 subordinated to U. For each n 2 N such that  n is not identically
zero, we choose xn 2 X such that  n.xn/ ¤ 0. It follows that if x 2 X and n 2 N are such that  n.x/ ¤ 0, then f .x/ and f .xn/
both lie in some I 2 	 and therefore jf .x/ � f .xn/j < ". Define

g.x/ D

1X
nD1

f .xn/ n.x/:
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The sum is locally finite. It follows that g 2 C k.X/ and we can see that @g
@c0
.X/ is contained in a K� subset of `1. Because

g0.X/ �
�
@g
@c0
.X/ � Y �

�
, it is a subset of an F� set of the first category in X�. Moreover, for x 2 X we have

ˇ̌
f .x/ � g.x/

ˇ̌
D

ˇ̌̌̌
ˇ
1X
nD1

f .xn/ n.x/ � f .x/

1X
nD1

 n.x/

ˇ̌̌̌
ˇ �

1X
nD1

 n.x/¤0

ˇ̌
f .xn/ � f .x/

ˇ̌
 n.x/ <

1X
nD1

 n.x/¤0

" n.x/ D ":

�

On the other hand, in spaces with the RNP the range of the derivative of non-trivial smooth function is always large: (Recall
that e.g. reflexive spaces have the RNP.)

Fact 3. Let X be a Banach space with the RNP, b W X ! R be a lower semicontinuous Gâteaux differentiable bounded below
bump function with supp b � BR and y 2 BR such that b.y/ < 0. Then b 0.UR/ contains a residual subset of UX

�

r , where
r D �b.y/

RCkyk
.

The proof of Fact 3 relies on

Stegall’s variational principle [Ste]. Let X be a Banach space with the RNP, E be a non-empty closed bounded subset of X . Let
' W E ! R be a bounded below lower semicontinuous function. Then the set of x� 2 X� such that the function ' � x� attains its
minimum at one point in E is residual in X�.

Proof of Fact 3. We apply Stegall’s variational principle on b W BR ! R. This gives us a set A residual in X�, such that b � x�

attains its minimum on BR at one point for all x� 2 A. Pick any x� 2 A\UX
�

r . Then b � x� attains its minimum at some unique
point x 2 UR and thus b0.x/ D x�.

�

By utilising the fact that the partition of unity in Lemma 2 has the partial derivatives contained in a K� set a little bit more, we
can perturb the approximating function in such a way that its derivative avoids a K� set.

Theorem 4. Let X be a separable Banach space that contains c0 and admits a C k bump, k 2 N [ f1g. Let f 2 C.X/, " > 0,
and N � X� be a K� set. Then there is a function g 2 C k.X/ such that kf � gk < ", g0.X/ is of the first category in X� and
g0.X/ \N D ;.

In the proof we will make use of the following lemma (we assume that X D c0 ˚ Y again):

Lemma 5. Let X be as in Theorem 4, L 2 X�, r > 0, and " > 0. Then there is a function h 2 C k.X/ such that h.x/ D L.x/ for
x 2 Br , h.x/ D 0 for x … UrC", @h

@c0
.X/ is contained in a K� set in `1, and khkC.X/ < kLkX� .r C "/.

Proof. Using the partition of unity provided by Lemma 2 we construct a bump ' 2 C k.X/ such that 0 � ' � 1, ' D 1 for
x 2 Br , ' D 0 outside UrC" and @'

@c0
.X/ is contained in a K� set. (Consider the open covering of X formed by UrC", X n BrC"

and a countable covering of SrC" by open balls with diameter ". Take as ' the function from the partition of unity with its support
in UrC".) Put h.x/ D '.x/L.x/. Then @h

@c0
.x/ D '.x/L�c0 CL.x/

@'
@c0
.x/, the image of the first summand is a subset of a line in

`1 and the image of the second summand is contained in a continuous image of a product of two K� sets (one of them being R),
hence @h

@c0
.X/ is a subset of a K� set. The other assertions are evident.

�

Proof of Theorem 4. The proof of Theorem 1 gives a function g0 2 C k.X/ such that @g0
@c0
.X/ is a subset of a K� set in `1 and

kf � g0k <
"
2

.
Let D1 D

S
w2N

�
@g0
@c0
.B1/ � w�c0

�
. Since N is a K� set and @g0

@c0
.B1/ is a subset of a K� set, D1 is a subset of a K� set as

well. A K� set in `1 has an empty interior and so the complement of D1 in `1 contains a dense Gı subset of `1. Let us denote this
Gı set by A1 and let �1 be a complete metric on A1 compatible with the norm topology of `1. Let G1 D U

`1
"=.23�1/

. G1 is an open
non-empty set and A1 is dense in `1 and thus there is L1 2 A1 \G1. Extend this L1 by the Hahn-Banach theorem to the whole
of X (preserving the norm) and denote the extended functional by L1 again. Now Lemma 5 produces a function h1 2 C k.X/
such that h1 D L1 on B1 and kh1k < "

22
. Finally put g1 D g0 � h1. We claim that .N�c0 C L1/ \

@g0
@c0
.B1/ D ;. Indeed, take

any w 2 N . By our choice L1 2 A1, hence L1 … D1, and so L1 C w�c0 …
@g0
@c0
.B1/. From this and the fact that h01.x/ D L1 on

B1 we have g01.B1/ \N D ;.
Let D2 D

S
w2N

�
@g1
@c0
.B2/ � w�c0

�
, which is a subset of a K� set. The complement of D2 contains a dense Gı subset of `1.

Let us denote this Gı set by QA2. Let A2 D QA2\ .A1�L1/, hence A2 is again a dense Gı set. Let �2 be the complete metric on A2
compatible with the norm topology of `1. The set QM 1

2 D fL 2 A1 � L1I �1.L1 C L;L1/ <
1
22
g is relatively open (in the norm

topology of `1) and non-empty (containing at least zero) and so there is a setM 1
2 open in `1 such that QM 1

2 DM
1
2 \ .A1�L1/. Let

G2 DM
1
2 \U

`1
"=.24�2/

.G2 is an open non-empty set andA2 is dense in `1 and thus there is L2 2 A2\G2. Note thatL1CL2 2 A1.
Extend this L2 by the Hahn-Banach theorem to the whole of X (preserving the norm) and denote the extended functional by L2
again. Now Lemma 5 produces a function h2 2 C k.X/ such that h2 D L2 on B2 and kh2k < "

23
. Put g2 D g1 � h2 and notice



4 PETR HÁJEK AND MICHAL JOHANIS

that, since h02.x/ D L2 on B2 and .N�c0 C L2/ \
@g1
@c0
.B2/ D ; (which we show the same way as in the previous paragraph), we

have g02.B2/ \N D ;.
Now let us proceed by induction: Suppose that g1; : : : ; gn�1 have already been defined. LetDn D

S
w2N

�
@gn�1
@c0

.Bn/ � w�c0
�

(which is a subset of a K� set) and QAn be a dense Gı subset of `1 which is contained in the complement of the set Dn. Let
An D QAn \ .An�1 � Ln�1/ and �n be the complete metric on An. For j < n, the sets

QM j
n D

(
L 2 Aj �

n�1X
iDj

Li I �j

 
n�1X
iDj

Li C L;

n�1X
iDj

Li

!
<
1

2n

)
are relatively open (in the respective sets) and thanks to the induction hypothesis they contain at least zero. Therefore there are sets
M
j
n open in `1 such that QM j

n DM
j
n \

�
Aj �

Pn�1
iDj Li

�
. Let Gn D

T
j<n

M
j
n \ U

`1
"=.2nC2�n/

. It is open and non-empty (contains at

least zero) and so there is Ln 2 An \ Gn. Notice that by the induction hypothesis
Pn
iDj Li 2 Aj . Extend again the Ln to the

whole of X . From Lemma 5 we get a function hn 2 C k.X/ such that hn D Ln on Bn and khnk < "
2nC1

. Put gn D gn�1 � hn,
then g0n.Bn/ \N D ;.

The sequence fgng is Cauchy in C.X/ (because
Pn
kDm khkk <

"
2m

) and so we can define

g D lim
n!1

gn D g0 �

1X
kD1

hk :

Notice that kf � gk < ". Fix any n 2 N. On Bn, g D gn�1 �
P1
kDn hk D gn�1 �

P1
kDnLk and since

˚Pj

kDn
Lk
	
j

is Cauchy
in X� (through the choice of Gk), g 2 C 1.X/ and @g

@c0
.X/ is contained in a K� subset of `1 (as it holds for gn on Bn). Therefore

g0.X/ is of the first category in X�.
Moreover, on Bn, @g

@c0
D

@gn�1
@c0
�
P1
kDnLk and because

˚Pj

kDn
Lk
	
j

is Cauchy in �n, which is complete on An, we obtainP1
kDnLk 2 An. Thus g0.Bn/ \N D ;. Finally, for the second and higher derivatives g.j / D g.j /n�1 on Bn for 1 < j � k and so

g 2 C k.X/.
�

Notice that we only needed N�c0 to be K� .
As the Fact 3 shows, our method of perturbation by linear functionals doesn’t work in spaces with the RNP. Spaces that don’t

contain c0 and have bumps with smoothness of higher order are known to be super-reflexive ([FWZ, Theorem 3.3]), hence we
have the following corollary:

Corollary 6. Let X be a separable non-super-reflexive Banach space that admits a C k bump, k > 1. Let f 2 C.X/, " > 0, and
N � X� be a K� set. Then there is a function g 2 C k.X/ such that kf � gk < ", g0.X/ is of the first category in X�, and
g0.X/ \N D ;.
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